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[1] We introduce a novel scheme, DGCrack, to simulate dynamic rupture of earthquakes
in three dimensions based on an hp-adaptive discontinuous Galerkin method. We solve
the velocity-stress weak formulation of elastodynamic equations on an unstructured
tetrahedral mesh with arbitrary mesh refinements (h-adaptivity) and local approximation
orders (p-adaptivity). Our scheme considers second-order fault elements (P2) where
dynamic-rupture boundary conditions are enforced through ad hoc fluxes across the fault.
To model the Coulomb slip-dependent friction law, we introduce a predictor-corrector
scheme for estimating shear fault tractions, in addition to a special treatment of the normal
tractions that guarantees the continuity of fault normal velocities. We verify the DGCrack
by comparison with several methods for two spontaneous rupture tests and find excellent
agreement (i.e., rupture times RMS errors smaller than 1.0%) provided that one or more
fault elements resolve the fault cohesive zone. For a quantitative comparison, we introduce
a methodology based on cross-correlation measurements that provide a simple way to
quantify the similarity between solutions. Our verification tests include a 60! dipping
normal fault reaching the free surface. The DGCrack method reveals convergence rates
close to those of well-established methods and a numerical efficiency significantly higher
than that of similar discontinuous Galerkin approaches. We apply the method to the 1992
Landers-earthquake fault system in a layered medium, considering heterogeneous initial
stress conditions and mesh adaptivities. Our results show that previously proposed
dynamic models for the Landers earthquake require a reevaluation in terms of the initial
stress conditions that take account of the intricate fault geometry.
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1. Introduction

[2] The availability of high-quality near-field records of
large subduction earthquakes in the last few years makes it
possible to test and validate physics-based rupture models.
The development of sophisticated models to explain such
aggregate of observations is now largely justified. Huge
efforts have been made by the seismological community in
the last ten years to overcome technical limitations prevent-
ing most methods for dynamic rupture calculations from

integrating the effect of fault geometry in the spontaneous
rupture of earthquakes. Because of both its simplicity and
efficiency, the finite difference (FD) method has been one of
the first and most persistent approaches to simulate rupture
dynamics along planar faults [e.g.,Andrews, 1976;Madariaga,
1976; Miyatake, 1980; Day, 1982; Virieux and Madariaga,
1982; Harris and Day, 1993; Madariaga et al., 1998; Peyrat
et al., 2001; Day et al., 2005; Dalguer and Day, 2007].
Although different strategies have been proposed in recent
years to integrate complex fault geometries into such methods
[Cruz-Atienza and Virieux, 2004; Kase and Day, 2006; Cruz-
Atienza et al., 2007; Kozdon et al., 2012], most common
approaches handle numerical lattices (meshes) that are adapt-
able to the problem geometry (i.e., fault geometry). One set of
methods is based on well established boundary integral equa-
tions (BIE), [e.g.,Das and Aki, 1977; Andrews, 1985;Cochard
and Madariaga, 1994; Kame and Yamashita, 1999; Aochi
et al., 2000; Lapusta et al., 2000; Hok and Fukuyama, 2011].
However, since these methods discretize only boundaries and
require semi-analytical approximations of Green functions,
they have difficulties integrating heterogeneities of the bulk
properties into which the fault is embedded. The other set
consists of domain methods based on weak formulations of the
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elastodynamic equations, and can be separated into two sub-
groups depending on how the lattice boundaries are treated.
On one hand the continuous finite element methods (FEM),
whose formulations require continuity between the mesh
elements except where special treatments of boundary con-
ditions are imposed [e.g., Oglesby and Day, 2001; Ampuero,
2002; Festa and Vilotte, 2006; Ma and Archuleta, 2006;
Kaneko et al., 2008; Ely et al., 2009; Barall, 2009]. On the
other, the discontinuous finite element methods, better
known as the discontinuous Galerkin (DG) methods, which
only consider fluxes between elements and, therefore, do not
impose any field continuity across their boundaries.
[3] When studying the earthquakes source physics, the

discontinuity produced across the fault by the rupture process
must be accurately treated, so that the DG strategy is natu-
rally suitable for tackling this problem.
[4] The first dynamic rupture model based on a DG

approach was introduced in two dimensions (2D) by
Benjemaa et al. [2007] for low-order (P0) interpolation
functions. In this case, where the basis functions are con-
stants, the DG schemes are also known as finite volume (FV)
methods [LeVeque, 2002] and provide computationally effi-
cient algorithms that are as fast as second order FD schemes
(i.e., they are equivalent in efficiency on rectangular meshes).
However, the extension to three dimensions (3D) of this
model [Benjemaa et al., 2009] revealed convergence pro-
blems for unstructured tetrahedral grids (e.g., non-planar
faults) [Tago et al., 2010]. On these irregular grids, P0 ele-
ments have zero-order convergence for wave propagation
modeling due to the centered flux approximation [Brossier
et al., 2009; Remaki et al., 2011], so increasing the element
interpolation order to achieve a proper numerical conver-
gence of wave propagation with a DG scheme is mandatory.
Nevertheless, in practice, high-order convergence rates are
not clearly observed for the dynamic-rupture numerical
problem (i.e., 4th order or higher), and second order inter-
polation methods are often the most accurate and efficient
approximations for applying the corresponding fault bound-
ary conditions [Cruz-Atienza et al., 2007;Moczo et al., 2007;
Rojas et al., 2009; Kozdon et al., 2012]. A notable case for
which the convergence rate is essentially insensitive to
increments in the interpolation order is the ADER-DG dis-
continuous Galerkin method for 2D and 3D geometries by
de la Puente et al. [2009] and Pelties et al. [2012], respec-
tively, despite its spectral convergence for the wave propa-
gation problem [Dumbser and Käser, 2006]. The ADER-DG
is based on a modal interpolation formulation, instead of
the nodal interpolation we consider here. Both formulations
are mathematically equivalent but computationally different
[Hesthaven and Warburton, 2008]. Our choice of using the
nodal approximation essentially relies on the fact that the
evaluation of fluxes requires fewer computations than in a
modal scheme, as we shall explain on section 4.1.
[5] In this workwe introduce a novel discontinuousGalerkin

approach, namely the DGCrack method, to model the dynamic
rupture of earthquakes in 3D geometries. The numerical plat-
form of our model is the GeoDG3D parallel code [Etienne
et al., 2010] developed for the elastic wave propagation. For
the parallel implementation it uses the Message Passing Inter-
face (MPI) and achieves "80% strong scalability. GeoDG3D
accounts for free surface boundary conditions along arbitrary

topographies, and includes Convolutional Perfectly Matching
Layer (CPML) absorbing boundary conditions at the external
edges of the physical domain [Etienne et al., 2010, and refer-
ences therein]. Furthermore, intrinsic attenuation has been
recently introduced into GeoDG3D via the rock quality Q
[Tago et al., 2010], but will not be discussed in the present
work. To maximize both the efficiency and the accuracy of
the scheme depending on the model properties and geometry,
the method handles unstructured mesh refinements (i.e., h-
adaptivity) and locally adapts the order of the nodal inter-
polations (i.e., within every grid element; p-adaptivity)
[Etienne et al., 2010].
[6] We first introduce the mathematical and computational

concepts for the 3D dynamic rupture problem, and then assess
both its accuracy and convergence rate by comparing calcu-
lated solutions with those yielded by finite difference (DFM),
finite element (FEM), spectral boundary integral (MDSBI)
and spectral element (SPECFEM3D) methods for two spon-
taneous rupture benchmark tests [Harris et al., 2009]. Since
one of our major goals in the near future is the investigation of
dynamic rupture propagation along realistic (nonplanar) fault
geometries, we take special care to verify the accuracy of the
normal stress field across the fault during rupture propagation,
as the fault normal tractions strongly determine the radiated
energy throughout the Coulomb failure criterion. We finally
illustrate the capabilities of the DGCrack method through a
spontaneous rupture simulation along the 1992 Landers
earthquake fault system, which is a geometrically intricate and
physically interesting study case.

2. Elastodynamic Equations

[7] Velocities and stresses induced by the propagation of
waves in a homogeneous elastic medium can be modeled
with a first order hyperbolic system [Madariaga, 1976].
Following the transformation proposed by Benjemaa et al.
[2009], a pseudo-conservative form of the system is given by

r∂t~v ¼
X

q2 x;y;zf g
∂q Mq~sð Þ

L∂t~s ¼
X

q2 x;y;zf g
∂q N q~vð Þ;

ð1Þ

where ~v ¼ vx; vy; vz
! "T

is the velocity vector and ~s ¼
w;w′ ;w″ ;sxy;sxz;syz
! "T

. To avoid physical properties on the
right hand side of (1), a change of variables is applied to the
stress vector leading to its first three components

w ¼ 1
3

sxx þ syy þ szz
! "

w′ ¼ 1
3

2sxx ' syy ' szz
! "

w″ ¼ 1
3

'sxx þ 2syy ' szz
! "

;

ð2Þ

which involve the mean and the deviatoric stresses.
[8] In this model, the physical properties of the medium are

the density, r, and the medium matrix L = diag(3/(3l + 2G),
3/(2G), 3/(2G), 1/G, 1/G, 1/G) which is composed of the
Lamé parameters l and G. The termsMq andNq are constant
real matrices whose definition can be seen in Appendix B.
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2.1. The hp-Adaptive Discontinuous Galerkin Scheme
[9] To construct the local approximation of the hyperbolic

system (1), we first decompose the domain W into K ele-
ments, such that

W ≃ Wh ¼
XK

i¼1

Di; ð3Þ

where each Di is a straight-sided tetrahedron and the mesh
(i.e., decomposed domain) is assumed to be geometrically
conforming. By applying a Discontinuous Galerkin approach
to the weak formulation of (1) as proposed by Etienne et al.
[2010], we obtain the following velocity-stress iterative
scheme in every i-tetrahedron,

ri I3(Kið Þ
~vnþ

1
2

i '~vn'
1
2

i

Dt
¼ '

X

q2 x;y;zf g
Mq(Eiqð Þ~sn

i

þ 1
2

X

k2Ni

Pik(F ikð Þ~sn
i þ Pik(Gikð Þ~sn

k

# $

ð4Þ

Li(Kið Þ~s
nþ1
i '~sn

i

Dt
¼ '

X

q2 x;y;zf g
N q(Eiqð Þ~vnþ

1
2

i

þ 1
2

X

k2Ni

Qik(F ikð Þ~vnþ
1
2

i þ Qik(Gikð Þ~vnþ
1
2

k

h i
;

ð5Þ

where the superscript n indicates the time step, Ni is the group
of adjacent elements to the i-tetrahedron and ( represents the
tensor product. The matrices involved are the mass matrix,Ki,
the stiffness matrices, Eiq, for all q2 {x, y, z}, the fluxmatrices,
F ik and Gik , and the auxiliary flux matrices, Qik and Pik . A
derivation of the numerical scheme and the matrices definition
can be found in Appendix A. The size of these matrices
depends on the order of the polynomial basis (e.g., P0, P1, P2,
…, Pk) used for the nodal interpolation. Staggered time inte-
gration is done through a second-order explicit leap-frog
scheme, which allows the alternation of velocities and stresses
computation.
[10] One of the main features of this scheme is the

h-adaptivity, which allows working with unstructured tetra-
hedral meshes and thus to adapt the mesh geometry to both
the physical properties of the medium and the problem
geometry (i.e., mesh refinement). Furthermore, the p-
adaptivity is possible thanks to the fluxes between neigh-
boring elements, which are such that two adjacent tetrahe-
dra may have different interpolation orders. The fluxes are
computed via a non-dissipative centered scheme that allows
choosing different degrees of freedom (DOF) in every tetra-
hedron. As shown by Etienne et al. [2010], the p-adaptivity is
a powerful tool for the optimization of the domain dis-
cretization by adapting the element order to the medium
waves speed. Our scheme includes finite volume approxi-
mation orders, P0 (i.e., constant functions), linear interpola-
tion functions, P1, and quadratic interpolation functions, P2.
Etienne et al. [2010] have shown that this scheme is efficient
and accurate enough for modeling wave propagation in large

domains and in highly heterogeneous elastic media. The
accuracy for P2 elements with unstructured tetrahedral
meshes is achieved with 3 tetrahedra per minimum wave-
length, which is comparable with the 5 grid points required
by the fourth-order staggered-grid finite difference method
[Levander, 1988], while the stability is determined with an
heuristic criterion proposed by Käser and Dumbser [2008]
expressed as

Dt < min
i

1
2ki þ 1

*
2ri
vpi

% &
;

where ri is the radius of the sphere inscribed in the element
indexed by i, vpi is the P-wave velocity in the element and ki is
the polynomial degree used in the element.
[11] The distribution of interpolation orders in the compu-

tational domain is such that P0 elements describe the CPML
slab while elements with both P1 and P2 approximations dis-
cretize the physical domain depending on their sizes. This
enhances the accuracy of the scheme and minimizes the com-
putational load. Current computational developments will
allow us in the near future to consider higher interpolation
orders away from the rupture zone for large-distance wave
propagation.

