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Representation Theorem for an Internal Surface

Without assuming any boundary condition on X, our first representation theorem
reads (repeated):
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Suppose that X is transparent to G (i.e. G satisfies the equation of motion
everywhere and is continuous across X as well as its derivatives). In the
absence of body forces for u, if slip arises across X then [u] is nonzero, and
since tractions are continuous across the fault when rupture propagates
spontaneously (i.e. [T(u,v)] = 0), then
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Representation Theorem for an Internal Surface

Representation Theorem for a Faulting Source (repeated)
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This representation formula for displacements, which has been
used by many seismologists to evaluate the wavefield radiated
from earthquakes, has the following outstanding properties:

1. Slip in the fault [u,] is enough to determine displacements
everywhere.

1. No boundary conditions on X are needed for the Green
function G.

1. Fault motion, which may be extremely intricate and may
complicate the determination of the slip function [u;(,t)], is
completely independent from the Green function
determination.



Body-Force Equivalents

Making no assumptions about [u] and [T(u,v)] across X, we have
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Traction Discontinuity: The body-force distribution of a traction discontinuity
across X is [T] 8(n-§) dX as n varies throughout V. Thus, the contribution to
displacement of such a discontinuity is
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From the representation theorem above we see that the body-force equivalent
of a traction discontinuity on X is given by flTl, where
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Body-Force Equivalents
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Displacement Discontinuity: We use the following property of the delta-function
derivative to localize points of ~ within V:
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so that the displacement discontinuity contributes the displacement with
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Body-Force Equivalents

(Displacement Discontinuity)

From the representation theorem before, we see that the body-force equivalent
of a displacement discontinuity on X is given by flul, where
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The seismic waves set up by fault slip are
the same as those set up by a distribution
of certain forces on the fault with
canceling moment and net force.

The body-force distribution is not unique
but in an isotropic medium it can always

be chosen as a surface distribution of
double couples.

Assume that the fault Z lies in the plane &; = 0 and that the slip [u] is parallel to
the &4-direction so that [u,] = [us] = 0. Then the body force equivalent reduces to
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Body-Force Equivalents

(Displacement Discontinuity)

Body force equivalent to the displacement discontinuity shown in the
figure below (repeated):
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In isotropic heterogeneous media, from

we find that all cq3,4 vanish except cq313 =
C1331 = u. Hence the body-force equivalent
distribution over ~ becomes:
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Force Equivalent for a Buried Fault  spike as a function of s
(Displacement Discontinuity) po

Integrating the first force component we obtain
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The body force (f4,0,0) is proportional to the
derivative of the spike (Dirac) function. It thus
represents a system of single couples of forces _———__.—__[—$———-"—-;
acting in the +/- nq-direction with moment along
the mn,-direction. The total moment is not zero o

and equal to
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Force Equivalent for a Buried Fault

(Displacement Discontinuity)

Using properties of the delta derivative, the third force component becomes
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The body force (0,0,f3) is a single force
proportional to the derivative of the slip
function. It thus represents a force
distribution in the +/- ns-direction yielding a
net couple with moment along the -n,-
direction. The total moment is not zero and

equal to
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which is the same, but with opposite sign,
as the total moment due to the force
equivalent f;. It can be shown that such
moment is given by |uu Al where A is the
total fault area. Moments from both body-
force equivalents cancel out.

(@)

[uxl

N

/N

ALl

om

\

4

(b)

fs

4

Y

(c)




Force Equivalent for a Buried Fault

(Displacement Discontinuity)

Body force equivalents to a given fault slip are not unique. The single force
distribution f; shown in last figure is also equivalent to a distribution of single
couples. To see this, take the representation
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and particularize it for the chosen fault plane and slip direction:
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The first term in the curl brackets is the limit
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Force Equivalent for a Buried Fault

(Displacement Discontinuity)
The second term involves the limit
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as ¢ --> 0, which represents the following single-couple distribution:
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Force Equivalent for a Buried Fault

The complete body-force equivalent to fault slip consists of two parts with
both canceling moment and net force:

1. Single couples (f;) made up of forces pointing in the fault slip

direction, and
2. A distribution of a fault-normal single forces over X (f3) with total

moment cancelling the one due to f;.
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The radiation from these two distributions is the same as the radiation from
slip on the fault. In this sense, these two single-couple distributions, taken

together, are equivalent to fault slip.



Force Equivalent for a Buried Fault

The complete body-force equivalent to fault slip consists of two parts with
both canceling moment and net force:

1. Single couples (f;) made up of forces pointing in the fault slip

direction, and
2. A distribution of a fault-normal single forces (f3) over X with total
moment cancelling the one due to f;.

The absolute value of the total moment Double Couple: Point dislocation
associated with each contribution is equal to [z A body-force equivalent
( X
At great distances from the fault, wavelengths of 4 ’6/“ A
seismic waves are much greater than the linear /
dimension of X, and their periods much longer than - .
the source duration. The slip thus becomes localized al
in space and time(uAd(£))é(S,) H () and then: 9 7/ Y
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