Basic Theorems in Dynamic Elasticity

1. Stress-Strain relationships
2. Equation of motion
3. Uniqueness and reciprocity theorems
4. Elastodynamic Green's function
5. Representation theorems

Víctor M. CRUZ-ATIENZA
Posgrado en Ciencias de la Tierra, UNAM
cruz@geofisica.unam.mx

Strain in Lagrangian Coordinates

Distorsion in the continuum

Displacement of a given point
Relative displacement between two points

$$
u_{i}(\mathbf{x}+\delta \mathbf{x}) \approx u_{i}(\mathbf{x})+\frac{\partial u_{i}(\mathbf{x})}{\partial x_{j}} \delta x_{j}=u_{i}(\mathbf{x})+\delta u_{i}
$$

$$
\delta u_{i}=\frac{\partial u_{i}(\mathbf{x})}{\partial x_{j}} \delta x_{j}
$$

Strain in Lagrangian Coordinates

$$
\delta u_{i}=\frac{\partial u_{i}(\mathbf{x})}{\partial x_{j}} \delta x_{j}
$$

Relative displacement

 between two pointsAlthough we are interested in deformation that distorts the body, there can also be a rigid body translation or a rigid body rotation, neither of which produces deformation. To distinguish these effects, we add and subtract $\partial u_{j} / \partial x_{i}$ and then separate it into two parts

$$
\delta u_{i}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \delta x_{j}+\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right) \delta x_{j}=\left(e_{i j}+\omega_{i j}\right) \delta x_{j}
$$

Strain + Rotation

$$
e_{i j}=\left(\begin{array}{ccc}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right) & \frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{2}}\right) & \frac{\partial u_{2}}{\partial x_{2}} & \frac{1}{2}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial u_{3}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{3}}\right) & \frac{1}{2}\left(\frac{\partial u_{3}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{3}}\right) & \frac{\partial u_{3}}{\partial x_{3}}
\end{array}\right)
$$

Cauchy's Infinitesimal Strain Tensor

$$
e_{i j}=\frac{1}{2}\left[\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{j}}\right]
$$

Body and Contact Forces

Two kinds of forces:
Body forces (e.g., gravity)
Surface forces (e.g., pressure underwater, stresses)
Vectorial Representation of Stresses (Tractions):

$$
\mathbf{T}(\hat{\mathbf{n}})=\lim _{d S \rightarrow 0} \frac{\mathbf{F}}{d S}
$$

Stress Tensor (Three traction vectors):

$$
\sigma_{j i}=\left(\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{T}^{(1)} \\
\mathbf{T}^{(2)} \\
\mathbf{T}^{(3)}
\end{array}\right)=\left(\begin{array}{lll}
T_{1}^{(1)} & T_{2}^{(1)} & T_{3}^{(1)} \\
T_{1}^{(2)} & T_{2}^{(2)} & T_{3}^{(2)} \\
T_{1}^{(3)} & T_{2}^{(3)} & T_{3}^{(3)}
\end{array}\right)
$$

The tensor's rows are the three traction vectors.

Stress Tensor and Traction Vectors

Tensorial representation of the state of stresses (Stress Tensor):

$$
\sigma_{j i}=\left(\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{T}^{(1)} \\
\mathbf{T}^{(2)} \\
\mathbf{T}^{(3)}
\end{array}\right)=\left(\begin{array}{lll}
T_{1}^{(1)} & T_{2}^{(1)} & T_{3}^{(1)} \\
T_{1}^{(2)} & T_{2}^{(2)} & T_{3}^{(2)} \\
T_{1}^{(3)} & T_{2}^{(3)} & T_{3}^{(3)}
\end{array}\right)
$$

General relationship between the Stress Tensor and the Traction Vector:

$$
T_{i}=\sigma_{1 i} n_{1}+\sigma_{2 i} n_{2}+\sigma_{3 i} n_{3}=\sum_{j=1}^{3} \sigma_{j i} n_{j}=\sigma_{j i} n_{j}
$$

$$
\mathbf{T}=\sigma \hat{\mathbf{n}}
$$

Cauchy-Descartes relationship: Traction vector as a function of both the stress tensor and the surface normal (unit) vector

Equation of Motion

Newton's Second Law:

$$
\Sigma \mathbf{F}=m \mathbf{a}
$$

Summation of all body and surface forces acting in the unit volume equals the linear momentum rate.