3. Dynamic Rupture Model

[12] Earthquakes are highly nonlinear phenomena produced
by sliding instabilities along geological faults. The stability of
the rupture system depends on several physical factors, like the
initial state of stresses in the earth, the material properties and
rheology, the sliding rate, the fault geometry, and the consti-
tutive relationship governing the mechanics of the rupture
surface. During rupture propagation, fault tractions evolve
dynamically depending on all these factors, and the accuracy of
an earthquake model strongly depends on the correctness of
boundary conditions applied to these tractions in accordance
with the fault constitutive relationship (i.e., friction law), which
in turn depends on the accurate energy transportation through
elastic waves in the medium. Insuring the accuracy of both
boundary conditions (local feature) and wave propagation
(global feature) has long been a difficult task for many seis-
mologists. In the next sections, we shall introduce both the fault
boundary conditions and the friction law used in our dynamic
source model and then its formulation into the DG scheme. In
spite of the attention they deserve, we will not discuss the
features of wave propagation in this study since they have been
previously analyzed by Etienne et al. [2010] and Tago et al.
[2010].

3.1. Boundary Conditions and Friction Law
[13] The fault, G, is a piecewise discretized surface with a

directed normal vector~n, such that each side of each surface
element is clearly identified. Slip and stresses over G are
related through a friction law in such a way that the fault
tangential tractions evolve according to that law, which in
turn depends, for instance, on some fault kinematic param-
eter (i.e., slip and slip rate) and wave propagation in the
surroundings of the rupture tip. On the other hand, the strain
field is accommodated, in the elastic medium, through dis-
placement (i.e., velocity) discontinuities across G. It is thus
convenient to split our domain into a plus- and a minus-side
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with respect to the fault (Figure 1) and express the limiting
velocity field,~v, over G as

~v) t;~xð Þ ¼ lim
!→0

~v t;~x ) !~n ~xð Þð Þ ! 2ℝ:

[14] Furthermore, we define the normal and tangential
components of~v) with respect to~n as

~v)N ¼ ~n⋅~v)
! "

~n

~v)T ¼~v) '~v)N ¼~v) ' ~n⋅~v)
! "

~n:

[15] Now we can define the vector ~V as the velocity dis-
continuity across G, where its fault tangential component,
namely the fault slip rate, is

~VT :¼ ½½~vT ++ ¼~vþT '~v'T ; ð6Þ

and its fault normal component is

~VN :¼ ½½~vN ++ ¼~vþN '~v'N : ð7Þ

[16] The slip magnitude at any time t is thus defined as the
integral of the modulus of ~VT over time given by

U tð Þ ¼
Z t

0

~VT s;~xð Þ
'' ''ds: ð8Þ

[17] The dynamic rupture boundary conditions on the fault
are the following two jump conditions, involving the tan-
gential fields [Day et al., 2005],

tc ' ~TT
'' '' ≥ 0 ð9Þ

tc~VT '~TT ~VT

'' '' ¼ 0; ð10Þ

and a third jump condition applied to (7)

~V N ¼ 0; ð11Þ

where ~TT is the fault tangential traction vector and tc is the
fault frictional strength. The fault strength is determined by
the Coulomb friction law, which depends on the fault normal
stress (with negative values for compression), sN, the fric-
tion coefficient, m, and the fault cohesion, C, as

tc ¼ C ' sNm: ð12Þ

[18] Condition (9) provides an upper bound to the magni-
tude of~TT to the fault strength, tc, that always acts opposite to
sliding on G. The second condition (10) forces the slip rate to
be parallel to ~TT , the tangential traction. Another implication
of these jump conditions is that, whenever the inequality of
(9) holds, the slip rate vector is zero, which can be easily seen
through the modulus of (10). Finally, condition (11) implies
that there is neither fault opening nor mass interpenetration
across the fault during rupture propagation.
[19] In nature, the friction coefficient depends on the fault

slip, slip rate and state variables accounting for the sliding
history and fault age [e.g., Dieterich, 1979; Ruina, 1983].
However, we shall assume a simple slip weakening law [Ida,
1972; Palmer and Rice, 1973], which makes m linearly
depend on the slip as

m Uð Þ ¼ m0 þ ms ' mdð Þ 1' U
d0

% &
H 1' U

d0

% &
; ð13Þ

where H (⋅) is the Heaviside function, ms and md are the static
and dynamic friction coefficients, respectively, and d0 is the
critical slip weakening distance.
[20] A series of studies have tried to estimate d0 from his-

torical earthquakes based on indirect source observations
through the inversion of strong motion seismograms [e.g., Ide
and Takeo, 1997; Mikumo and Yagi, 2003]. However, due to
the limited bandwidth of the seismograms, the slip weakening
distance was poorly resolved in these studies. Moreover,
dynamic models based on such indirectly inferred d0 values
may be biased and not able to resolve the stress breakdown
process over the fault [Guatteri and Spudich, 2000; Spudich
and Guatteri, 2004]. Direct observation of d0 from near-field
data is seldom possible [Cruz-Atienza et al., 2009]; except for
some isolated cases where rupture propagated with supershear
speeds [Cruz-Atienza and Olsen, 2010].
[21] The manner by which we incorporate the fault model

given by both the jump conditions (9) to (11), and the friction
law (12) and (13), into our DG scheme is presented next.

3.2. Discrete Source Model
[22] The domain decomposition introduced in equation (3)

should account for the presence of G, such that the fault
surface is discretized by triangles lying on the faces of adja-
cent tetrahedra (Figure 1); that is, we preclude G to be
embedded inside any tetrahedron Di. The physical domain,
W, is then decomposed as follows

W ≃ Wh ¼
XK

i¼1

Di such that if G, W then ∀Di : Di∖Sið Þ∩G ¼ ;f g;

Figure 1. Second-order (P2) interpolation-order tetrahedra
illustrating two mesh elements shearing the fault surface G.
Red dots represent the six split nodes (i.e., two collocated
nodes, one per element) lying on the fault from which the
fluxes across G are computed and the dynamic-rupture
boundary conditions applied.
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where each Di is a straight-sided tetrahedron with surface Si
and the union of all K elements describes a geometrically
conforming mesh. The order of the polynomial basis chosen
in our method corresponds to P2 quadratic functions because
higher approximation orders do not significantly improve
neither the accuracy of the dynamic-rupture numerical
schemes nor their convergence rate [e.g.,Moczo et al., 2007;
Rojas et al., 2009; Pelties et al., 2012]. As we shall see,
keeping a low approximation order (i.e., P2 interpolation
functions) provides both good accuracy and efficiency to our
numerical scheme.
[23] Since every tetrahedron has its own nodes in the nodal

form of the DG method (i.e., ten independent nodes for P2
elements, Figure 1), a fault node is then composed of two co-
located nodes (i.e., a split-node). One of them belongs to the
i-tetrahedron within the plus-side of the domain and the other
to the adjacent k-tetrahedron in the minus-side (see Figure 1).
This means that each split-node lies between two tetrahedra
sharing a fault element. Furthermore, since the DG method
does not require field continuity over the element faces, the
dislocation produced by the rupture may be handled naturally
over the fault, G, through the discontinuity of the tangential
velocities ~v)T ¼ ~viT ;~vkTf g . However, this should be treated
carefully because most of the elastic fields must remain
continuous across G.
[24] System (4) and (5) is solved everywhere inside W

except over G, where jump conditions (9) to (11) must be

verified. However, as pointed out by Benjemaa et al. [2009],
before treating the fault fluxes accordingly we should notice
that the system is not symmetric because of

Qik ≠ Pikð ÞT ;

which is due to the variable transformation (2) required to
group all the medium properties on the left-hand side.
Although our method does not require the system to be
symmetric, that condition is convenient because then our
scheme for P0 elements essentially reduces to the one pro-
posed by Benjemaa et al. [2009] (i.e., finite volume approach),
which was derived from energy balance consideration across
the fault.
[25] To obtain a symmetric system, we first multiply (5)

by the symmetrical positive definite matrix S , defined in

Appendix B, and then we isolate the updated field values to
get the equivalent symmetric system

~vnþ
1
2

i ¼~vn'
1
2

i þDt
ri

I3 (Kið Þ'1 '
X

q2 x;y;zf g
Mq ( Eiqð Þ~sn

i

2

4

þ 1
2

X

k2Ni

Pik ( F ikð Þ~sn
i þ Pik ( Gikð Þ~sn

k

# $
3

5 ð14Þ

~snþ1
i ¼ ~sn

i þDt LS
i (Ki

! "'1 '
X

q2 x;y;zf g
N S

q ( Eiq

( )
~vnþ

1
2

i

2

4

þ 1
2

X

k2Ni

PT
ik ( F ik

! "
~vnþ

1
2

i þ PT
ik ( Gik

! "
~vnþ

1
2

k

h i#

; ð15Þ

where LS
i ¼ SLi, N S

q ¼ SNq and PT
ik ¼ SQik .

