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Macroscopic Fault Mechanics

From observations of the 1906 San Francisco 
earthquake, Henry F. Reid postulated the elastic 
rebound theory as the mean to produce 
earthquakes. An earthquake is the sudden release 
of previously stored elastic stress (i.e. strain).

Coulomb (1773) introduced a simple theory for 
rocks failure, so that the rock strength (t) depends 
on three parameters: 1) cohesion, c, 2) coefficient 
of internal friction, µi, and 3) the normal traction, sn, 
on the plane of failure:

If rupture happens in a preexisting fault, the fault strength essentially 
depends on the normal traction and µs, the coefficient of friction, which 
doesn’t have the same value µi required for failure on fresh rocks. We thus 
have the following relationship, known as Amonton’s second law (1699):



Macroscopic Fault Mechanics
Fault slip is always accompanied 
by a stress drop. Once the elastic 
energy has been released, strain 
starts cumulating again and a new 
seismic cycle begins. This unstable 
frictional behavior is known as 
“stick-slip”, concept introduced by 
Brace and Byerlee (1966).

The elastic rebound happens when conditions for unstable sliding are set in 
the fault plane. These conditions are schematically shown in the figure, where 
force F represents the fault traction, Ff the fault friction and the stiffness of the 
spring, K, represents the elastic modulus of the medium surrounding the fault. 

The slip instability (i.e. the 
rupture) happens if the weakening 
rate of the fault friction, Ff, is 
larger than the weakening rate of 
the fault shear traction, which is 
proportional to K.𝐹! = 𝜇(𝑠) ∗ 𝑁

𝐹 = 𝐾 ∗ 𝐷𝐺𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝑓𝑎𝑢𝑙𝑡

Force	𝐹! 𝑆 ,where	𝑆	is	the	block	slip
	 Force	𝐹 𝐷 ,where	𝐷	is	the	spring	deformation

𝐾	(rock	stiffness)



Stability Involves Balance and Calm

• Potentially unstable systems remain stable (inertial 
or static) as long as certain conditions prevail.

• In mechanics, such conditions imply the balance of 
all acting forces during the evolution of the system. 

𝜕𝐹!
𝜕𝑆 > 𝐾

Instability	
condition

This	condition	implies	
an	imbalance	of	forces	
and	thus	acceleration

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	(𝑆	𝑜𝑟	𝐷)
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Force	𝐹! 𝑆 ,where	𝑆	is	the	block	slip
	 Force	𝐹 𝐷 ,where	𝐷	is	the	spring	deformation

𝐾	(rock	stiffness)



Macroscopic Fault Mechanics

From the slip instability condition we see that the fault strength (friction)
evolution during an earthquake is critical to either promote or prevent rupture
propagation.

Amonton’s second law tells us that the fault strength is proportional to µ, the
coefficient of friction. Assuming constant the fault normal traction, then rupture
only depends on the time evolution of µ (i.e. the fault friction coefficient).

The Fault friction coefficient is a function of many different physical processes
taking place during rupture, as temperature, slip rate, slip history and some
state variables varying with time.

Let us first study the elastic 
fields produced by a 
faulting process in the 
vicinity of the rupture front. 
Any faulting mechanism 
may be thought as a linear 
combination of three 
fundamental modes of 
deformation: Opening              In-plane             Anti-plane



Microscopic Fault Dynamics

Assume a given displacement discontinuity 
across S1. Regardless of the deformation 
mode, the stress tensor over S2 in the 
vicinity of the crack tip has a universal form 
given by:  

where x’= x – vr t and vr is the rupture front velocity. In this expression, both 
functions K(t) and Qij(q) are scalars and depend on the rupture mode. The first 
one is know as the stress intensity factor and has units of Nw/m3/2. The 
second one is a non-dimensional spatial pattern that depends on the position 
over the plane perpendicular to the crack tip (i.e. y=0 and angle q). It ranges 
between zero and one, so that Qij(0)=1 over the plane z = 0 (Freund, 1990).

Notice the stress singularity at the crack 
tip (i.e. x’ = 0), which has the form
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Microscopic Fault Dynamics

Now consider a slip function S that 
is 0 for x’ > 0, and given by the 
logarithm of |-x’| as show in the 
figure for x’ < 0. The shear stress 
outside the crack is (Aki and 
Richards, 2002):

where F is a constant that 
depends on µ, vr, and a (if i = x, 
in-plane) or b (if i = y, anti-plane). 
This means that the stress field is 
equal to the Hilbert transform of 
the slip rate,    , times a constant. 
Thus both fields have the same 
shape but with phase shifted of 
p/2.

