Body-Force Equivalents for Seismic Sources

- 1. Point source representation
- 2. Body force equivalents
- 3. Case of a buried fault
- 4. Seismic Moment

Víctor M. CRUZ-ATIENZA Posgrado en Ciencias de la Tierra, UNAM cruz@geofisica.unam.mx

Representation Theorem for an Internal Surface

Without assuming any boundary condition on Σ , our first representation theorem reads (repeated):

$$u_{n}(\mathbf{x},t) = \int_{-\infty}^{\infty} d\tau \iiint_{V} f_{p}(\eta,\tau) G_{np}(\mathbf{x},t-\tau;\eta,0) \, dV(\eta)$$

$$= \int_{-\infty}^{s} d\tau \iiint_{V} \left\{ \int_{-\infty}^{\infty} d\tau \iint_{\Sigma} \left\{ \left[u_{i}(\xi,\tau) c_{ijpq} v_{j} \partial G_{np}(\mathbf{x},t-\tau;\xi,0) / \partial \xi_{q} \right] - \left[G_{np}(\mathbf{x},t-\tau;\xi,0) T_{p}(\mathbf{u}(\xi,\tau),\mathbf{v}) \right] \right\} d\Sigma.$$

Suppose that Σ is transparent to G (i.e. G satisfies the equation of motion everywhere and is continuous across Σ as well as its derivatives). In the absence of body forces for u, if slip arises across Σ then [u] is nonzero, and since tractions are continuous across the fault when rupture propagates spontaneously (i.e. [T(u,v)] = 0), then

$$u_n(\mathbf{x},t) = \int_{-\infty}^{\infty} d\tau \iint_{\Sigma} \left[u_i(\boldsymbol{\xi},\tau) \right] c_{ijpq} v_j \frac{\partial}{\partial \xi_q} G_{np}(\mathbf{x},t-\tau;\boldsymbol{\xi},0) \ d\Sigma.$$

Representation Theorem for an Internal Surface

Representation Theorem for a Faulting Source (repeated)

$$u_n(\mathbf{x},t) = \int_{-\infty}^{\infty} d\tau \iint_{\Sigma} \left[u_i(\boldsymbol{\xi},\tau) \right] c_{ijpq} v_j \frac{\partial}{\partial \xi_q} G_{np}(\mathbf{x},t-\tau;\boldsymbol{\xi},0) \, d\Sigma.$$

This representation formula for displacements, which has been used by many seismologists to evaluate the wavefield radiated from earthquakes, has the following outstanding properties:

- 1. Slip in the fault [u_n] is enough to determine displacements everywhere.
- 1. No boundary conditions on Σ are needed for the Green function G_{np} .
- 1. Fault motion, which may be extremely intricate and may complicate the determination of the slip function $[u_i(\xi,t)]$, is completely independent from the Green function determination.

Body-Force Equivalents

Making no assumptions about [u] and [T(u,v)] across Σ , we have

$$\begin{split} u_n(x,t) &= \int_{-\infty}^{\infty} d\tau \iiint_V f_p(\eta,\tau) G_{np}(\mathbf{x},t-\tau;\eta,0) \, dV(\eta) \\ &+ \int_{-\infty}^{\infty} d\tau \iiint_{\Sigma} \left\{ \left[u_i(\xi,\tau) \right] c_{ijpq} v_j G_{np,q}(\mathbf{x},t-\tau;\xi,0) \right. \\ &- \left[T_p(\mathbf{u}(\xi,\tau),\mathbf{v}) \right] G_{np}(\mathbf{x},t-\tau;\xi,0) \right\} \, d\Sigma(\xi). \end{split}$$

Traction Discontinuity: The body-force distribution of a traction discontinuity across Σ is [T] $\delta(\eta-\xi) d\Sigma$ as η varies throughout V. Thus, the contribution to displacement of such a discontinuity is

$$\int_{-\infty}^{\infty} d\tau \iiint_{V} \left\{ -\iint_{\Sigma} \left[T_{p}(\mathbf{u}(\boldsymbol{\xi},\tau),\boldsymbol{\nu}) \right] \delta(\boldsymbol{\eta}-\boldsymbol{\xi}) \, d\Sigma \right\} G_{np}(\mathbf{x},t-\tau;\boldsymbol{\eta},0) \, dV.$$

From the representation theorem above we see that the body-force equivalent of a traction discontinuity on Σ is given by f^[T], where

$$\mathbf{f}^{[\mathbf{T}]}(\boldsymbol{\eta},\tau) = -\iint_{\Sigma} [\mathbf{T}(\mathbf{u}(\boldsymbol{\xi},\tau),\boldsymbol{\nu})] \,\delta(\boldsymbol{\eta}-\boldsymbol{\xi}) \, d\Sigma(\boldsymbol{\xi}).$$