[26] Since the fluxes across the fault elements
SiG = {Sik ⊆ G|Sik := Si ∩ Sk} must satisfy the jump condi-
tions (9) to (11), we cannot simply use the centered scheme
proposed by Etienne et al. [2010] for fluxes between regular
elements. Introducing the fault vector fluxes~fi and~gi for the
velocity and stress schemes, respectively, the system (14)
and (15) may be rewritten as

where dG is a Kronecker delta that is 1 if SiG ≠ ; and 0
otherwise.
[27] Since the fault boundary conditions (9) to (11) must

be applied to the traction vector~T , following Benjemaa et al.
[2009] we notice that the flux in the velocity scheme (14)
through any element surface may be expressed in terms of
tractions as

1
2

Pik ( F ikð Þ~sn
i þ Pik ( Gikð Þ~sn

k

# $

¼ 1
2

I3 ( F ikð Þ~T n
i þ I3 ( Gikð Þ~T n

k

h i
:

[28] By imposing continuity of~T i over the fault element SiG
(i.e., ~T

n
ik ¼ Tn

i ¼ Tn
k ) and assuming the same approximation

~vnþ
1
2

i ¼~vn'
1
2

i þDt
ri

I3 ( Kið Þ'1 '
X

q2 x;y;zf g
Mq ( Eiqð Þ~sn

i þ
1
2

X

k2Ni

Sik∩G ¼ ;

Pik ( F ikð Þ~sn
i þ Pik ( Gikð Þ~sn

k

# $
þ dG I3 ( Gikð Þ~f

n
i

2

66664

3

77775
ð16Þ

~snþ1
i ¼ ~sn

i þDt LS
i (Ki

! "'1 '
X

q2 x;y;zf g
N S

q ( Eiq

( )
~vnþ

1
2

i þ 1
2

X

k2Ni

Sik∩G ¼ ;

PT
ik ( F ik

! "
~vnþ

1
2

i þ PT
ik ( Gik

! "
~vnþ

1
2

k

* +
þ dG I3 ( Gikð Þ~gnþ12

i

2

66664

3

77775
;

ð17Þ
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order in the two tetrahedra sharing the element (i.e., F ik ¼
Gik), we set the flux vector across the fault,~f

n
i , to the unique

traction vector ~T
n
ik , and define the flux across the fault as

I3 ( Gikð Þ~f
n
i ¼ I3 ( F ikð Þ~Tn

ik : ð18Þ

[29] By substituting (18) into the velocity scheme (16) and
regrouping the terms excluding the flux across the fault on
~R

n
i , we obtain

~vnþ
1
2

i ¼~vn'
1
2

i þ~R
n
i þ dG

Dt
ri

I3 (Kið Þ'1 I3 ( F ikð Þ~T n
ik ; ð19Þ

where

~R
n
i ¼

Dt
ri

I3 (Kið Þ'1 '
X

q2 x;y;zf g
Mq ( Eiqð Þ~sn

i

2

666664

þ 1
2

X

k2Ni

Sik∩G¼;

Pik ( F ikð Þ~sn
i þ Pik ( Gikð Þ~sn

k

# $

3

777775
:

Because the fault normal stress determines the frictional
strength via (12), and because boundary conditions are
applied to the shear tractions, the fault traction vector~T

n
ik has

to be decomposed into its tangential,~T
n
ikT

, and normal,~T
n
ikN

,
components to rewrite the velocity scheme (19) as

~vnþ
1
2

i ¼~vn'
1
2

i þ~R
n
i þ dG

Dt
ri

I3 (Kið Þ'1 I3 ( F ikð Þ ~T
n
ikT

þ~T
n
ikN

( )
:

ð20Þ

3.2.1. Fluxes Across the Fault for the Velocity
Scheme (20)
[30] For updating velocities on G, we need to specify the

flux across the fault in (20). For this we require~T
n
ikT

such that

the jump conditions (9) and (10) are fulfilled, and ~T
n
ikN

such
that the continuity of the fault normal velocity is also guar-
anteed (condition (11)). All traction conditions must be ver-
ified at every fault node and for every time step.
[31] Let us assume that SiG ≠ ; so dG = 1 in (20), where the

i- and k-tetrahedra lie at the plus-side and the minus-side of
the fault G, respectively. Then we define ~Vik to be the velocity
discontinuity between the i- and k-tetrahedra over the face G.
To compute the fault tangential tractions,~T

n
ikT

, we first notice
that the inequality of condition (9) along with the modulus of
(10) implies that

~VikT ¼ 0; ð21Þ

which means that, whenever ~T
n
ikT

'''
''' remains below the fric-

tional strength, tc, the tangential traction must ensure the

continuity of the tangential velocities at every fault node
shared by the i- and k-tetrahedral.
[32] Since we only deal with fault nodes, we thus construct

the matrix K'1
iG , which is the inverse mass matrix whose

components depend exclusively on those nodes. It is simply
constructed from K'1

i by eliminating its rows and columns
associated with the off-fault nodes.
[33] The computation of ~T

n
ikT

verifying condition (21)
requires both tetrahedra sharing a fault element to have the
same order, so that the nodes in both sides of the fault match
to each other (see Figure 1). Besides this, for the specific
contribution of ~T

n
ikT

, we need to compute the volume and
surface integrals of K'1

iG and Fik , respectively, in a standard
element [Zienkiewicz et al., 2005] such that

K'1
iG ¼ 1

Vi
K'1

eG and F ik ¼ SikF e; ð22Þ

where Vi, the i-tetrahedron volume, and Sik, the i-tetrahedron
fault surface, are the corresponding Jacobians. Then by
substituting (19) into definition (6) and using (22), we
express the slip rate vector as

~V
nþ1

2

ikT :¼~vnþ
1
2

iT '~vnþ
1
2

kT ¼ ~V
n'1

2

ikT þ~R
n
iT '~R

n
kT þDtSik

1
riVi

þ 1
rkVk

% &

- I3 (KeGð Þ'1 I3 ( F eð ÞT n
ikT

: ð23Þ

For computing the tangential traction, we use (21) into (23),
which leaves us the following expression

~T
n
ikT

¼ rirkViVk

DtSik riVi þ rkVkð Þ

% &
I3 ( F eð Þ'1 I3 (KeGð Þ

- '~V
n'1

2

ikT '~R
n
iT þ~R

n
kT

( )
: ð24Þ

[34] This procedure ensures the continuity of the tangen-
tial velocity across the fault. However, if the time-dependent
frictional strength, tcn, is overcome by the modulus of the

tangential traction, ~T
n
ikT

'''
''', rupture must occur and the tan-

gential velocity is no longer continuous across the associated
fault node. In that case, the equality of condition (9) holds so
that

tnc ' ~T
n
ikT

'''
''' ¼ 0⇔ ~T

n
ikT

'''
''' ¼ tnc :

[35] Therefore, to compute the slip rate (23) at every fault
node and for every time step, the tangential traction is
adjusted according to the following criterion, which depends
on whether or not the fault point has broken:

~T
n
ikT ¼

~T
n
ikT if ~T

n
ikT

'''
''' < tnc ;

~T
n
ikT

~T
n
ikT

'''
'''
tc if ~T

n
ikT

'''
''' ≥ tnc :

8
>>><

>>>:
ð25Þ

[36] Since the nodes within a fault element are coupled
through the flux matrix, Fik, and the mass matrix, KiG, when
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rupture happens in a given node and the condition (25) is
imposed, tractions in the remaining nodes change for the same
time step. Thus, to accurately and simultaneously satisfy (25)
on every fault node, i.e., to allow rupture propagation inside
the fault elements, we use an iterative predictor-corrector (PC)
scheme. If nfault is the number of nodes in a given fault ele-
ment (i.e., six for P2 elements) and nbroken is the number of
nodes that have broken, then the PC scheme operates only if
0 < nbroken < nfault. The PC scheme will basically find the
tangentail tractions, ~T

n
ikT

, in the unbroken nodes, given the
boundary condition applied in the broken nodes for the same
time step. Thus, the procedure will only influence the two
interacting elements sharing the same breakable portion of
the fault surface.
[37] Our PC scheme is simple and converges fast: when a

fault node breaks in a given element, the modulus of its
tangential traction is set to tcn (condition (25)). Once this
condition applies, the predicted tangential tractions ~T

n
ikT

in
the unbroken nodes of the same element must be recomputed
accordingly via (24). For this purpose, a new mass matrix,
Kunbroken

eG , must be constructed considering only the unbroken
fault nodes while for the broken nodes the tangential traction
condition is set. If the magnitude of the new-predicted trac-
tions overcomes the fault strength, then it is corrected by
setting it to tcn. This updating cycle continues iteratively
through new predictions and corrections until no other node
breaks inside the element after the last correction. The max-
imum number of possible iterations is given by the order of
approximation, i.e., DOF, used in the fault elements, and will
always be smaller than nfault (i.e., five or less iterations for
P2 elements). The PC procedure has to be performed
locally in each piece of fault surface. It is an efficient
iterative verification of boundary conditions and represents
an additional reason to preserve low interpolation orders
(i.e., P2 specifically) in the tetrahedra sharing a fault
segment.
[38] Since the DG schemes do not enforce continuity of

the fields between two adjacent tetrahedra, and the accuracy
of our method depends on the special treatment of velocities
over the fault, we must take care of the fault normal tractions
in the same manner as for the tangential components. We
now derive a formula to compute the normal traction, ~T

n
ikN

,
which ensures continuity of the fault normal velocity field.
This model constrain is given by the jump condition (11).
[39] As done for the tangential slip rate (23), definition (7)

may be written as

~V
nþ1

2

ikN :¼~vnþ
1
2

iN '~vnþ
1
2

kN
¼ ~V

n'1
2

ikN þ~R
n
iN '~R

n
kN þDtSik

1
riVi

þ 1
rkVk

% &

- I3 (KeGð Þ'1 I3 ( F eð ÞT n
ikN

:

Using condition (11) to force continuity of the normal
velocity, we then define the fault normal traction

~T
n
ikN

¼ rirkViVk

DtSik riVi þ rkVkð Þ

% &
I3 ( F eð Þ'1 I3 (KeGð Þ

- '~V
n'1

2

ikN
'~R

n
iN þ~R

n
kN

( )
; ð26Þ

from which the fault normal stress is given by

sn
N ¼ ~T

n
ikN ⋅~n:

The frictional strength, tcn, can now be computed on every
fault node using (12) as a function of both sNn and the friction
coefficient, mn, which depends on the fault slip, Un (8),
through the slip weakening law (13).
[40] Definitions given for the normal (26) and tangen-

tial (24) traction components finally allow us to update
the velocity field in every fault node via equation (20).
3.2.2. Fluxes Across the Fault for the Stress
Scheme (17)
[41] For the stress scheme and within the i-tetrahedron, the

flux across the fault, ~gnþ1
2

i , is computed using only the
velocity field in that tetrahedron, through the equation (20),
so that the flux is given by

~gnþ1
2

i ¼ PT
ik~v

nþ1
2

i : ð27Þ

[42] The simplicity of this flux stems from the computa-
tion of a unique traction vector on the fault that guarantees
either the continuity or discontinuity of the velocity field
depending on whether the fault has broken or not. This fault-
flux approximation is equivalent to the one proposed by
Benjemaa et al. [2009] for P0 elements, where the flux
estimation is based on an energy balance consideration
across the fault, but the simpler form of definition (27) is due
to the continuity of the fault normal velocity implicit in the
computation of ~T

n
ikN

through (26).

4. Rupture Model Verification, Convergence
and Efficiency

[43] Verification of dynamic rupture models is a particu-
larly difficult task. Since no analytical solution exists for the
spontaneous rupture problem (i.e., closed form equations for
the resulting motions), the only possible way to be confident
of a given approach is the comparison of results for a well-
posed rupture problem between various numerical techni-
ques based on different approximations. This kind of exercise
has been systematically performed in recent years by an
international group of modelers [Harris et al., 2009]. In this
section we present results for two benchmark tests proposed
by this group, TPV3 and TPV10 (see: http://scecdata.usc.edu/
cvws/index.html), and compare them with those obtained
with finite difference, finite element, spectral element, dis-
continuous Galerkin and spectral boundary integral methods.
Based on these comparisons, we assess the numerical con-
vergence rate of our method, its efficiency and determine
numerical criteria to guarantee its accuracy.

