
The Seismic Source Spectrum 
 

1.  Far-field finite source spectrum 
2.  Rupture directivity effects 
3.  Bilateral source spectrum 
4.  Crack-like source spectrum 
5.  Brune’s far-field spectrum model 

	
Víctor	M.	CRUZ-ATIENZA	

Posgrado	en	Ciencias	de	la	Tierra,	UNAM	
cruz@geofisica.unam.mx	



Far-Field Finite Source Spectrum 

Because of the above representation, the 
shape of the P-wave far-field pulse is defined 
by the convolution of two boxcar functions, 
one representing the slip velocity history of a 
single subfault, and the other representing the 
effect of the fault finiteness (i.e. τc = x/vr): 

= 

Consider a fault model with unidirectional 
rupture propagation (i.e. Haskell’s model). 
The P-wave far-field displacement of such 
model is 



Time integrating the P (or S-wave) far-field displacement 
 

Far-Field Finite Source Spectrum 

We thus deduce that the displacement is equal to M0 times the 
convolution of two boxcars (normalized by 1/τr and 1/τc respectively) with 
characteristic length durations: 

leads to the seismic moment M0: 
  
 

= M0 

To see this, notice that the right-hand side represents the product of the 
average final slip D and the area of                     , which is equal to µwL with 
wL = A, the fault area. 



Far-Field Finite Source Spectrum 
The Fourier transform of a boxcar with height 1/T and length T is the Sinc 
function:  

and thus the spectral displacement amplitude is given by the product of 
the absolute value of two Sinc functions weighted by the seismic moment: 

where ω is the frequency, and TR and TD are the apparent source duration 
(τc) and the rise time, respectively.  

The Sinc function, which 
controls the shape of the far-
field body wave spectrum, 
has nodes at X = π, 2π, … 



Far-Field Finite Source Spectrum 
Since the effect of source finiteness is provided by a boxcar with length τc, 
the apparent rupture duration, throughout  

and since τc is subject to the source directivity effect, which makes the 
displacement dependent on the source-receiver position, then the first 
spectrum node is due to the fault finiteness and corresponds to the period 
    

2π /ω =	

which contains information about the 
source length and rupture velocity. 



Far-Field Finite Source Spectrum 
Source directivity, which affects the displacement spectrum throughout 
factor  

TR where 

induces a smoothing effect on the spectrum that is weakest in the direction 
of rupture propagation (θ=0) and strongest in the opposite direction (θ=π). 
As a result we observe more high-frequency waves when rupture 
approaches the receiver position. 

The rise time has a smoothing effect in 
the source spectrum as well but, since 
in general TD < TR, such effect affects 
higher frequencies than the source 
finiteness. 



Far-Field Finite Source Spectrum 

Amplitude spectra of Love waves 
from a series of earthuakes in 
Parkfield (June 1966), California, 
recorded at Berkeley, at a distance 
of 270 km. 

 The far-field 
displacement 
spectrum decays 
as 1/ω	

 
The first node at period T=22.5 s is 
explained by the rupture velocity of 
2.2 km/s, the fault length of about 20 
km and cos(θ) of about 1: 

TR =
  

2π

ω



Far-Field Finite Source Spectrum 
The logarithm of source spectrum is given by the sum  

By approximating the Sinc functions as 
shown in the figure (top), the equation 
above represents an approximation of 
the amplitude spectrum of a trapezoidal 
boxcar function defined as: 

This theoretical source spectrum has 
three regions with slopes 1, ω-1 and ω-2 
separated by two corner frequencies 
which depend on both the rise time (TD) 
and the rupture duration (TR). 



Far-Field Finite Source Spectrum 
The displacement source spectrum is flat and proportional to M0 at low 
frequencies. For high frequencies it decays as ω-2. Thus, the spectrum is 
parameterized by three factors:  

1.  Seismic moment,  
2.  Rise time and  
3.  Rupture duration.  

There exist other source models with 
different spectra, such as the one 
considering rupture propagation in 
the along-width direction as well, 
which introduces an even faster 
decay in high frequencies (as ω-3). 

Theoretical spectra for different 
earthquakes’ magnitudes. Notice the 
spectrum saturation in both body and 
surface waves magnitudes at 
periods of 1 and 20 s, respectively. 



Far-Field Source Spectrum 

Is it possible to extract fundamental source 
information from the spectrum of the far-
field displacement of body-waves? 