Body-Force Equivalents

$$\begin{split} u_n(x,t) &= \int_{-\infty}^{\infty} d\tau \iiint_V f_p(\eta,\tau) G_{np}(\mathbf{x},t-\tau;\eta,0) \, dV(\eta) \\ &+ \int_{-\infty}^{\infty} d\tau \iint_{\Sigma} \left\{ \left[u_i(\xi,\tau) \right] c_{ijpq} v_j G_{np,q}(\mathbf{x},t-\tau;\xi,0) \right\} \\ &- \left[T_p(\mathbf{u}(\xi,\tau),\mathbf{v}) \right] G_{np}(\mathbf{x},t-\tau;\xi,0) \right\} \, d\Sigma(\xi). \end{split}$$

Displacement Discontinuity: We use the following property of the delta-function derivative to localize points of Σ within V:

$$\frac{\partial}{\partial \xi_q} G_{np}(\mathbf{x}, t - \tau; \boldsymbol{\xi}, 0) = - \iiint_V \frac{\partial}{\partial \eta_q} \delta(\boldsymbol{\eta} - \boldsymbol{\xi}) G_{np}(\mathbf{x}, t - \tau; \boldsymbol{\eta}, 0) \, dV(\boldsymbol{\eta}),$$

so that the displacement discontinuity contributes the displacement with

$$\int_{-\infty}^{\infty} d\tau \iiint_{V} \left\{ -\iint_{\Sigma} \left[u_{i}(\xi,\tau) \right] c_{ijpq} v_{j} \frac{\partial}{\partial \eta_{q}} \delta(\eta-\xi) \, d\Sigma \right\} G_{np}(\mathbf{x},t-\tau;\eta,0) \, dV$$

Body-Force Equivalents

(Displacement Discontinuity)

From the representation theorem before, we see that the body-force equivalent of a displacement discontinuity on Σ is given by $f^{[u]}$, where

$$f_p^{\,[\mathbf{u}]}(\boldsymbol{\eta},\tau) = - \iint_{\Sigma} \left[u_i(\xi,\tau) \right] c_{ijpq} v_j \frac{\partial}{\partial \eta_q} \delta(\boldsymbol{\eta}-\xi) \, d\Sigma.$$

The seismic waves set up by fault slip are the same as those set up by a distribution of certain forces on the fault with canceling moment and net force.

The body-force distribution is not unique but in an isotropic medium it can always be chosen as a surface distribution of double couples.

Assume that the fault Σ lies in the plane $\xi_3 = 0$ and that the slip [u] is parallel to the ξ_1 -direction so that $[u_2] = [u_3] = 0$. Then the body force equivalent reduces to

$$f_p(\eta,\tau) = -\iint_{\Sigma} \left[u_1(\xi,\tau) \right] c_{13pq} \frac{\partial}{\partial \eta_q} \delta(\eta-\xi) \, d\xi_1 \, d\xi_2$$

Body-Force Equivalents (Displacement Discontinuity)

Body force equivalent to the displacement discontinuity shown in the figure below (repeated):

$$f_p(\boldsymbol{\eta}, \boldsymbol{\tau}) = -\iint_{\Sigma} \left[u_1(\boldsymbol{\xi}, \boldsymbol{\tau}) \right] c_{13pq} \frac{\partial}{\partial \eta_q} \delta(\boldsymbol{\eta} - \boldsymbol{\xi}) \, d\xi_1 \, d\xi_2$$

In isotropic heterogeneous media, from

$$c_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right)$$

we find that all c_{13pq} vanish except $c_{1313} = c_{1331} = \mu$. Hence the body-force equivalent distribution over Σ becomes:

$$\begin{split} f_1(\eta,\tau) &= -\iint_{\Sigma} \mu(\xi) \left[u_1(\xi,\tau) \right] \delta(\eta_1 - \xi_1) \delta(\eta_2 - \xi_2) \frac{\partial}{\partial \eta_3} \delta(\eta_3) \ d\xi_1 \ d\xi_2 \\ f_2(\eta,\tau) &= 0, \\ f_3(\eta,\tau) &= -\iint_{\Sigma} \mu \left[u_1 \right] \frac{\partial}{\partial \eta_1} \delta(\eta_1 - \xi_1) \delta(\eta_2 - \xi_2) \delta(\eta_3) \ d\xi_1 \ d\xi_2. \end{split}$$

Force Equivalent for a Buried Fault

(Displacement Discontinuity)

Integrating the first force component we obtain

$$f_1(\boldsymbol{\eta}, \boldsymbol{\tau}) = -\mu(\boldsymbol{\eta}) \left[u_1(\boldsymbol{\eta}, \boldsymbol{\tau}) \right] \frac{\partial}{\partial \eta_3} \delta(\eta_3).$$

The body force $(f_1,0,0)$ is proportional to the derivative of the spike (Dirac) function. It thus represents a system of single couples of forces acting in the +/- η_1 -direction with moment along the η_2 -direction. The total moment is not zero and equal to

$$\iint_{\Sigma} \mu \left[u_1(\xi, \tau) \right] \, d\Sigma.$$

Force Equivalent for a Buried Fault (Displacement Discontinuity)