4.1. The Problem Version 3 (TPV3)
[44] Consider the spontaneous rupture of a vertical right-

lateral strike-slip fault embedded in a homogeneous full-space
with P- and S-waves speeds of 6000 m/s and 3434 km/s,
respectively, and density of 2670 kg/m3. The fault is rectan-
gular and measures 30 km in length by 15 km in width
(Figure 2). Rupture nucleation happens in a 3 km by 3 km
square region, centered both along-strike and along-dip,
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because the initial shear stress there is higher than the fault
strength. The friction law is linear slip-weakening with zero
cohesion (Equations (12) and (13)), and both static and
dynamic friction coefficients are constant over the fault. The
initial fault normal traction is also constant, as are the static
and dynamic fault strengths. Values for all source parameters,
i.e., initial stress conditions and friction parameters, are
shown in Table 1. Results for this problem are compared with
those obtained by the DFM finite difference scheme [Day
et al., 2005], the ADER-DG discontinuous Galerkin scheme
[Pelties et al., 2012] and the spectral boundary integral
equation method by Geubelle and Rice [1995] with the
implementation of E.M. Dunham (MDSBI: Multidimen-
sional Spectral Boundary Integral, version 3.9.10, 2008); all
of them for an equivalent grid size of 50 m.
[45] All DGCrack solutions presented in this section were

calculated for the same 100 . 110 . 95 km3 physical
domain discretized with unstructured h-adaptive meshes such
that the element characteristic lengths extends from 1 km in
the CPML slab to the desired length over the fault plane (i.e.,
1.0, 0.8, 0.5, 0.4, 0.3, 0.2 and 0.1 km).
[46] Our first comparison corresponds to the rupture times

on the fault plane with the DFM method (Figure 3). We have
used a characteristic elements size of 100 m over the fault
(i.e., an effective grid size (internode distance) of about 50 m
in our P2 elements approximation). The fit between both
solutions is almost perfect. No significant difference may be
seen in this comparison. Figure 4 compare DGCrack seis-
mograms at fault points PI (pure in-plane deformation) and
PA (pure anti-plane deformation) (see Figure 2) for the slip
(4a), shear traction (4b) and slip rate (4c and 4d) fields
with those obtained by the DFM, ADER-DG and MDSBI
methods. Except for weak oscillations, the comparison is also
excellent. Besides the stress build-ups, which are nicely
resolved at both observational points before failure, let us
notice how the friction law is well resolved as compared to
the other solutions, with stress overshoots around 7 s and 8 s
at PI, and 8.5 s and 10.5 s at PA. The associated slip reacti-
vations are also well modeled and can be seen in the slip rate
functions at both points. Stopping phases from the fault edges
strongly determine the slip rate and are well resolved at 6.5 s
and 7 s at PI, and at 4 s and 7.5 s at PA. A closer comparison

of slip rates at both observational points (Figure 4d) suggests
that the closest two solutions to each other correspond to ours
and the one generated by the spectral boundary integral
method (MDSBI). Despite weak oscillations present in the
DFM, MDSBI and DGCrack waveforms, both amplitude
and phase of the DGCrack and MDSBI solutions are
remarkably similar.
[47] Since no analytic solution exists for this problem,

quantitative comparisons between all the approximations
may give insights about their correctness. Figure 5b presents
a quantitative comparison of all numerical solutions based
on cross-correlation, cc, measurements of the slip rate time
series on both PI and PA observational points. Each colored
square of the Cross-Correlation Matrix, CCM, corresponds to
a cc-based metric between two solutions: for a given method,
its metrics with respect to the other approaches are those
corresponding to its associated raw and column of the matrix.
Values in the upper triangular part of CCM are given by

CCM upper
ij ¼ ccij ' ccmin

1' ccmin
; ð28Þ

where ccij is the maximum cross-correlation coefficient
between the i and j solutions, and subscript min reads for the
smallest coefficient of all possible combinations. Values in
the lower triangular part of CCM are given by

CCM lower
ij ¼ dtij ' dtmax

dtmax
; ð29Þ

where dtij is the delay in seconds between the i and j solutions
for the maximum correlation coefficient, and the max sub-
script means the maximum delay of all possible combina-
tions. Both measures provide a quantitative mean to assess
the similarity between solutions relative to the worst com-
parison found between all combinations. However, they do
not provide absolute cross-correlation information except for
the auto-correlations along the CCM diagonal. While the
ADER-DG solution is the closest to both the DGCrack and
MDSBI solutions in terms of correlation coefficients (see
CCMupper in Figure 5b), the smallest phase error is found
between the DGCrack and MDSBI solutions (see CCMlower).
As may also be seen in Figure 4d, the solution with the lowest
correlation metrics with respect to the other ones is that from
DFM (i.e., first column and first row). By averaging both
metrics per solutions couple, we may better assess which
time series are the closest to each other. Figure 6 presents the
results of this exercise, where the two discontinuous Galerkin
solutions reveal to be the more similar, although very close to
the one yielded by the Boundary Integral method. Measures
provided by this method should be interpreted carefully since

Figure 2. TPV3 rupture problem geometry. The gray
square represents the nucleation patch, and the PA and PI
dots represent the pure-antiplane and pure-inplane observa-
tional fault points, respectively.

Table 1. On-Fault Frictional and Stress Parameters for TPV3a

Fault Parameters Nucleation Outside Nucleation

Static friction coefficient, ms 0.677 0.677
Dynamic friction coefficient, md 0.525 0.525
Slip weakening distance, d0 (m) 0.40 0.40
Initial shear stress, t0 (MPa) 81.6 70.0
Initial normal stress, s0 (MPa) 120.0 120.0

aThe initial shear stress points to the along-strike direction. Medium
properties outside the fault represent an infinite barrier.
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they do not account for the computational cost required by
each method to achieve its solution.
[48] One important issue in dynamic rupture modeling is

the control of spurious oscillations produced by the advance
of the crack tip throughout the discrete lattice. Using either
artificial viscosity or intrinsic dissipation procedures in rupture
models is a delicate matter because the associated damping
does not distinguish between numerical and physical con-
tributions. In other words, if badly handled, dissipation may
absorb frequencies belonging to the physical-problem band-
width affecting, for instance, peak slip rates and rupture
speeds, as shown by Knopoff and Ni [2001]. This is probably
why the ADER-DG scheme [de la Puente et al., 2009], which
uses intrinsically dissipative Godunov fluxes [LeVeque, 2002;
González-Casanova, 2006], requires high interpolation orders
to achieve good accuracy (e.g., compare O2 with O3 or higher
order solutions in Pelties et al. [2012]). In the DGCrack
scheme, in contrast, the centered flux scheme is conservative
such that the energy is not intrinsically dissipated [Hesthaven
and Warburton, 2008] but, because it is dispersive, contains
spurious oscillations. However, since these oscillations remain
reasonable small and we expect them to be even smaller for
physically attenuating media or different friction laws (e.g.,
rate- and state-dependent), we have decided not to integrate
an artificial viscosity.
[49] The upper horizontal axis in the Figures 5a and 5c

represents the number of fault elements in the cohesive
zone, Nc, associated to the characteristic element sizes
shown in the lower horizontal axis. The cohesive zone is the
fault area next to the crack tip where the shear stress drops
from its static to its dynamic value. Nc is measured along the
rupture-front propagation direction and its values correspond
to the reference DFM solution for h = 50 m reported in Day
et al. [2005].
[50] To assess the convergence rate of the DGCrack

scheme and to determine a quantitative criterion that guar-
anties its accuracy, Figures 5a and 5c present two different

error metrics, defined by Day et al. [2005] as the relative
root mean square difference between a given solution and
the reference one (i.e., the DFM solution for h = 50 m), as a
function of the characteristic elements size on the fault.
These metrics correspond to the rupture times over the fault
and the peak slip rates at fault points PA and PI (Figure 2).
Both figures reveal a power law convergence rate of the
DGCrack method with regression exponents reported in
Table 2 and compared to those for other methods. We also
report in that table the exponent for the final slip on both
observational points (not shown in the figure). It is important
to notice that all DGCrack solutions presented in the man-
uscript correspond to unstructured meshes with refinements
around the rupture surfaces. As mentioned by de la Puente
et al. [2009], this is a critical issue since the accuracy of
solutions significantly depends on the quality of the tetra-
hedral lattice built independently using standard tools (in this
workwe have used the Gmsh software developed byGeuzaine
and Remacle [2009]), as can been seen in the error dispersion
on both Figures 5a and 5c with respect to the regression lines.
[51] The accuracy of dynamic rupture models depends on

the resolution of the cohesive zone, which may vary during
rupture evolution. Nc is thus the numerical criterion that
guaranties a given accuracy level. Figures 5a and 5c also
reveal that one or more fault elements inside the cohesive
zone (i.e., Nc ≥ 1) is enough to achieve errors smaller than 1%
and 10% for rupture times and peak slip rates, respectively.
In the TPV3 test case, this condition implies fault element
sizes smaller or equal to "450 m.
[52] We finally address a fundamental question in com-

putational sciences: the numerical efficiency. Pelties et al.
[2012] have recently introduced a method to solve the
dynamic rupture problem based on a discontinuous Galerkin
scheme that incorporates a sophisticated strategy allowing
arbitrarily high order approximations in space and time,
i.e., the ADER-DG method. Since both the DGCrack and
ADER-DG methods share many different capabilities linked

Figure 3. Comparison of rupture times for TPV3 yielded by the DGCrack and DFM [Day et al., 2005]
methods, both with an effective mesh increment of 50 m (i.e., 100 m fault elements for DGCrack).
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to the DG approximation, it is worth comparing their dif-
ferences and to estimate the computational cost of each
method to achieve the same accuracy level. Since the
ADER-DG method is based on a modal approximation, the
fluxes across the element faces are sensitive to all modes
across the element. In a nodal approximation, however, like
in the DGCrack method, they only depend on the nodes
lying on the element face where the flux is computed. This
difference translates into fewer computations in the nodal

approximations [Hesthaven and Warburton, 2008]. Figure 5d
presents a quantitative comparison of rupture times errors
as a function of total computing times (i.e., the CPU time,
which is given by the duration of each simulation multiplied
by the number of cores) for both methods. The DGCrack
simulations were run on a parallel computer with 172 cores
(2.33 GHz quad-core Xeon processors) of the Department
of Seismology at UNAM. Since the computational cost is
not reduced by the ADER-DG method when using high

Figure 4. Comparison of on-fault time histories at PI (left column) and PA (right column) for (a) the slip,
(b) the shear stress, and (c and d) the slip rate produced by four different numerical methods (inset legend:
DFM, Day et al. [2005]; ADER-DG and MDSBI, Pelties et al. [2012]), all of them with an effective grid
size of 50 m.
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approximation orders [Pelties et al., 2012], values reported
in Figure 5d correspond to the ADER-DG O3 solution.
Both regression lines have about the same slope; so similar
CPU time differences between the methods are expected for
any grid size. If we take the same accuracy level used to
establish the Nc condition in the last paragraph (i.e., 1% error
for rupture times) then the CPU time of the ADER-DG O3

Figure 5. DGCrack convergence, accuracy and efficiency analysis based on TPV3 solutions. (a and c)
Frames show regression lines with the power convergence rates for two error metrics with exponents
reported on Table 2 for unstructured meshes, as a function of both the characteristic fault-element size
(lower axis) and the cohesive zone resolution (upper axis). (b) Frame presents a cross-correlation based
comparison between four different methods (see text). (d) Frame shows CPU total-time regressions
yielded by the DGCrack and ADER-DG [Pelties et al., 2012] methods for the same accuracy range. Since
the DGCrack simulations were run in a faster computing platform, time differences should be divided by a
factor of "3 to obtain actual values (see text).