Summation of surface forces normal to the $x_{1} x_{3}$ plane:

$$
\left[\sigma_{22}\left(\mathbf{x}+d x_{2} \hat{\mathbf{e}}_{2}\right)-\sigma_{22}(\mathbf{x})\right] d x_{1} d x_{3}=\left[\sigma_{22}(\mathbf{x})+\frac{\partial \sigma_{22}(\mathbf{x})}{\partial x_{2}} d x_{2}-\sigma_{22}(\mathbf{x})\right] d x_{1} d x_{3}=\frac{\partial \sigma_{22}(\mathbf{x})}{\partial x_{2}} d x_{1} d x_{2} d x_{3}
$$

And for all forces parallel to x_{2} but applied over the $x_{2} x_{3}$ and $x_{1} x_{2}$ planes, and including body forces:

$$
\left[\frac{\partial \sigma_{12}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{32}}{\partial x_{3}}\right] d x_{1} d x_{2} d x_{3}+f_{2} d x_{1} d x_{2} d x_{3}=\rho \frac{\partial^{2} u_{2}}{\partial t^{2}} d x_{1} d x_{2} d x_{3}
$$

Equation of Motion

Summation of all body and surface forces acting in the same direction must equate the rate of linear momentum (i.e. the unit volume acceleration).

$$
\left[\frac{\partial \sigma_{12}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{32}}{\partial x_{3}}\right] d x_{1} d x_{2} d x_{3}+f_{2} d x_{1} d x_{2} d x_{3}=\rho \frac{\partial^{2} u_{2}}{\partial t^{2}} d x_{1} d x_{2} d x_{3}
$$

Thus, the first component of the Equation of Motion may be written as:

$$
\frac{\partial \sigma_{12}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{32}}{\partial x_{3}}+f_{2}=\sum_{j=1}^{3} \frac{\partial \sigma_{j 2}}{\partial x_{j}}+f_{2}=\rho \frac{\partial^{2} u_{2}}{\partial t^{2}}
$$

Including the three components:

$$
\begin{aligned}
& \frac{\partial \sigma_{i j}(\mathbf{x}, t)}{\partial x_{j}}+f_{i}(\mathbf{x}, t)=\rho \frac{\partial^{2} u_{i}(\mathbf{x}, t)}{\partial t^{2}} \\
& \sigma_{i j, j}(\mathbf{x}, t)+f_{i}(\mathbf{x}, t)=\rho \ddot{u}_{i}(\mathbf{x}, t)
\end{aligned}
$$

Equation of Motion

Equation of Motion

(An alternative deduction)

$$
\underbrace{\frac{\partial}{\partial t} \iiint_{V} \rho \frac{\partial \mathbf{u}}{\partial t} d V=\iiint_{V} \mathbf{f} d V+\underbrace{\iint_{S} \mathbf{T}(\mathbf{n}) d S}_{\text {Body forces }} \text { Surface forces }}_{\text {Momentum Rate }}
$$

Summation of all body and surface forces acting in the unit volume equals the linear momentum rate

Since $\mathbf{T}=\sigma \hat{\mathbf{n}}$ and using the Gauss divergence theorem: $\quad \iiint_{V}(\nabla \cdot \mathbf{F}) d V=\oiint_{S}(\mathbf{F} \cdot \mathbf{n}) d S$.

$$
\iint_{S} T_{i} d S=\iint_{S} \tau_{j i} n_{j} d S=\iiint_{V} \tau_{j i, j} d V
$$

Integrating over the whole volume

$$
\iiint_{V}\left(\rho \ddot{u}_{i}-f_{i}-\tau_{j i, j}\right) d V=0
$$

Equation of Motion

$$
\rho \ddot{u}_{i}=f_{i}+\tau_{j i, j}
$$

Constitutive Equations

(stress - strain relationship)

Constitutive equations give the relation between stress and strain.
The simplest type of materials are linearly elastic, such that there is a inear relation between the stress and strain tensors.

Others could describe viscous (Newtonian and non-Newtonian), viscoelastic, elastic-plastic, etc.

Linearly elastic constitutive equations gives rise to seismic waves.

Linearly elastic material: The constitutive equation is Hooke's law:

$$
\sigma_{i j}=c_{i j k l} e_{k l}
$$

The constants $c_{i j k l}$, the elastic moduli, describe the properties of the material.

Since both the stress and strain tensors are symmetric and assuming the medium is isotropic, the 81 elastic moduli reduce to only 2

$$
c_{i j k l}=\lambda \delta_{i j} \delta_{k l}+\mu\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)
$$

Constitutive Equations

(stress - strain relationship)

One useful pair are the Lame' constants λ and μ :
$c_{i j k l}=\lambda \delta_{i j} \delta_{k l}+\mu\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)$
$\sigma_{i j}=\lambda e_{k k} \delta_{i j}+2 \mu e_{i j}=\lambda \theta \delta_{i j}+2 \mu e_{i j}$
Dilation
$\theta=e_{i i}=\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}$

Hooke's Law for isotropic materials

$$
\sigma_{i j}=\lambda e_{k k} \delta_{i j}+2 \mu e_{i j}
$$

Uniqueness Theorem

The displacement field $u(x, t)$ throughout the volume V with surface S is uniquely determined after time t_{0} by the initial displacement and velocity values at t_{0} throughout V (initial conditions) and by values at all times $t>t_{0}$ of:

1. The body forces f and heat supplied throughout V
2. The tractions T over any part S_{1} of S, and
3. The displacement over the remainder S_{2} of S, with $\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}$.

