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Unigueness Theorem

The displacement field u(x,t) throughout the volume V with surface S is uniquely
determined after time ty by the initial displacement and velocity values at t,
throughout V (initial conditions) and by values at all times t > t; of:

1. The body forces f and heat
supplied throughout V

1. The tractions T over any part S of
S, and

2. The displacement over the
remainder S, of S, with S=S+S,.




Reciprocity Theorem

(Betti’ s Theorem)

If the displacement field u due to a body force f, boundary conditions on S and
initial conditions at ty induces traction T(u,n), and the displacement field v due to
a body force g, boundary conditions on S and initial conditions at t; induces

traction T(v,n), thus the following scalar equality holds:

// (f-pu)-vdV -{—/f T(u,n) -vdS
4 S
Z[[ (g—PV)-UdV-l—[[ T(v,n) -udS
14 S

T=o0n Cauchy-Descartes relationship




Betti' s Theorem
(Proof)
The reciprocity relationship

/ (f —pu) -vdV + / v-1T-ndS = / (g —pV)-udV + / u-o-ndS,
% s % s

may be written in the index form:

/ (fi — piuig)v;dV + / vi Tij 1 S = / (gi — pvi) u; dV + / u; oy nj dS.
v S v S

Since

/SV T -ndS = / M fyrow)dl (Divergence theorem)
v

Betti’ s theorem takes the form:

/ (f —pi) - v+ V- (v-7)dV = / (g —pV)-u+V-(u-o)dV.

| % Vv




Betti' s Theorem
(Proof)

Betti’ s theorem (repeated):

/ (f=pi) - v+V. (v-7)dV = / (g—pV)-u+V-(u-o)]dV.

V Vv

02 |
From the equation of motion Pz~ f—-V.-7=0.

we replace |f —pii| with |—V - 7| in the left-hand side, and likewise

g — pv|with |—=V - o | in the right-hand side, leading to

/' (V7)) v=V.(v-7)]dV = / (Vo) - u—-V-(u- o) dV.
V .

vV




Betti' s Theorem
(Proof)

Which in index form becomes

0 T3 j

Jo b

ox :

1 "j

J

9o, 5 ,
- (  Tij )] dV /; |'(.(T J Uj — )(— (ll‘i (sz) dV.

ox j

Ox; Ox;

By definition, the stress tensor is symmetric so that

0,

— (4

Oxr j

i Tij) =

0 Uy C)'Ti ] () { ’,i () T3 J
01 Tij Tt 71 T

Y Ox j () r;

By substituting the corresponding term into both equation terms, we finally

get
dz; 9T Pz, U | |
T T and thanks to the symmetry of the elastic moduli

tensor, the equality is verified and Betti’ s theorem is
proved.



Representation Theorem Recall

Let us take Betti’ s theorem in its integrated form, where displacements u and v
are everywhere zero throughout V before a given time t, (repeated):

oC
[ dt [f fux,t)-gix,t —t)—vix,T —1)-f(x,1)} dV
— 00 y V

= [u dt // {vix,7 — 1) - T(u(x,#),n) —u(x, 1) - T(v(x,t —t),n)} dS.
—0C S

Substituting into this theorem the body force g; = &, 0(x-§) &(t) for which the
corresponding Green function is v, = Gjy(x,t ; £,0) we obtain a formula for u,(x,t),
the first representation theorem (repeated):

u,(x,t) = f dr // fi&, )G, (&t —1;x,0)dV(E)
—oC Vv

+/ d'i'/ {Gln(é’r_T’X’O)T;(u(é,f),n)
o S

—u(& ) G (&1 — 11X, 00} dS(E)




Representation Theorem for an Internal Surface

Internal seismic sources, like earthquakes and underground explosions, may
be of two kinds: 1) Faulting sources (e.g., slip across a fault), or 2) Volumetric

sources (e.g., sudden expansion).

These sources may be mathematically described by considering either body
forces applied to certain elements of the volume; or discontinuities in

displacement or strain across a particular surface.

The second approach may be incorporated into the first throughout body force
equivalents to discontinuities in displacement and strain.

The surface of V consists of an
external surface S and two adjacent
internal surfaces X* and X-
representing the fault.

If slip occurs across %, then the
displacement is discontinuous there
and the equation of motion is only
satisfied in the interior of surface
S+Xt+ %X

Volume V with internal surface >




Representation Theorem for an Internal Surface

Volume V with internal surface >

Slip across X implies that
displacements on the X* side of
differ from those on the X- side of X.