Figure 6. Averages of the cross-correlation measurements
between pairs of solutions of Figure 5b yielded by four
numerical methods.

Table 2. TPV3 Convergence Rate Exponents for Different
Methods and Error Metrics

Method Rupture Times Final Slip Peak Slip Rate

DGCrack 1.65 1.52 1.83
ADER-DG 03a 2.84 0.99 0.80
DFMb 2.96 1.58 1.18
BIb 2.74 1.53 1.19
SGSNc - 1.63 0.70

aPelties et al. [2012].
bDay et al. [2005].
cDalguer and Day [2007].
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method is about 30 times larger than the one required by the
DGCrack method in our computing platform. Since the
simulation times reported by Pelties et al. were obtained
using a 0.85 GHz BlueGene parallel computer, the actual
CPU time difference would be reduced to a factor of "10 if
both methods were run on the same platform, which still is a
significant factor, especially if multiple large scale simula-
tions are required. This comparison was made with the
available data reported by Pelties et al. [2012], however it
would be interesting to design a speed test of dynamic rup-
ture simulations that could better reflect the CPU time
required by both schemes. Besides, it is important to notice
that ADER-DG shows smooth time series on the fault and
accurate wave propagation away from it [Dumbser and
Käser, 2006]. Theses characteristics are not quantified here
and may be essential for long-range wave propagation
problems.

4.2. The Problem Version 10 (TPV10)
[53] Our last verification test consists of a 60! dipping

normal fault reaching the free surface of a homogeneous half-
space (Figure 7) with P- and S-waves speeds of 5716 m/s
and 3300 km/s, respectively, and density of 2700 kg/m3.
The fault has the same dimensions as in TPV3 (i.e., 30 km,
15 km wide) but the center of its 3 . 3 km3 nucleation patch
is located deeper, at 12 km along dip. Frictional and initial
stress conditions on the fault plane are reported in Table 3,
where the cohesion term of equation (12) is not zero, and
both pre-stress conditions are dependent on the along-dip
distance, hd. The unstructured h-adaptive tetrahedral mesh

used to obtain the DGCrack solution in shown in Figure 7,
which has a characteristic element size of 100 m over the
fault plane.
[54] This test case has interesting features that are essential

to verify a dynamic rupture model for non-planar faults. Since
we deal with a dipping normal fault reaching the Earth’s
surface, reflected waves are bounced back to the source,
inducing transient variations of the fault traction vector that
significantly affect rupture propagation via the Coulomb
failure criterion (12) [Nielsen, 1998; Oglesby et al., 1998].
Figure 8 presents a comparison of rupture times over the fault
obtained with three different methods [Harris et al., 2009]: a
finite element (FaulMod; Barall [2009]), a spectral element
(SPECFEM3D [Kaneko et al., 2008]) and the DGCrack
methods. The three solutions were computed with a fault
elements size of 100 m. Despite the complexity of the rupture

Figure 7. TPV10 60! dipping normal-fault (orange rectangle) problem geometry discretized with an
unstructured mesh. The CPML slab is discretized by the blue tetrahedra while the physical domain by
the green tetrahedra. The blue square represents the nucleation patch, and the yellow crosses represent
the fault point (FP) and hanging wall free-surface ground point (GP) where solutions were obtained and
compared (see Figure 9).

Table 3. On-fault frictional and stress parameters for TPV10a

Fault Parameters Nucleation
Outside

Nucleation

Cohesion, C (MPa) 0.20 0.20
Static friction coefficient, ms 0.760 0.760
Dynamic friction coefficient, md 0.448 0.448
Slip weakening distance, d0 (m) 0.50 0.50
Initial normal stress, s0 (MPa) 0.007378hd 0.007378hd
Initial shear stress, t0 (MPa) C + s0(0.0057 + ms) 0.55s0

aThe initial shear stress points to the along-dip direction. hd is the along-
dip distance measured in meters from the free surface. Medium properties
outside the fault represent an infinite barrier.
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model, the match between all solutions is remarkably good.
Dynamic effects on rupture propagation due to the presence
of the free surface are clearly seen in the upper most 2 km,
where a secondary rupture front propagating down-dip is
initiated about 2.5 s after nucleation.
[55] Figure 9 shows on- and off-fault waveforms computed

by the same three methods with (lower traces) and without
(upper traces) low-pass filtering at 3 Hz. From top to bottom,
the left column presents the time evolution of the slip rate,
shear stress and normal stress at fault point FP (Figure 7),
which is aligned along strike with the center of the nucleation
patch and located 1.5 km from the free surface along dip.
On-fault solutions reveal that the best fits along the entire
waveforms correspond to the DGCrack and SEM signals
during the first 10 s, and to the DGCrack and FEM signals
during the remaining 5 s. This suggests that, despite the
spurious oscillations present in the latter part of the DGCrack
waveforms, this method provides the most robust solution for
this problem compared to the SEM and FEM methods. The
right column of Figure 9 shows, from top to bottom, the two
horizontal components (i.e., fault parallel, FP, and fault nor-
mal, FN, components) of the ground velocity and vertical
displacements at the ground point GP (Figure 7), which is
located 3 km in the along strike direction from the fault
extremity and 3 km away from the fault trace on the hanging
wall. In the ground motion synthetics the situation is slightly
different. The closest two solutions along the entire records
are those produced by the DGCrack and FEM methods (see
filtered velocities and displacements up to 10 s). Although
both the DGCrack and SEM solutions present spurious
oscillations, the 3 Hz low pass filter did not eliminate longer-
period oscillations in the DGCrack seismograms, particularly
present after 10 s. Since similar noise is found in the on-fault
seismograms, this inaccuracy is probably due either to long-
range numerical dispersion associated with the centered

fluxes across the fault or wave reflections associated with
the mesh coarsening around the fault surface.

5. Rupture Along the 1992 Landers-Earthquake
Fault System

[56] The 28 June 1992 Landers earthquake (Mw 7.3) in
southern California produced one of the most valuable
data sets ever recorded. The amount and diversity of geo-
physical observations allowed constraining the earthquake
rupture history, revealing a large complexity of the slip pat-
tern in a wide frequency range (<0.5 Hz) [e.g., Campillo and
Archuleta, 1993;Wald and Heaton, 1994; Olsen et al., 1997;
Hernández et al., 1999]. The large rupture size (80 km long,
16 km wide), the long rupture duration (>20 s) and the
intricate fault-system geometry bring an exceptional oppor-
tunity to test our discontinuous Galerkin source model.
However, to fully understand the detailed rupture process of
the Landers earthquake deserves an extensive analysis that
goes beyond the purpose of this work. For this reason we
shall mainly use this study case for illustrating the capabili-
ties of the DGCrack approach in realistic conditions, and to
elucidate some essential aspects of such an event related to
the initial stress conditions along the fault.
[57] The Landers earthquake broke four main right-lateral

faults, namely the Johnson Valley, Homestead Valley and
Emerson and Camp Rock faults, which are connected
through jogs and step-overs (Figure 12b) forming a complex
nonplanar fault system (Figure 10 and red segment in
Figure 12b). The detailed fault geometry was taken from the
Community Fault Model for Southern California [Plesch
et al., 2007], which essentially consists of several strike-slip
vertical segments, as shown in Figure 12b with grey dots. To
discretize the model we considered a 1D layered medium
[Wald and Heaton, 1994] (see L1, L2 and L3 layer bound-
aries on Figure 10) and took advantage of the hp-adaptivity.

Figure 8. Comparison of rupture times for TPV10 yielded by the DGCrack, FEM [Barall, 2009] and
SEM [Kaneko et al., 2008] methods, all of them obtained with an effective mesh increment over the fault
of 100 m.
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This means that we refined the mesh around the rupture
surface and simultaneously adapted the bulk elements sizes
to resolve 0.5 Hz waves according to each layer properties, so
that the wave-propagation accuracy criterion determined by
Etienne et al. [2010] is largely satisfied (i.e., five elements
per minimum wavelength). The gradual mesh coarsening
from 300 m over the fault to 1100 m throughout the CPML
region produced a discrete lattice with 4.48 millions tetra-
hedra, from which 48.6% are P1 elements and belong to the
CPML slab (Figure 10), and the rest (51.4%) are P2 elements
and discretize the physical domain. Dimensions of the com-
putational volume are 67.0 . 101.6 . 29.0 km3 in the x, y
and z directions, respectively, such that to complete a 20 s
simulation, the DGCrack model spent a total CPU time of
1.73 . 106 s, which correspond to 9.6 hours in 50 cores of
our Pohualli parallel platform.
[58] The initial stress conditions in the fault (i.e., pre-stress

conditions) correspond to the initial shear tractions, t0, deter-
mined by Peyrat et al. [2001] on a planar fault (Figure 12a),

which represent an improved version of those used by Olsen
et al. [1997]. To estimate these initial conditions, they com-
puted the static stress change in a planar fault associated with
the total slip found byWald and Heaton [1994] (Figure 12d),
reversed its sign and added a homogeneous tectonic field of
5 MPa. Peyrat et al. [2001] also considered a constant static
fault strength ts = s0 ⋅ ms = 12.5 MPa, md = 0.0, and an
upper bound for t0 equal to 0.95 ⋅ ts everywhere on the
fault. We proceed in the same way except in the uppermost
2.5 km, where we obtained unreasonable large slips in our
first simulations. For producing reasonable simulation results,
we thus lowered the upper bound of t0 to 0.9 ⋅ ts over the
whole fault and multiplied t0 by a linear taper going from 1 at
2.5 km depth to 0 at the free surface. Instead of searching
suitable friction coefficients to explain the observed ground
motions as done in previous studies [Aochi and Fukuyama,
2002; Aochi et al., 2003] we simply set them homogeneous
over the fault such that both the strength excess and the
dynamic stress drop exactly match those considered by

Figure 9. TPV10 (left) on-fault at FP and (right) off-fault at GP (see Figure 7) waveforms comparison for
three methods (inset) with (lower traces) and without (upper traces) 3 Hz low-pass filtering.
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Peyrat et al. [2001], except in the shallow part where the
taper was applied and within those small regions where the
initial shear stress was upper bounded to 0.9 ⋅ ts. As expected
when including the real fault geometry, to allow spontaneous
rupture propagation through the stepovers and fault kinks we
had to reduce fracture energy by a factor of two as compared
with Peyrat et al. [2001] model by setting d0, the stress
breakdown slip (i.e., the slip-weakening distance (13)), equal
to 40 cm instead of 80 cm. Rupture was nucleated in a 7 km
deep circular patch with 1 km of radius [Olsen et al., 1997]
located 67 km from the northern fault edge in the along-strike
direction [Wald and Heaton, 1994] (Figure 12a). To initiate a
sustained rupture, we raised the initial shear stress 5% above
the fault strength in that patch. As a result, an initial stress-
drop kick of about 0.6 MPa initiated the earthquake.
[59] Figure 11 shows a series of snapshots of the slip rate

(left column) and shear stress (right column) on the fault
during rupture propagation. Interesting rupture patterns
appeared in the rupture process, as reflected waves in the
layers interfaces (2.9 s snapshot), rupture front jumps (5.1 s
snapshot) and bifurcations (7.9 s snapshot), and supershear
fault segments (11.3 s snapshot), among others.
[60] Previous models of the Landers earthquake have

shown that considering both the fault system geometry and

the heterogeneities of the surrounding medium is critical to
explain different geophysical observations [e.g., Fialko,
2004; Cianetti et al., 2005; Cruz-Atienza, 2006]. Our
results (Figures 11 and 12) lead to the same conclusion. If
the fault geometry did not play a major role during the
earthquake, both the initial stress conditions and frictional
parameters adopted by Peyrat et al. [2001], which were
determined assuming a planar rupture surface [Olsen et al.,
1997], would have been valid over the real fault-system
geometry. Instead, the fault geometrical barriers (i.e., kinks)
strongly affect the energy budget, making the spontaneous
rupture propagation more difficult. The effect of fault geom-
etry into that budget is clear in our results, since we had to
reduce the planar-fault fracture energy by a factor of two to
allow rupture propagation along the entire fault system. It
can be said that half of the amount of energy that Peyrat et al.
[2001] found to be dissipated through cohesive forces (i.e.,
frictional work) with constant normal tractions seems to be
related with other physical mechanisms promoting energy
leakage possibly related to the fault geometry, such as off-
fault anelastic processes [Duan and Day, 2008] or high fre-
quency radiation associated with changes of rupture speed
and direction in the vicinity of the fault kinks [Adda-Bedia
and Madariaga, 2008].