Following Brune (JGR, 1970) for a point dislocation, the far-field displacement 
spectrum is roughly characterized by three parameters: 
 

1.  The low-frequency level, which is proportional to M0 
2.  The corner frequency fc ; and 
3.  The power of the high-frequency asymptote 

 

Assuming bilateral faulting with rupture 
velocity v and final length L, Savage (1972) 
calculated the P and S-waves corner 
frequencies from the slip function: 

where 



Far-Field Source Spectrum 

In this case, the high-frequency asymptote is proportional to ω-2. Thus, from 
observed corner frequencies, the source area (LW) may be estimated. However, 
contradicting most of observations, this model always predicts fP < fS . 

Assuming that rise time T is equal to the travel time of the rupture front over 
half a fault width, Savage (1972) obtained single corner frequencies fc per 
body-wave as a geometric mean of the corner frequencies associated with 
both the rupture time and the rise time, so that 

Sato and Hirasawa (1973) introduced a source spectrum based on a circular-
crack model propagating radially with constant velocity that also exhibits an 
asymptote like ω-2 but predicts fP > fS . Their corner frequencies over all 
directions for the P and S waves are 

where R is the source radius and Cp and Cs are functions of rupture velocity. 



Far-Field Source Spectrum 
James Brune (1970) introduced a source model whose spectrum is 
parameterized in terms of  the source stress drop and fault dimensions.  

Brune’s model assumes a shear dislocation in a 
circular crack due to a sudden stress drop (σ or 
Δσ) simultaneously throughout the entire crack.  

The stress wave propagating from the center 
of the crack up to a receiver close to it is  

where H(t) is the Heaviside function. From the Lagrangian strain tensor 
definition and Hooke’s law, such stress drop is given by 



Far-Field Source Spectrum 

The strain associated with the stress perturbation                            may be 
approximated as u/(βt) so that the fault-parallel displacement at the receiver 
close to the crack is 

thus the particle velocity is directly proportional to 
both the stress drop and S-wave speed, and 
inversely proportional to rigidity 

Assuming a Poissonian solid  
with β = 1 km/s and Δσ = 0.1 
MPa, both the particle displa-
cement and velocity are (Cruz-
Atienza, PhD Thesis, 2006):  



Far-Field Source Spectrum 

By inputting the model parameters into such formula we obtain a final slip at 
the fault center equal to 0.27 m, which coincides with the numerical 
prediction shown in the figure below for t = 12 s.  

Assuming a Poissonian solid  
with β = 1 km/s and Δσ = 0.1 
MPa, both the particle displa-
cement and velocity are (Cruz-
Atienza, PhD Thesis, 2006):  

The static (i.e. final) slip for this problem has a closed form found by Eshelby 
(1957) given by 

Notice that particle velocity is constant and equal to 0.2 m/s until the arrival 
of diffracted waves (P and S-stopping phases) generated at the crack edge. 



Far-Field Source Spectrum 

To approximate the near-field displacement considering the diffracted 
waves, Brune multiplied the displacement function by an exponential with 
characteristic time, τ, equal to r/β, where r is the fault radius. 

Notice that the velocity initial rise is not affected with respect to that of an 
infinite source but decays to zero with time. 



Far-Field Source Spectrum 
In the far-field, once corrected the source radiation pattern, and considering 
an amplitude spherical spreading with distance R from the source, the 
spectrum of the displacement becomes 

where function F(ε) has been chosen so that the spectrum in the long-period 
limit agrees with the source scalar moment and in the high-frequency limit 
conserves the energy-density flux at large distances:  

Thus, the Brune’s source model depends on three basic parameters: 
 

1.  The effective stress drop (σ) 
2.  The source characteristic length (r); and 
3.  The corner frequency (α) 

 



Far-Field Source Spectrum 
By fitting the observed spectra with the theoretical source spectrum 
predicted by Brune’s model, we may solve for both the effective stress drop 
σ and source dimension r. 

This source model, at low-
frequencies approaches the 
seismic moment M0. For values 
of ω/α near 1 the spectrum 
begins to fall as ω-1, and for high 
values of ω/α the spectrum 
decays as ω-2, which agrees with 
the source model introduced by 
Aki (1968) 



Far-Field Source Spectrum 

Brune’s source spectrum model may 
be used to estimate seismic moment 
and stress drop for regional 
earthquakes after correcting 
seismograms for regional intrinsic 
attenuation (Q), like in this case for 
three events occurred in the MVB to 
the north of Mexico City (Singh et al., 
2011). 



Far-Field Source Spectrum 
Or even apply systematically Brune’s 
model for stress drop determination of 
thousands of events taking care of 
regional attenuation that also affects 
the spectrum, like in this example in 
southern California (Shearer et al., 
2006)  

Stress release may thus be 
studied regionally and 
associated to fault systems in 
the Earth’s crust. 


