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Fault Model with Unidirectional Rupture Propagation 

Thus, the fault plane may be thought 
as a linear succession of point 
dislocations breaking subsequently 
with a time delay dt=dx/vr. 

Neglecting body forces and stress discontinuities across the fault, Σ, the 
displacement field due to a point dislocation [ui(ξ,τ)] on the fault has the 
components 

In a homogeneous, isotropic, unbounded medium, the Stokes’ solution 
gives an explicit form of the Green function, Gip. 

Consider a rectangular fault plane with length L and width W so that L >> W. 
Rupture initiates at one extremity of the fault and propagates along L with 
velocity vr. 

L >> W 

Σ



Fault Model with Unidirectional Rupture Propagation 
Taking the body force in the Stokes’ displacement solution to be a unit 
impulse in time, and thanks to the Green function time reciprocity, it follows 
that 

where γi is the director cosine of the vector that goes from the source point ξ 
to the receiver point x, and r=|x-ξ| is the distance between those two points. 

By inputting these terms into the representation formula for the point 
dislocation, and after carrying out the time integration we obtain the 
corresponding far-field displacement.   

If the receiver position x is sufficiently far from all points ξ on the fault 
surface Σ, then only the far-field terms in the Green function are significant. 

Far-field terms 



Fault Model with Unidirectional Rupture Propagation 
Therefore, the far-field displacement due to a point dislocation within a 
isotropic, unbounded, homogeneous space is 

where the substitution of                           has been done since γi and r are 
only dependent on the difference between x and ξ.   

Carrying out the differentiation with respect to xq, noting that              is 
equal to γq, and taking only the first order terms of the expansion in Taylor 
series of the dislocation time functions, which decrease as 1/r, we obtain 



Fault Model with Unidirectional Rupture Propagation 

Using the principle of linear superposition for the P-wave far-field 
displacement (i.e. integrating over Σ) due to the subsequent point 
dislocations (with time delay Δt = x/vr) in our linear fault model: 

where the displacement rate discontinuity (i.e. fault slip rate) is now 
denoted as     , the radiation pattern factors are regrouped in the terms      ,  
w is the fault width and N is the amount of subfaults over Σ. 
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Notice that the P and S-wave far-field displacements are now expressed 
in terms of the slip velocity on the fault plane so that both quantities are 
proportional.  

If the receiver is quite far from the fault, both the distances ri and radiation 
patterns       may be approximated constant along the fault, and since vr 
and Di are the same along the fault: 
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Fault Model with Unidirectional Rupture Propagation 

Using the shift property of the delta function 

and taking the limit of the summation as dx tends to zero, we obtain the 
integral equation 

where x is the length of the fault. Since the slip history is constant along 
the fault and considering the change of variable                         we have 
that                                         and then                



Fault Model with Unidirectional Rupture Propagation 

Thus 

where H(t) is the heaviside step function, which is zero for t < 0 and one 
elsewhere. Denoting the total rupture time as τc = x/vr and the boxcar 
function with duration τc as B(t ; τc), we have 

which means that the P-wave far-field displacement is proportional to the 
convolution of that Boxcar with the slip rate function of any individual 
subfault (i.e. recall that all subfault experience the same slip rate history). 



Fault Model with Unidirectional Rupture Propagation 

Assuming that the slip history has a constant 
rate until the final offset (i.e. a ramp function) 
then the slip rate     is a Boxcar function with 
rise-time tr (figure).  
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Because of the above equation, the P-wave 
far-field pulse shape is defined by the 
convolution of two boxcar functions, one 
representing the slip rate history of a single 
subfault, and the other representing the effect 
(duration) of the fault finiteness (i.e. τc = x/vr): 

= 
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Recordings of the ground 
motion near the epicenter of an 
earthquake at Parkfield, 
California (i.e. San Andreas 
fault). The station is located on 
a nodal for the P-wave and a 
maximum for the SH-wave. 
Notice the trapezoidal shape of 
the displacement pulse. 

The P or S-wave far-field 
displacement is defined as the 
apparent Source Time Function 
(STF): 

Parkfield earthquake (Aki, 1968) 



Fault Model with Unidirectional Rupture Propagation 
Time integrating the P (or S-wave) far-field displacement 
 

The right-hand side represents the product of the average final slip D and 
the area of                     , which is equal to µwL. Thus, since the product wL 
is the fault area A, we have that: 

which is proportional to the seismic 
moment M0. 
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and since           , arranging the terms we obtain 
 



Fault Model with Unidirectional Rupture Propagation 

 
1.  Fault length (L) 
2.  Fault width (W) 
3.  Rupture velocity (vr) 
4.  Final average slip (D) 
5.  Rise time (tr) 

 

For many earthquakes, reliable estimates 
of the product of L, W and D have been 
made, and hence of the seismic moment 
by assuming a value of rigidity. 
 
Reliable estimates of D and tr require near-
field data, which are difficult to obtain. 

The finite fault model we have introduced has been first studied by Haskell 
(BSSA, 1964 and 1969) and it is often called the Haskell’s model.  It depends 
on five basic source parameters: 
 



Source Directivity Effects 
In the Haskell source model, the boxcar associated with rupture propagation 
has a length τc as seen in the far-field at a station located in the direction 
perpendicular to fault strike.  
 
Such length obviously depends on both the fault dimensions and rupture 
velocity. However, it also depends on the azimuthal position of the station 
relative to the source (Doppler effect), as sketched in the figure below.  

Body waves excited at 
the left extremity of the 
fault and traveling with 
speed c will propagate 
a longer distance than 
those excited at any 
position x later in the 
fault. Thus the arrival 
times of both waves 
packages are different. 



Source Directivity Effects 
The arrival time of a body-wave excited at the left fault extremity is t=(r/c), 
where r is the distance between the fault extremity and the receiver. The 
arrival time of a wave excited in a fault segment at point x is give by: 

The duration of the rupture propagation boxcar may thus be estimated as: 

which reduces to a simple 
function of θ, the fault length 
and both rupture and wave 
speeds:  



Source Directivity Effects 
Since the duration of the apparent 
source time function (i.e. the 
body-wave far-field displacement) 
depends on the angle θ, and since 
the area under such function is 
proportional to the seismic 
moment M0, then the amplitude of 
the STF also changes with the 
station position. 

The apparent rupture duration τc 
also depends on the ratio of both 
the rupture and the wave speeds: 

Then the radiation pattern for two 
different speed ratios changes 
significantly, specially for the S-
waves (see figure).  



Source Directivity Effects 
Observed (above) and synthetic 
(below) P-wave seismograms for the 
1975 Haicheng earthquake. Notice 
the strong directivity effect in stations 
located close to the along-strike 
direction (e.g. compare the pulse 
width in stations PTO and GUA)  

Long-period record of the 
1960 Chilean earthquake. 
Notice that the amplitude of 
the G4 and R4 arrivals is 
bigger than that of the G3 
and R3 arrivals, which 
propagated a shorter 
distance, due to source 
directivity. 