Figure 10. The 1992 Landers earthquake fault-system geometry embedded in a 1D layered medium
(L1, L2 and L3) and discretized with an hp-adaptive tetrahedral mesh (see text).
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[61] Figure 12 finally shows a comparison between the
final slip determined by Wald and Heaton [1994] over a
three planar fault segments projected into a single plane
(Figure 12d) and the one yielded by our simulation deployed
over a plane (Figure 12c). There is clearly an underestima-
tion of the seismic moment in our model, which is based on
the static stress change produced by the final slip of Wald
and Heaton [1994] in a planar fault [Olsen et al., 1997].
Notice that both fault segments where the final slip is

dramatically underestimated are either confined between
(i.e., Kickapoo stepover) or overlapping (i.e., stepover
joining the Homestead Valley and Emerson faults) fault
kinks. Since the final slip we obtained is so different to the
one found by Wald and Heaton [1994] that explains a large
set of observed data (e.g., regional seismograms and GPS
records), we do not expect our earthquake model to be real-
istic (i.e., to fit the ground surface observations). This finally
leads us to conclude that a realistic dynamic source model of

Figure 11. Landers earthquake dynamic rupture simulation results. (left) Slip rate and (right) shear stress
snapshots over the non-planar fault system (Figure 10) for different times of the rupture process.
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the Landers earthquake may only be constructed by consid-
ering its real and intricate fault geometry when determining
the initial fault-traction conditions.

6. Conclusions

[62] In this work we have introduced a novel discontinuous
Galerkin method, the DGCrack, to simulate the dynamic
rupture propagation of earthquakes in 3D along faults with
intricate geometries (i.e., non-planar). The method is hp-

adaptive, which means that the elements of the unstructured
tetrahedral mesh discretizing the simulation domain may
adapt both their sizes (h-adaptivity) and approximation
orders (p-adaptivity) depending on the problem geometry
and the medium properties (i.e., P0, P1 or P2 elements in the
wave propagation domain, and P2 elements over the fault).
To guarantee a fast convergence rate, our scheme imposes the
dynamic-rupture boundary conditions through ad hoc fluxes
across the fault that verify both the jump conditions intro-
duced by Day et al. [2005] and an additional condition

Figure 12. Landers earthquake fault parameters displayed in a single plane with major geometrical bar-
riers (i.e., kinks) indicated with black dotted lines. (a) Initial shear stress used in this study; (b) discretiza-
tion (grey dots) of the Landers earthquake fault system taken from the Community Fault Model for
Southern California [Plesch et al., 2007]. The red line indicates the fault geometry used in this study
(Figure 10); (c) final slip produced by the DGCrack dynamic rupture simulation; and (d) final slip and
fault discretization for the 1992 Landers earthquake found by Wald and Heaton [1994].
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forcing the continuity of the fault-normal velocity field. The
jump conditions imply the continuity of the tangential fault
velocities on the fault nodes where rupture did not happen,
and the collinearity of both the fault shear traction and the slip
rate in those nodes where rupture has occurred. On the other
hand, the additional condition guarantees the numerical sta-
bility and accuracy of the fault normal tractions required in
the Coulomb slip-dependent friction law. For modeling rup-
ture propagation throughout the interior of each fault ele-
ment, we have introduced an efficient predictor-corrector
scheme on these elements that accurately estimates the shear
tractions at every fault node for every time step.
[63] A convergence analysis based on the SCEC-USGS

TPV3 spontaneous-rupture benchmark has revealed power
law convergence rates of the DGCrack method for three
different fault-observable RMS error metrics [Day et al.,
2005], with exponents equal to 1.65 for rupture times, 1.52
for final slip and 1.83 for peak slip rates. These estimates are
similar to those reported for well-established finite difference
(DFM and SGSN), discontinuous Galerkin (ADER-DG) and
boundary integral (BI) methods. We have obtained excellent
results (i.e., rupture times and peak slip rate RMS errors
smaller than 1% and 10%, respectively) provided that the
cohesive zone is resolved by one or more fault elements
(i.e., Nc ≥ 1). For the TPV3 test case, this condition
translates into fault element smaller or equal than "450 m.
Since both the DGCrack and ADER-DG methods share
many different capabilities linked to the DG approximation,
we have assessed the difference in computational cost to
achieve the same accuracy level for rupture times. We find
that DGCrack is about 10 times faster than ADER-DG irre-
spectively of the mesh size if they were run in the same
computing platform.
[64] Since no analytical solution exists for the spontaneous

rupture problem, quantitative comparisons between different
approximated solutions may give insights about the correct-
ness of the numerical approaches to solve a given problem.
We have thus introduced a simple way to assess the similarity
among solutions for TPV3 generated by four different
methods, based on the phase and cross-correlation coeffi-
cients of slip rate time series. Results of this exercise show
that the DGCrack and ADER-DG discontinuous Galerkin
solutions are the most similar, although very close to the one
computed by the spectral boundary integral method (i.e., the
MDSBI approach). As suggested by J. P. Ampuero (personal
communication, 2012), this procedure may be systematically
used to quantitatively compare approaches for different rup-
ture problems like those undertaken by the international
group of modelers promoted by SCEC-USGS (see http://
scecdata.usc.edu/cvws/) [Harris et al., 2009].
[65] To complete the verification of the DGCrack method,

we have also solved TPV10 [Harris et al., 2009], which
consists of a 60! dipping normal fault reaching the free sur-
face. This test case has interesting features that are essential
to verify a dynamic rupture model for non-planar faults,
because reflected waves in the Earth’s surface are bounced
back to the source inducing transient variations of the fault
traction vector that significantly affect rupture propagation
via the Coulomb failure criterion. Comparison of rupture
times and both on-fault and ground-motion seismograms
with those calculated by the SEM [Kaneko et al., 2008] and
FEM [Barall, 2009] approaches reveal a very good overall

agreement among all solutions (especially between the
DGCrack and FEM solutions), including the strong dynamic
perturbations on the fault normal tractions close to the free
surface. Numerical oscillations in the DGCrack solution are
mainly present after 10 s of the earthquake nucleation, which
is probably due either to long-range numerical dispersion
associated with the centered fluxes across the fault or
reflections associated with the unstructured mesh coarsening
around the fault. However, since these oscillations remain
reasonable small and we expect them to be even smaller for
physically attenuating media [Tago et al., 2010] or different
friction laws (e.g., rate- and state-dependent), we have
decided not to integrate an artificial viscosity into the
scheme.
[66] We finally applied the DGCrack method to study

some aspects of the 1992 Landers earthquake considering a
realistic fault-system geometry. Our simulation deploy a 1D
layered medium and took advantage of the hp-adaptivity by
refining the unstructured mesh around the rupture surface
and simultaneously adapting the elements sizes to resolve
0.5 Hz waves everywhere in the simulation domain. 48.6%
of the 4.48 millions tetrahedra in the mesh are P1 elements
and belong to the CPML slab, while the rest (51.4%) are P2
elements and discretize the entire physical domain. Our
source model is based on a slightly modified version of the
heterogeneous initial shear stress determined by Peyrat et al.
[2001] on a planar fault from the final slip found by Wald
and Heaton [1994]. Since both we had to reduce fracture
energy by a factor of two with respect to the earthquake
model proposed by Peyrat et al. [2001] to allow rupture
propagation along the entire non-planar fault system, and
obtained a significant seismic moment underestimation, we
conclude that generating realistic pre-stress conditions for
the Landers earthquake from its final slip distribution
requires considering the fault-system geometry.
[67] Recent large subduction earthquakes have raised

fundamental questions concerning the stability and seg-
mentation of the subduction zones. To study this seismo-
genic regions accounting for more realistic physical
behaviors, introducing into DGCrack both flexible friction
laws (e.g., rate- and state-dependent) and the presence of
fluids in the fault zone (i.e., thermal pressurization) would be
essential in the near future.

Appendix A: DG-FEM Method for Wave
Propagation

[68] To solve the hyperbolic system (1), which models
the wave propagation in an elastic medium, we follow the
DG-FEM method proposed by Etienne et al. [2010]. The
method requires a discretization of the entire domain into
sub-domains called elements. The DG-FEM is a mixture
of two well-known methods: the Finite Element method
(FEM), because it uses a space of basis functions and a
space of test functions in each element [Zienkiewicz et al.,
2005], and the Finite Volume method (FVM), since the
elements are decoupled from each other but integrated
through the evaluation of fluxes across the elements faces
[LeVeque, 2002]. The result of this combination is a method
that ensures the geometric flexibility that supports local res-
olution adaptivity and that can deal with wave-dominated
problems. However, the cost of having decoupled elements is
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an increment of the total amount of degrees of freedom
(DOF).
[69] For the space approximation we adopted the nodal

form of the DG-FEM formulation, i.e., the solution in each
element has a spatial support (nodes) that depends on the
amount of degrees of freedom chosen for the discretization
[Hesthaven and Warburton, 2008]. To approximate the
stress and velocity vectors in the i-element we write

~̂v i ~x; tð Þ ¼
Xdi

j¼1

~vij ~xj; t
! "

jij ~xð Þ

~̂s i ~x; tð Þ ¼
Xdi

j¼1

~s ij ~xj; t
! "

jij ~xð Þ;
ðA1Þ

where~x 2 Di, t is the time and di is the number of nodes or
DOF associated with the interpolation Lagrangian polyno-
mial basis function jij relative to the j-node located at ~xj .
This representation differs from the modal form in that the
DOF,~vij and ~s ij , are space dependent.
[70] For the DG-FEM formulation we require a weak

formulation of (1). The weak form makes the residual to be
orthogonal to a space of test functions. The case when that
space is the same as the space of interpolation functions is
called Galerkin. To do so, we multiply (1) by a test function
jir and integrate the system over the volume of the i-element

Z

Vi

jirr∂t~vdV ¼
Z

Vi

jir

X

q2 x;y;zf g
∂q Mq~sð ÞdV

Z

Vi

jirL∂t~sdV ¼
Z

Vi

jir

X

q2 x;y;zf g
∂q Nq~vð ÞdV ∀r 2 1; di½ + ; ðA2Þ

where Vi is the volume of the i-element.
[71] Integration by parts of the right side of (A2) leads to