Reciprocity Theorem

(Betti’ s Theorem)

If displacement field u due to a body force f, boundary conditions on S and initial conditions throughout V induces traction $T(u, n)$, and displacement field v due to a body force g , boundary conditions on S and initial conditions throughout V induces traction $\mathrm{T}(\mathrm{v}, \mathrm{n})$, thus the following scalar equality holds:

$$
\begin{aligned}
& \iiint_{V}(\mathbf{f}-\rho \ddot{\mathbf{u}}) \cdot \mathbf{v} d V+\iint_{S} \mathbf{T}(\mathbf{u}, \mathbf{n}) \cdot \mathbf{v} d S \\
& \quad=\iiint_{V}(\mathbf{g}-\rho \ddot{\mathbf{v}}) \cdot \mathbf{u} d V+\iint_{S} \mathbf{T}(\mathbf{v}, \mathbf{n}) \cdot \mathbf{u} d S
\end{aligned}
$$

Homework:
Prove Betti's Theorem

Reciprocity Theorem

(Betti’ s Theorem)

Betti' s theorem remains true even if quantities associated with both displacement fields u and v are evaluated at two different times t_{1} and t_{2}, respectively.

Let us suppose that u and v are everywhere zero throughout V before a given time t_{0} (i.e. quiescent past). If we take $t_{1}=t$ and $t_{2}=\tau-t$, and time integrate the reciprocity equality from zero to τ, then Betti's formula becomes:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d t \iiint_{V}\{\mathbf{u}(\mathbf{x}, t) \cdot \mathbf{g}(\mathbf{x}, \tau-t)-\mathbf{v}(\mathbf{x}, \tau-t) \cdot \mathbf{f}(\mathbf{x}, t)\} d V \\
& =\int_{-\infty}^{\infty} d t \iint_{S}\{\mathbf{v}(\mathbf{x}, \tau-t) \cdot \mathbf{T}(\mathbf{u}(\mathbf{x}, t), \mathbf{n})-\mathbf{u}(\mathbf{x}, t) \cdot \mathbf{T}(\mathbf{v}(\mathbf{x}, \tau-t), \mathbf{n})\} d S
\end{aligned}
$$

This major result relates, in a straightforward manner, both displacement fields throughout V , the body forces that originate them and the associated traction vectors they induce over S.

Green' s Function for Elastodynamics

Consider the special case of a body force $f_{i}(x, t)$ applied impulsively, in space and time, to a given particle at $x=\xi$ and time $t=\tau$. If such a force is applied in the x_{n}-axis direction, and it is proportional to both the spatial and temporal one-dimensional Dirac functions, then:

$$
f_{i}(\mathbf{x}, t)=A \delta(\mathbf{x}-\xi) \delta(t-\tau) \delta_{i n}
$$

where A is a constant giving the strength of the body force and $\delta_{\text {in }}$ is Kronecker delta function.

$$
\text { The displacement field from such a simple source (for } A
$$ equal to unit) is the elastodynamic Green's function.

We thus denote the i th displacement component due to f_{i} at general coordinates (x, t) by

$$
G_{i n}(\mathbf{x}, t ; \xi, \tau)
$$

which clearly represents a second order tensor and depends on both source and receiver locations.

Green' s Function for Elastodynamics

The Green tensor satisfy the Equation of Motion:

$$
\rho \ddot{u}_{i}=f_{i}+\tau_{j i, j}
$$

where $\quad \tau_{i j}=c_{i j p q} e_{p q}$ and $e_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)$ and $u_{i}=G_{i n}(x, t ; \xi, \tau)$
so that the following equation holds throughout V

$$
\rho \frac{\partial^{2}}{\partial t^{2}} G_{i n}=\delta_{i n} \delta(\mathbf{x}-\xi) \delta(t-\tau)+\frac{\partial}{\partial x_{j}}\left(c_{i j k l} \frac{\partial}{\partial x_{l}} G_{k n}\right)
$$

To uniquely determine $G_{i j}$ we should specify the boundary conditions over S , that may differ depending on the problem we study (e.g. free surface or rigid boundary conditions).