Using properties of the delta derivative, the third force component becomes

$$f_3(\boldsymbol{\eta}, \boldsymbol{\tau}) = \left(-\frac{\partial}{\partial \eta_1} \left\{ \mu \left[u_1(\boldsymbol{\eta}, \boldsymbol{\tau})\right] \right\} \delta(\eta_3).$$

The body force $(0,0,f_3)$ is a single force proportional to the derivative of the slip function. It thus represents a force distribution in the +/- η_3 -direction yielding a net couple with moment along the - η_2 direction. The total moment is not zero and

equal to

$$-\iint_{\Sigma}\mu[u_1]\,d\xi_1\,d\xi_2.$$

which is the same, but with opposite sign, as the total moment due to the force equivalent f_1 . It can be shown that such moment is given by $\mu \overline{u} A$ where A is the total fault area. Moments from both bodyforce equivalents cancel out.

Force Equivalent for a Buried Fault (Displacement Discontinuity)

Body force equivalents to a given fault slip are not unique. The single force distribution f_3 shown in last figure is also equivalent to a distribution of single couples. To see this, take the representation

$$u_n(\mathbf{x},t) = \int_{-\infty}^{\infty} d\tau \iint_{\Sigma} \left[u_i(\boldsymbol{\xi},\tau) \right] c_{ijpq} v_j \frac{\partial}{\partial \xi_q} G_{np}(\mathbf{x},t-\tau;\boldsymbol{\xi},0) \ d\Sigma.$$

and particularize it for the chosen fault plane and slip direction:

$$u_n(\mathbf{x},t) = \int_{-\infty}^{\infty} d\tau \iint_{\Sigma} \mu \left[u_1 \right] \left\{ \frac{\partial G_{n1}}{\partial \xi_3} + \frac{\partial G_{n3}}{\partial \xi_1} \right\} d\Sigma.$$

The first term in the curl brackets is the limit

$$\frac{G_{n1}(\mathbf{x}, t-\tau; \boldsymbol{\xi} + \varepsilon \hat{\boldsymbol{\xi}}_3, 0) - G_{n1}(\mathbf{x}, t-\tau; \boldsymbol{\xi} - \varepsilon \hat{\boldsymbol{\xi}}_3, 0)}{2\varepsilon}$$

as ε --> 0. This is the following single-couple distribution (notice the moment units, Nw*m, of the equation):

Force Equivalent for a Buried Fault (Displacement Discontinuity)

The second term involves the limit

$$\frac{G_{n3}(\mathbf{x},t-\tau;\boldsymbol{\xi}+\varepsilon\hat{\boldsymbol{\xi}}_1,0)-G_{n3}(\mathbf{x},t-\tau;\boldsymbol{\xi}-\varepsilon\hat{\boldsymbol{\xi}}_1,0)}{2\varepsilon},$$

as ε --> 0, which represents the following single-couple distribution:

Force Equivalent for a Buried Fault

The complete **body-force equivalent** to **fault slip** consists of **two parts** with both canceling moment and net force:

- 1. Single couples (f_1) made up of forces pointing in the fault slip direction, and
- 2. A distribution of a fault-normal single forces over Σ (f₃) with total moment cancelling the one due to f₁.

The radiation from these two distributions is the same as the radiation from slip on the fault. In this sense, these two single-couple distributions, taken together, are equivalent to fault slip.

Force Equivalent for a Buried Fault

The complete **body-force equivalent** to **fault slip** consists of **two parts** with both canceling moment and net force:

- 1. Single couples (f₁) made up of forces pointing in the fault slip direction, and
- 2. A distribution of a fault-normal single forces (f_3) over Σ with total moment cancelling the one due to f_1 .

The absolute value of the total moment associated with each contribution is equal to $\mu \overline{\mu} A$

Double Couple: Point dislocation body-force equivalent

At great distances from the fault, wavelengths of seismic waves are much greater than the linear dimension of Σ , and their periods much longer than the source duration. The slip thus becomes localized in space and time $\overline{\mathbf{u}}A\delta(\xi_1)\delta(\xi_2)H(\tau)$ and then:

$$\begin{split} f_1(\boldsymbol{\eta},\tau) &= -M_0 \delta(\eta_1) \delta(\eta_2) \left[\frac{\partial}{\partial \eta_3} \delta(\eta_3) H(\tau) \right] \\ f_3(\boldsymbol{\eta},\tau) &= -M_0 \left[\frac{\partial}{\partial \eta_1} \delta(\eta_1) \delta(\eta_2) \delta(\eta_3) H(\tau) \right] \end{split}$$

where M_0 is called the seismic moment:

 $M_0 = \mu \overline{u} A = \mu \times \text{ average slip } \times \text{ fault area.}$