Z

Vi

jirr∂t~vdV ¼ '
Z

Vi

X

q2 x;y;zf g
∂qjir Mq~sð ÞdV

þ
Z

Si
jir

X

q2 x;y;zf g
Mqnq

0

@

1

A~sdS

Z

Vi

jirL∂t~sdV ¼ '
Z

Vi

X

q2 x;y;zf g
∂qjir Nq~vð ÞdV

þ
Z

Si

jir

X

q2 x;y;zf g
Nqnq

0

@

1

A~vdS; ðA3Þ

where Si is the surface of the i-element and~n is the outward
pointing unit normal vector with respect to Si.
[72] The second terms of the right-hand side of (A3) cor-

respond to the fluxes of the stress and velocity wavefields
across Si. In the classical FEM, the fluxes are canceled
between adjacent elements because the surface nodes are
unique, i.e., the method enforces continuity of the wave-
fields. In contrast, since each element has its own nodes in
the DG-FEM, the elements are coupled through the fluxes,
similar to the FVM. To evaluate the fluxes, we chose the
centered flux scheme for its computational efficiency and its

non-dissipative property [Remaki, 2000; Benjemaa et al.,
2009; Delcourte et al., 2009].
[73] Using the approximation (A1) and assuming constant

physical properties per element, the weak formulation (A3)
can be approximated as

ri

Z

Vi

jir∂t~̂v idV ¼ '
Z

Vi

X

q2 x;y;zf g
∂qjir Mq~̂s i

( )
dV

þ 1
2

X

k2Ni

Z

Sik
jirPik ~̂s i þ ~̂s k

( )
dS

Li

Z

Vi

jir∂t~̂s idV ¼ '
Z

Vi

X

q2 x;y;zf g
∂qjir N q~̂v i

( )
dV

þ 1
2

X

k2Ni

Z

Sik

jirQik ~̂v i þ ~̂v k
( )

dS; ðA4Þ

where Ni represents the adjacent elements to the i-element
and Sik is the face between the i- and k-element. The matrices
Pik and Qik are defined as follows

Pik ¼
X

q2 x;y;zf g
nikq

Mq

Qik ¼
X

q2 x;y;zf g
nikq

N q

where nikq is the component along the q axis of the unit
normal vector~nik of the face Sik which points from the i- to
the k-element.
[74] The local nature of DG-FEM is illustrated in (A4)

through the surface integrals that only require the faces
shared with the neighbor elements. Because the orthogonality
of the residual must be accomplished with the complete space
of test functions and using the tensor product (, we obtain
the expression

ri I3 (Kið Þ∂t~vi ¼ '
X

q2 x;y;zf g
Mq ( Eiqð Þ~s i

þ 1
2

X

k2Ni

Pik ( F ikð Þ~s i þ Pik ( Gikð Þ~sk½ +

Li (Kið Þ∂t~s i ¼ '
X

q2 x;y;zf g
Nq ( Eiqð Þ~vi

þ 1
2

X

k2Ni

Pik ( F ikð Þ~vi þ Pik ( Gikð Þ~vk½ +; ðA5Þ

where I3 represents the identity matrix. In system (A5), the
vectors~vi and~s i should be read as the collection of all nodal
values of the velocity and stress components in the i-element,
respectively. The matrices involved in (A5) are: the mass
matrix

Kið Þrj ¼
Z

Vi

jirjij dV j; r 2 1; di½ +;

the stiffness matrix

Eiqð Þrj ¼
Z

Vi

∂qjir

! "
jij dV j; r 2 1; di½ + q2 x; y; zf g;
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and the flux matrices

F ikð Þrj ¼
Z

Sik
jirjij dS j; r 2 1; di½ +;

Gikð Þrj ¼
Z

Sik
jirjij dS r 2 1; di½ + j 2 1; dk½ +:

The scheme (A5) allows different approximation orders
between adjacent elements, (i.e., p-adaptivity), and mesh
refinement, (i.e., h-adaptivity). For more details see Etienne
et al. [2010].
[75] This method was selected to implement the dynamic

rupture because it is suitable for handling discontinuities
across the elements boundaries through the application of
ad hoc fluxes. Besides, the implementation of the DGCrack
method into the GeoDG3D code (developed by Etienne et al.
[2010]) was straightforward since we only need to recognize
the fault surface in the domain and substitute the centered
scheme fluxes with the ad hoc expressions derived in
sections 3.2.1 and 3.2.2 over the fault, while leaving intact
the rest of the code.

Appendix B: Matrices Used in the DG-FEM
Formulation

[76] The following matrices are used in the DGCrack
method and where previously introduced by Benjemaa et al.
[2009].
[77] Matrices Mq and Nq , required for the wave propa-

gation scheme explained in the Appendix A, are constant
real matrices defined as

Mx ¼
1 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0

@

1

A N x ¼
1 2 '1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0

@

1

A
T
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1 0 1 0 0 0
0 0 0 0 0 1

0

@

1

A N y ¼
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0

@

1

A
T

Mz ¼
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1 '1 '1 0 0 0

0

@

1

A N z ¼
0 0 0 0 1 0
0 0 0 0 0 1
1 '1 '1 0 0 0

0

@

1

A
T

:

Matrix S, required for the dynamic rupture model explained
in section 3.2, is a symmetric positive definite matrix
given by

S ¼

1 0 0 0 0 0

0
2
3

1
3

0 0 0

0
1
3

2
3

0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0

BBBBBBBB@

1

CCCCCCCCA

:

[78] Acknowledgments. We especially thank Steven Day for his
advice and clarifications regarding some physical model considerations,
for corrections of this manuscript, as well as for the cohesive zone resolution
data of TPV3. We thank Christian Pelties for fruitful discussions and for
providing us the TPV3 solutions by the ADER-DG and MDSBI codes.
We thank Ana Rocher for drawing Figure 1. We thank Mondher Benjemaa
for his comments and experience. Without the Gmsh software this work
could not be possible, so we are grateful to its developers. We thank Alfonso
Trejo, from HPC-Team, for his outstanding assistance in setting the parallel
supercomputer Pohualli, in which all simulations were performed. We also
thank Carl Gable for his advice on meshing strategies for the Landers

earthquake fault-system. MDSBI solutions have been computed by Gilbert
B. Brietzke. Finally, we thank David Oglesby and Jeremy Kozdon for their
remarks and suggestions. This work has been possible thanks to the Mexican
Consejo Nacional de Ciencia y Tecnología (CONACyT) under the grant
number 80205, and partially supported by both the French Agence Nationale
de la Recherche under the grant ANR-2011-BS56-017 and the European
Marie Curie Actions-International Research Staff Exchange Scheme under
the grant 295217.

References
Adda-Bedia, M., and R. Madariaga (2008), Seismic radiation from a kink
on an antiplane fault, Bull. Seismol. Soc. Am., 98(5), 2291–2302,
doi:10.1785/0120080003.

Ampuero, J. P. (2002), Etude physique et numérique de la nucléation des
séismes, PhD thesis, Université Paris VII, Paris.

Andrews, D. J. (1976), Rupture velocity of plane strain shear cracks,
J. Geophys. Res., 81(32), 5679–5687, doi:10.1029/JB081i032p05679.

Andrews, D. J. (1985), Dynamic plane-strain shear rupture with a slip-
weakening friction law calculated by a boundary integral method, Bull.
Seismol. Soc. Am., 75, 1–21.

Aochi, H., and E. Fukuyama (2002), Three-dimensional nonplanar simula-
tion of the 1992 Landers earthquake, J. Geophys. Res., 107(B2), 2035,
doi:10.1029/2000JB000061.

Aochi, H., E. Fukuyama, and M. Matsu’ura (2000), Spontaneous rupture
propagation on a non-planar fault in 3-D elastic medium, Pure Appl.
Geophys., 157(11–12), 2003–2027, doi:10.1007/PL00001072.

Aochi, H., R. Madariaga, and E. Fukuyama (2003), Constraint of fault
parameters inferred from nonplanar fault modeling, Geochem. Geophys.
Geosyst., 4(2), 1020, doi:10.1029/2001GC000207.

Barall, M. (2009), A grid-doubling finite-element technique for calculating
dynamic three-dimensional spontaneous rupture on an earthquake fault,
Geophys. J. Int., 178, 845–859, doi:10.1111/j.1365?246X.2009.04190.x.

Benjemaa, M., N. Glinsky, V. M. Cruz-Atienza, J. Virieux, and S. Piperno
(2007), Dynamic non-planar crack rupture by a finite-volume method,
Geophys. J. Int., 171, 271–285, doi:10.1111/j.1365-246X.2006.03500.x.

Benjemaa,M., N. Glinsky-Olivier, V. M. Cruz-Atienza, and J. Virieux (2009),
3-D dynamic rupture simulations by a finite volume method, Geophys. J.
Int., 178(1), 541–560, doi:10.1111/j.1365-246X.2009.04088.x.

Brossier, R., S. Operto, and J. Virieux (2009), Seismic imaging of complex
onshore structures by 2D elastic frequency-domain full-waveform inver-
sion, Geophysics, 74(6), 105–118, doi:10.1190/1.3215771.

Campillo, M., and R. Archuleta (1993), A rupture model for the 28 June 1992
Landers, California, earthquake, Geophys. Res. Lett., 20(8), 647–650,
doi:10.1029/92GL02822.

Cianetti, S., C. Giunchi, and M. Cocco (2005), Three-dimensional finite
element modeling of stress interaction: An application to Landers and
Hector Mine fault systems, J. Geophys. Res., 110, B05S17, doi:10.1029/
2004JB003384.

Cochard, A., and R. Madariaga (1994), Dynamic faulting under rate-
dependent friction, Pure Appl. Geophys., 142, 419–445.

Cruz-Atienza, V. M. (2006), Rupture dynamique des faille non-planaires en
différences finies, PhD thesis, Université Nice-Sophia Antipolis, Nice,
France.

Cruz-Atienza, V. M., and K. B. Olsen (2010), Super shear mach-waves
expose the fault breakdown slip, Tectonophysics, 493, 285–296,
doi:10.1016/j.tecto. 2010.05.012.

Cruz-Atienza, V. M., and J. Virieux (2004), Dynamic rupture simulation of
non-planar faults with a finite-difference approach, Geophys. J. Int., 158,
939–954, doi:10.1111/j.1365?246X.2004.02291.x.

Cruz-Atienza, V. M., J. Virieux, and H. Aochi (2007), 3D finite-difference
dynamic-rupture modeling along non-planar faults, Geophysics, 72,
SM123, doi:10.1190/1.2766756.

Cruz-Atienza, V. M., K. B. Olsen, and L. A. Dalguer (2009), Estimation of
the breakdown slip from strong-motion seismograms: Insights from
numerical experiments, Bull. Seismol. Soc. Am., 99(6), 3454–3469,
doi:10.1785/0120080330.

Dalguer, L. A., and S. M. Day (2007), Staggered-grid split-node method for
spontaneous rupture simulation, J. Geophys. Res., 112, B02302,
doi:10.1029/2006JB004467.

Das, S., and K. Aki (1977), Fault plane with barriers: A versatile earthquake
model, J. Geophys. Res., 82, 5658–5670.

Day, S. M. (1982), Three-dimensional simulation of spontaneous rupture:
The effect of nonuniform prestress, Bull. Seismol. Soc. Am., 72(6),
1881–1902.