Green’ s Function for Elastodynamics

If G_{ij} satisfies homogeneous boundary conditions on S (i.e. a stress-free condition, which is a first order approximation of the Earth' s surface), then an important reciprocal relationship for source and receiver coordinates is detached from Betti' s theorem by assuming f and g to be two impulse forces applied in the m - and n -directions:

Space-time reciprocity of Green's function

$$
G_{n m}\left(\xi_{2}, \tau_{2} ; \xi_{1}, \tau_{1}\right)=G_{m n}\left(\xi_{1},-\tau_{1} ; \xi_{2},-\tau_{2}\right)
$$

Representation Theorems

A representation theorem is a formula for the displacement field (at a general point in space and time) in terms of quantities that originated the motion. As stated by the uniqueness theorem, these quantities may be body forces within V and applied tractions or displacements over S .

Integrated Betti's Theorem

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d t \iiint_{V}\{\mathbf{u}(\mathbf{x}, t) \cdot \mathbf{g}(\mathbf{x}, \tau-t)-\mathbf{v}(\mathbf{x}, \tau-t) \cdot \mathbf{f}(\mathbf{x}, t)\} d V \\
& =\int_{-\infty}^{\infty} d t \iint_{S}\{\mathbf{v}(\mathbf{x}, \tau-t) \cdot \mathbf{T}(\mathbf{u}(\mathbf{x}, t), \mathbf{n})-\mathbf{u}(\mathbf{x}, t) \cdot \mathbf{T}(\mathbf{v}(\mathbf{x}, \tau-t), \mathbf{n})\} d S
\end{aligned}
$$

If we substitute into Betti's theorem $g_{i}=\delta_{\text {in }} \delta(x-\xi) \delta(t)$ for which the corresponding displacement is $v_{i}=G_{i n}(x, t ; \xi, 0)$ we obtain a formula for $u_{n}(x, t)$

First Representation Theorem

$$
\begin{aligned}
u_{n}(\mathbf{x}, t)= & \int_{-\infty}^{\infty} d \tau \iiint_{V} f_{i}(\xi, \tau) G_{i n}(\xi, t-\tau ; \mathbf{x}, 0) d V(\xi) \\
+ & \int_{-\infty}^{\infty} d \tau \iint_{S}\left\{G_{i n}(\xi, t-\tau ; \mathbf{x}, 0) T_{i}(\mathbf{u}(\xi, \tau), \mathbf{n})\right. \\
& \left.-u_{i}(\xi, \tau) c_{i j k l} n_{j} G_{k n, l}(\xi, t-\tau ; \mathbf{x}, 0)\right\} d S(\xi)
\end{aligned}
$$

Useful Hint

$$
\int_{-\infty}^{\infty} f(x) \delta\{d x\}=f(0)
$$

Representation Theorems

Suppose that the Green' s function is determined with S as a rigid boundary. This implies that $\mathrm{G}_{\mathrm{in}}(\xi, \mathrm{t}-\tau ; \mathrm{x}, 0)=0$ for ξ in S and considering the spatial reciprocity $\mathrm{G}_{\mathrm{in}}(\xi, \mathrm{t}-\tau ; x, 0)=\mathrm{G}_{\mathrm{ni}}(\mathrm{x}, \mathrm{t}-\tau ; \xi, 0)$, thus:

Second Representation Theorem

$$
\begin{aligned}
u_{n}(\mathbf{x}, t)= & \int_{-\infty}^{\infty} d t \iiint_{V} f_{i}(\xi, \tau) G_{n i}^{\text {rigid }}(\mathbf{x}, t-\tau ; \xi, 0) d V \\
& \left.-\int_{-\infty}^{\infty} d t \iint_{S} u_{i}(\xi, \tau) c_{i j k l} n_{j} \frac{\partial}{\partial \xi_{l}} G_{n k}^{\text {rigid }}(\mathbf{x}, t-\tau ; \xi, 0)\right\} d S
\end{aligned}
$$

Alternatively we can use the Green' s function determined for a free surface, so the traction $c_{i j k l} n_{j}\left(\partial / \partial \xi_{l}\right) G_{k n}^{\text {free }}(\xi, t-\tau ; \mathbf{x}, 0)$ is zero for ξ in S and thus:

Third Representation Theorem

$$
\begin{aligned}
u_{n}(\mathbf{x}, t)= & \int_{-\infty}^{\infty} d t \iiint_{V} f_{i}(\xi, \tau) G_{i n}^{\text {free }}(\mathbf{x}, t-\tau ; \xi, 0) d V \\
& +\int_{-\infty}^{\infty} d t \iint_{S} G_{n i}^{\mathrm{free}}(\mathbf{x}, t-\tau ; \xi, 0) T_{i}(\mathbf{u}(\xi, \tau), \mathbf{n}) d S
\end{aligned}
$$