Stress and slip rate functions satisfying 
this equation in the z = 0 plane are

where functions Km and Am are, 
respectively, the stress intensity factor 
and a constant, both depending on the 
rupture mode m (Aki and Richards, 2002, 
eqs. 11.6 and 11.7)



Microscopic Fault Dynamics

Therefore, the slip rate 
and shear stress have the 
form shown in the figure, 
both of them with a 
singularity at the crack tip.

We thus have that the stress and slip rate functions for a moving crack 
with spatial logarithmic slip distribution are

where functions Km and Am are, respectively, the stress intensity factor and a 
constant, both depending on the rupture mode m.



Unidirectional Anti-Plane Moving Crack
Consider now a unilateral anti-plane 
rupture (mode III) propagation with 
velocity vr and fault length of 2a. The 
fault is loaded before rupture with a 
homogeneous shear stress t0. During 
propagation, an instantaneous and 
constant stress drop Dt = t0 – ts takes 
place in the crack tip, where ts is the 
dynamic stress (Freund, 1979). Thus, 
the shear stress ahead the crack tip 
and the slip rate within the crack are 
respectively given by (Kanamori, 
1994):

Since seismological observations give 
access to average source information, 
by integrating the slip rate over the fault 
we get particle velocity and stress drop:



As far as the finite fault effects don’t 
play a relevant role (e.g. diffracted 
stopping phases), particle velocity in 
the near field and stress drop in a 
moving crack with constant velocity are 
in accordance with prediction by Brune
(1970) for his penny-shape 
instantaneous source model by a factor 
of 0.5, which is within uncertainties in 
seismological interpretation.

Penny-shape Brune’s model

Unidirectional Anti-Plane Moving Crack

Brune’s model



Cohesive Forces over the Fracture
The preceding analysis assumes linear response all over the medium,
including the crack-tip vicinity. However, there is no physical material capable
to admit infinite stresses or velocities.
Barenblatt (1959) has introduced the concept of cohesive forces in the crack
surface. These forces make both the slip rate and the stress concentration
ahead the crack tip to be continuous functions (i.e. singularities disappear)

Ida (1972) and then Palmer and Rice (1973) 
gave a physical sense to Barenblatt’s cohesive 
forces showing that they represent an opposing 
resistance to dislocation, an energy dissipative 
process throughout work done over the crack 
surface against fault tractions.

Ida (1972) introduced the concept of “slip-
weakening”, so that the fracture resistance in 
a given point is a function of the displacement 
discontinuity D. Different laws for the 
cohesive force s were proposed, as shown in 
the figure:



Cohesive Forces over the Fracture

The associated displacement 
discontinuities and shear 
stresses to the above cohesive 
forces are shown in both 
figures (Ida, 1972). 

Notice the influence of the cohesive 
forces on both stresses and the slip 
functions inside the crack. For 
smoothly varying cohesive forces in 
space, the shear traction becomes 
continuous along the plane where 
the crack is located.

Fracture displacement discontinuities

Shear tractions inside and outside the fracture



Slip-Weakening Friction 

Assuming a linear dependence of the 
force with slip S (see figure):

Cohesive force as a function of slip

There exists a cohesive zone behind the 
crack tip, Lc, where friction drops to its 
dynamic level



Fracture Cohesive Zone
Assuming a linear dependence of the 
force with slip S (see figure), Ida (1972) 
showed that the length of the cohesive 
zone may be approximated as:

Cohesive force as a function of slip

where

Andrews (2004) showed that such a 
zone suffers a contraction with rupture 
propagation distance L so that

Day et al. (2005), from energy balance 
consideration, showed that such 
Lorentz contraction depends on the 
fracture mode and rupture velocity.



Fracture Energy Balance
The total energy change in the medium due 
to a dislocation is given by the Volterra
relationship:

From the principle of energy conservation, 
the energy partition at the rupture front 
should satisfy

Each term is given as follows:

where Eh is the heat, Ek the kinetic energy, 
Eu the elastic energy, Eg (or G) the fracture 
energy and Em the mechanical energy 
(Husseini, 1977). 

Both members of this equation represent 
the available energy to move the crack