Day, S. M., L. A. Dalguer, N. Lapusta, and Y. Liu (2005), Comparison of
finite difference and boundary integral solutions to three-dimensional
spontaneous rupture, J. Geophys. Res., 110, B12307, doi:10.1029/
2005JB003813.

TAGO ET AL.: DG-FEM FOR RUPTURE DYNAMICS B09312B09312

20 of 21



de la Puente, J., J. P. Ampuero, and M. Käser (2009), Dynamic rupture
modeling on unstructured meshes using a discontinuous galerkin method,
J. Geophys. Res., 114, B10302, doi:10.1029/2008JB006271.

Delcourte, S., L. Fezoui, and N. Glinsky-Olivier (2009), A high-order dis-
continuous Galerkin method for the seismic wave propagation, ESAIM
Proc., 27, 70–89.

Dieterich, J. (1979), Modeling of rock friction: 1. Experimental results
and constitutive equations, J. Geophys. Res., 84(B5), 2161–2168,
doi:10.1029/JB084iB05p02161.

Duan, B., and S. M. Day (2008), Inelastic strain distribution and seismic
radiation from rupture of a fault kink, J. Geophys. Res., 113, B12311,
doi:10.1029/2008JB005847.

Dumbser, M., and M. Käser (2006), An arbitrary high-order discontinuous
Galerkin method for elastic waves on unstructured meshes II: The three-
dimensional isotropic case, Geophys. J. Int., 167(1), 319–336.

Ely, G., S. M. Day, and J. B. Minster (2009), A support-operator method for
3D rupture dynamics, Geophys. J. Int., 177, 1140–1150, doi:10.1111/
j.1365-246X.2009.04117.x.

Etienne, V., E. Chaljub, J. Virieux, and N. Glinsky (2010), An hp-adaptive
discontinuous Galerkin finite-element method for 3-D elastic wave
modelling, Geophys. J. Int., 183(2), 941–962, doi:10.1111/j.1365-
246X.2010.04764.x.

Festa, G., and J. P. Vilotte (2006), Influence of the rupture initiation on the
intersonic transition: Crack-like versus pulse-like modes, Geophys. Res.
Lett., 33, L15320, doi:10.1029/2006GL026378.

Fialko, Y. (2004), Probing the mechanical properties of seismically active
crust with space geodesy: Study of the coseismic deformation due to
the 1992 Mw 7.3 Landers (southern California) earthquake, J. Geophys.
Res., 109, B03307, doi:10.1029/2003JB002756.

Geubelle, P., and J. Rice (1995), A spectral method for threedimensional
elastodynamic fracture problems, J. Mech. Phys. Solids, 43, 1791–1824.

Geuzaine, C., and J. F. Remacle (2009), Gmsh: A three-dimensional finite
element mesh generator with built-in pre- and post-processing facilities,
Int. J. Numer. Methods Eng., 79(11), 1309–1331.

González-Casanova, P. (2006), Solución numérica de leyes de conservación
hiperbólicas, in Notas de Modelación y Métodos Numéricos I. CIMAT y
CIMNE., Guanajuato, México.

Guatteri, M., and P. Spudich (2000), What can strong-motion data tell us
about slip-weakening fault-friction laws?, Bull. Seismol. Soc. Am., 90(1),
98–116, doi:10.1785/0119990053.

Harris, R. A., and S. M. Day (1993), Dynamics of fault interaction: Parallel
strike-slip faults, J. Geophys. Res., 98(B3), 4461–4472.

Harris, R. A., et al. (2009), The SCEC/USGS dynamic earthquake-rupture code
verification exercise, Seismol. Res. Lett., 80(1), 119–126, doi:10.1785/gssrl.
80.1.119.

Hernández, B., F. Cotton, andM. Campillo (1999), Contribution of radar inter-
ferometry to a two-step inversion of kinematic process of the 1992 Landers
earthquake, J. Geophys. Res., 104(B6), 13,083–13,099, doi:10.1029/
1999JB900078.

Hesthaven, J. S., and T. Warburton (2008), Nodal Discontinuous Galerkin
Methods: Algorithms, Analysis and Applications, 1st ed., 515 pp.,
Springer, New York.

Hok, S., and E. Fukuyama (2011), A new BIEM for rupture dynamics in
half-space and its application to the 2008 Iwate-Miyagi Nairiku earthquake,
Geophys. J. Int., 184, 301–324, doi:10.1111/j.1365-246X.2010.04835.x.

Ida, Y. (1972), Cohesive force across the tip of a longitudinal-shear crack
and Griffith’s specific surface energy, J. Geophys. Res., 77, 3796–3805.

Ide, S., and M. Takeo (1997), Determination of constitutive relations of
fault slip based on seismic wave analysis, J. Geophys. Res., 102(B12),
27,379–27,391, doi:10.1029/97JB02675.

Kame, N., and T. Yamashita (1999), Simulation of the spontaneous growth
of a dynamic crack without constraints on the crack tip path, Geophys.
J. Int., 139(2), 345–358, doi:10.1046/j.1365-246x.1999.00940.x.

Kaneko, Y., N. Lapusta, and J. P. Ampuero (2008), Spectral element
modeling of spontaneous earthquake rupture on rate and state faults:
Effect of velocity-strengthening friction at shallow depths, J. Geophys.
Res., 113, B09317, doi:10.1029/2007JB005553.

Kase, Y., and S. M. Day (2006), Rupture processes on a bending fault,
Geophys. Res. Lett., 33, L10601, doi:10.1029/2006GL025865.

Käser, M., and M. Dumbser (2008), A highly accurate discontinuous
Galerkin method for complex interfaces between solids and moving
fluids, Geophysics, 73(3), 23–35.

Knopoff, L., and X. X. Ni (2001), Numerical instability at the edge of a
dynamic fracture, Geophys. J. Int., 147(3), 1–6, doi:10.1046/j.1365-
246x.2001.01567.x.

Kozdon, J. E., E. M. Dunham, and J. Nordstrom (2012), Simulation of
dynamic earthquake ruptures in complex geometries using high-order

finite difference methods, J. Sci. Comput., doi:10.1007/s10915-012-
9624-5, in press.

Lapusta, N., J. R. Rice, Y. Ben-Zion, and G. Zheng (2000), Elastodynamic
analysis for slow tectonic loading with spontaneous rupture episodes on
faults with rate- and state-dependent friction, J. Geophys. Res., 105(23),
765–790.

Levander, A. R. (1988), Fourth-order finite-difference P-SV seismograms,
Geophysics, 53(11), 1425–1436.

LeVeque, R. J. (2002), Finite Volume Methods for Hyperbolic Problems,
1st ed., 578 pp., Cambridge Univ. Press, Cambridge, U. K.

Ma, S., and R. J. Archuleta (2006), Radiated seismic energy based on
dynamic rupture models of faulting, J. Geophys. Res., 111, B05315,
doi:10.1029/2005JB004055.

Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull.
Seismol. Soc. Am., 66(3), 5679–5687.

Madariaga, R., K. Olsen, and R. Archuleta (1998), Modeling dynamic
rupture in a 3D earthquake fault model, Bull. Seismol. Soc. Am., 88(5),
1182–1197.

Mikumo, T., and Y. Yagi (2003), Slip-weakening distance in dynamic
rupture of in-slab normal-faulting earthquakes, Geophys. J. Int., 155(2),
443–455.

Miyatake, T. (1980), Numerical simulations of earthquake source process
by a three-dimensional crack model. Part I rupture process, J. Phys.
Earth, 28(6), 565–598.

Moczo, P., J. Kristek, M. Galis, P. Pazak, and M. Balazovjech (2007), The
finite-difference and finite-element modeling of seismic wave propagation
and earthquake motion, Acta Phys. Slovaca, 57(2), 177–406.

Nielsen, S. B. (1998), Free surface effects on the propagation of dynamic
rupture, Geophys. Res. Lett., 25(1), 125–128, doi:10.1029/97GL03445.

Oglesby, D. D., and S. M. Day (2001), The effect of fault geometry on the
1999 Chi-Chi (Taiwan) earthquake, Geophys. Res. Lett., 28, 1831–1834.

Oglesby, D. D., R. J. Archuleta, and S. B. Nielsen (1998), Earthquakes on
Dipping Faults: The Effects of Broken Symmetry, Science, 280(5366),
1055–1059, doi:10.1126/science.280.5366.1055.

Olsen, K. B., R. Madariaga, and R. J. Archuleta (1997), Three-dimensional
dynamic simulation of the 1992 Landers earthquake, Science, 278(5339),
834–838, doi:10.1126/science.278.5339.834.

Palmer, A., and J. R. Rice (1973), The grow of slip surfaces in the progres-
sive failure of over-consolidated clay, Proc. R. Soc. A, 332, 527–548.

Pelties, C., J. de la Puente, J. Ampuero, G. Brietzke, and M. Käser (2012),
Three-dimensional dynamic rupture simulation with a high-order Discon-
tinuous Galerkin method on unstructured tetrahedral meshes, J. Geophys.
Res., 117, B02309, doi:10.1029/2011JB008857.

Peyrat, S., K. B. Olsen, and R. Madariaga (2001), Dynamic modeling of the
1992 Landers earthquake, J. Geophys. Res., 106(26), 467–482.

Plesch, A., et al. (2007), Community Fault Model (CFM) for Southern
California, Bull. Seismol. Soc. Am., 97(6), 1793–1802, doi:10.1785/
0120050211.

Remaki, L., O. Hassan, and K. Morgan (2011), Aerodynamic computations
using a finite volume method with an HLLC numerical flux function,
Math. Modell. Nat. Phenom., 6(3), 189–212.

Remaki, M. (2000), A new finite volume scheme for solving Maxwell’s
system, Int. J. Comput. Math. Electr. Electr. Eng., 19(3), 913–931.

Rojas, O., E. Dunham, S. M. Day, L. A. Dalguer, and J. E. Castillo (2009),
Finite difference modeling of rupture propagation with strong velocity-
weakening friction, Geophys. J. Int., 179, 1831–1858, doi:10.1111/
j.1365-246X.2009.04387.x.

Ruina, A. (1983), Slip instability and state variable friction laws, J. Geophys.
Res., 88(B12), 10,359–10,370, doi:10.1029/JB088iB12p10359.

Spudich, P., and M. Guatteri (2004), The effect of bandwidth limitations on
the inference of earthquake slip-weakening distance from seismograms,
Bull. Seismol. Soc. Am., 94(6), 2028–2036, doi:10.1785/0120030104.

Tago, J., V. M. Cruz-Atienza, V. Etienne, J. Virieux, E. Chaljub,
M. Benjemaa, and F. J. Sánchez-Sesma (2010), 3-D dynamic rupture with
anelastic wave propagation using an hp-adaptive discontinuous galerkin
method, Abstract S51A-1915 presented at 2010 Fall Meeting, AGU, San
Francisco, Calif., 13-17 Dec.

Virieux, J., and R. Madariaga (1982), Dynamic faulting studied by a finite
difference method, Bull. Seismol. Soc. Am., 72(2), 345–369.

Wald, D., and T. Heaton (1994), Spatial and temporal distribution of slip for
the 1992 Landers, California, earthquake, Bull. Seismol. Soc. Am., 84(3),
668–691.

Zienkiewicz, O. C., R. L. Taylor, and J. Z. Zhu (2005), Finite Element
Method: Its Basis and Fundamentals, 6th ed., 752 pp., Butterworth-
Heinemann, Oxford, U. K.

TAGO ET AL.: DG-FEM FOR RUPTURE DYNAMICS B09312B09312

21 of 21