Such displacement discontinuity (i.e.
slip) is denoted by [u(&,T)] for £ on %,
and refers to the difference

U(E,7)lz+ - U(E,T)]5-

Then, in virtue of the Green’s function spatial reciprocity, our first representation
theorem far from S (i.e., homogeneous conditions for u and G over S) may be
written in index form as:

oo
i, (X,1) = f dt f[/ fp(TL 0)6,,Xr—1in.0)dV(n)
—00 Vv
o0 : ™
1 f dt [/ {[[u,-(f. U)Cijpavi0G, (X 1 — T} {,O)J,-"djp}
—0C v, 4 / i 7 J

_L[(inp(x, t =78, 0T, (u, 1), v)]}] dy




Representation Theorem for an Internal Surface

Without assuming any boundary condition on X, our first representation theorem
including an internal surface reads (repeated):

o0
Iln(X, I) = f dt ff/ fpkn r)(;np(x*t — ;7. ()) dV(n]
20 )
1 f dt [/ {[“i(f* T)Ci*’pqvia(}no(x“ = T, éo)‘dx(~j|
—0C )y 4 F i 7

- [(}np(x, t— 7 & 0)T,uE, 1), v)]] dY.

Suppose that X is transparent to G (i.e., G satisfies the equation of motion
everywhere and is continuous across X as well as its derivatives). In the
absence of body forces for u, if slip arises across X then [u] is nonzero, and
since tractions should be continuous across the fault when rupture happens
(i.e. [T(u,v)] = 0), then

S n
. | )
u,(x, 1) = [ dt f [“z‘-¢~ r)] CiipgV; ‘7‘(’.-1,0("-1 —1;¢,0)d2.




Representation Theorem for an Internal Surface

Representation Theorem for a Faulting Source (repeated)

~ . 3
Uy (X, 1) = f dt f[ [uﬂ_{, r)] CiipgVi 7 Unp(X 1 — 114, 0) d 2.
-G ) agq

This representation formula for displacements, which has been
used by many seismologists to evaluate the wavefield radiated
from earthquakes, has the following outstanding properties:

1. Slip in the fault [u,] is enough to determine displacements
everywhere.

2. No boundary conditions on X are needed for the Green
function G.

3. Fault motion, which may be intricate and may complicate
the determination of the slip function [u,(&,t)], is completely
independent of the Green function.



Body-Force Equivalents

Making no assumptions about [u] and [T(u,v)] across X, we have

un(x,z):[ art [[f w (x,17 —1;n,0)dV(n)
x -
+ [ dt f[ [[ui(f,r)] CiipgViCnpg (Xt — 718, 0)
J—00 J X

- [‘Tp(u(f,r),v)] Gup(X, 1 - T:C.O)} dx(§).

Traction Discontinuity: The body-force distribution of a traction discontinuity
across X is [T] 8(n-§) dX as n varies throughout V. Thus, the contribution to
displacement of such a discontinuity is

[:\: ar [[[ u [[ [TP(U(C,T),U)] 5(?‘! - (f) dZDan(x’t - r;r).()) dV.
J -k Vv J T

From the representation theorem above we see that the body-force equivalent
of a traction discontinuity on X is given by flTl, where

f M, )=~ f [T(u(&, ), v)18(n — &) dE(&).
T




Body-Force Equivalents

un(x,z):[ dart [/[ np(-x,z—r;n,()) dV(n)
—C y V
F~>‘" -
= [ dt f[ “ui(é,r)] cl-quvj[(}np‘q(_x,t —r:cf,())]
J =00 J X

— [Tp(u(f, 7), v)] Gap(X. 1 - r;c.O)} dE(S).

Displacement Discontinuity: We use the following property of the delta-function
derivative to localize points of ~ within V:

[-(LG (x, 1 — r;?,‘.O)J ff] [——5(:7 - %an(x,r —1;n,0)dV(n),
?’iq mny (r)q

so that the displacement discontinuity contributes the displacement with

B /]ji’[{ [[Y_ [ui(i-f)] Ciquujﬁ"s(n — &) dz}]ﬁn[)(x,t —1,n,0)dV




Body-Force Equivalents

From the representation theorem before we see that the body-force equivalent
of a displacement discontinuity on X is given by flul, where

5 .
\-/‘p[u](n‘ )=~ ff [ui(é’ I).’ C!’j].'ql’:j ﬁ_‘s(ﬂ - 6.) dx.
z

or

The seismic waves set up by fault slip are
the same as those set up by a distribution
of certain forces on the fault with
canceling moment.

The body-force distribution is not unique
but in a isotropic medium it can always be
chosen as a surface distribution of double

couples.

Homework:
Study and write a report of the paper:
Burridge and Knopof, BSSA, 1964




