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Body force equivalent to the displacement discontinuity shown in the 
figure below (repeated): 

In isotropic heterogeneous media, from 

we find that all c13pq vanish except c1313 = 
c1331 = µ. Hence the body-force equivalent 
distribution over Σ becomes: 

Force Equivalent for a Buried Fault 



Force Equivalent for a Buried Fault 
The complete body-force equivalent to fault slip consists of two parts with 
both canceling moment and net force: 
 

1.  A distribution of single couples (f1) made up of forces pointing in 
the fault slip direction, and 

2.  A distribution of fault-normal single forces over Σ (f3) with total 
moment cancelling the one due to f1.  

The absolute value of the total moment 
associated with each contribution is equal to         

At great distance from the fault, wavelengths of 
seismic waves are much greater than the linear 
dimension of Σ, and their periods much longer than 
the source duration. The slip thus becomes localized 
in space and time                               and then: 

Double Couple: Point 
dislocation force equivalent 

where M0 is called the seismic moment:	  



Moment Magnitude Mw 

This quantity is a measure of the source strength and does not depend on 
the kind of seismic wave used to determine it.   

The total moment magnitude due to each couple of the body-force equivalent 
for a point dislocation is called the seismic moment M0: 

Earthquakes magnitude has been 
determined empirically by means of 
specific wave amplitudes, such as body 
(Mb) and surface waves (Ms). 
Kanamori (1977) introduced the Moment 
Magnitude Mw, which is based on M0 and 
approximately equal to Ms in the 
frequency range where the surface waves 
spectrum is not saturated: 



The Seismic Moment Tensor 

The seismic moment tensor is a quantity that depends on the source 
strength and orientation. It is a generalized description of body-force 
equivalents for seismic sources consisting of force couples and dipoles. 

Note that, if functions f(t) and g(t) are zero for t < 0, then 

We start from the following displacement representation in terms of the slip 
on the fault and the spatial derivative of the Green tensor (repeated): 

which using the convolution symbol is written as 



The Seismic Moment Tensor 

On the other hand, we have that the contribution of a point dislocation to 
displacements is also given by the convolution of the slip on the fault and the 
spatial derivative of the Green tensor at the source (repeated): 

Recall that the contribution of a time varying force fp to the displacement field 
is given by  

If fp is applied in the p-direction at the fault point ξ, then the n-component of 
displacement at (x,t) is given by the convolution   



The Seismic Moment Tensor 
Recall 

Displacement Discontinuity: We use the following property of the delta-function 
derivative to localize points of Σ within V (repeated): 

so that the displacement discontinuity contributes the displacement with (repeated)  

Body-force equivalent 
of a displacement 
discontinuity 

Force strength 



The Seismic Moment Tensor 

From the general representation of displacement as a function of the 
time varying force fp that originate it  

Body-force equivalent of a displacement discontinuity 

Double Couple: Point 
dislocation force equivalent 

Force equivalent to a point dislocation on 
surface ξ3 = 0 with slip in the ξ1 direction  



The Seismic Moment Tensor 

For a displacement discontinuity (i.e. fault slip or opening), the representation 
formula depends on the spatial derivatives of the Green function Gnp  

that, as previously demonstrated, correspond to a single force couple each, 
with arm in the ξq-direction. The sum over index q tells us that each 
displacement component at x is the contribution of a sum of force couples 
and dipoles distributed over Σ. 

Since the integrand is the n-component of 
the displacement at x due to couples at ξ, it 
follows that                  is the strength of the 
(q,p) couple, which has units of moment 
per unit area. The moment contribution of 
each fault unit area is the strength 
weighted by the infinitesimal surface area 
dΣ. 



The Seismic Moment Tensor 

In an isotropic medium with displacement discontinuity without fault opening 
(i.e. slip or shear dislocation), the moment density tensor becomes 

In terms of this tensor, the representation theorem for displacement at x due 
to general displacement discontinuity [u(ξ,τ)] across Σ is: 

We thus define the time-dependent components of the moment density 
tensor to be: 
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If Σ lies in the ξ3 = 0 plane with slip only in 
the ξ1-direction (figure), the moment density 
consists of the force double-couple: 



The Seismic Moment Tensor 

If Σ lies in the ξ3 = 0 plane and [u3] is the only 
nonzero displacement component (figure), the 
moment density consists of three force dipoles: 

In observational seismology we often analyze seismic waves with very 
long periods for which the whole Σ is effectively a point source. So by 
integrating the contribution of every single fault unit area, the represen- 
tation of displacement reads   

where the moment tensor, Mpq, is thus given by 



The Seismic Moment Tensor 

The seismic moment tensor may be 
expressed as  

where A is the total fault area and Di 
the slip vector. Its components are: 

δ  = dip 
λ  = rake 
φ = strike 
M0 = µAD 

Since the moment tensor is 
symmetric, it may be diagonalized 
by rotating it into a principal-axis 
system.  
 
The rotated tensor components 
correspond to the eigenvalues of 
the moment tensor, and the 
associated eigenvectors give the 
directions of the tensional (T), 
intermediate (B) and 
compressional (P) stress axis.  



The Seismic Moment Tensor 

The diagonalized moment tensor may be decomposed into two separate 
tensors, namely the isotropic and deviatoric moment tensors, so that  

Where tr(M) = M1 + M2 + M3 is the trace of M, and the remaining terms Mi 
are the deviatoric eigenvalues of M. 
 
The isotropic moment tensor components describe the volume change of 
the medium due to either an explosion or implosion. Most shearing sources 
appear to have little isotropic component, so often, when determining their 
moment tensor, seismologists assume that tr(M) = 0. 
 
The deviatoric moment tensor may be decomposed in different ways: three 
vector dipoles, three compensated linear vector dipoles (CLVDs), a double 
couple and a CLVD, etc. 


