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BODY FORCE EQUIVALENTS FOR SEISMIC DISLOCATIONS 

BY P~. BURRIDGE AND L. I~NOPOFF 

ABSTRACT 

An explicit expression is derived for the body force to be applied in the absence of a dislocation, 
which produces radiation identical to that of the dislocation. This equivalent force depends 
only upon the source and the elastic properties of the medium in the immediate vicinity of the 
source and not upon the proximity of any reflecting surfaces. The theory is developed for dis- 
locations in an anisotropic inhomogeneous medium; in the examples isotropy is assumed. For 
displacement dislocation faults, the double couple is an exact equivalent body force. 

1. INTRODUCTION 

The interest in the "force equivalent" problem antedates its solution by a con- 
siderable number of years. The debates over "single couple" and "double couple" 
earthquake focal mechanisms have by now been well viewed and reviewed. For a 
discussion of the problem of earthquake source mechanisms see Stauder (1962). 

I t  has been pointed out by several authors (Knopoff and Gilbert, 1960; Balakina, 
Shirokova, and Vvedenskaya, 1960) that  the solution to the problem of the seismic 
radiation from a suddenly occurring earthquake in the earth's interior is likely to 
be connected with the solution to a "dislocation" problem, or, in the terminology 
of Baker and Copson (1950), to a "saltus" problem. In these problems the displace- 
ment  field or stress field undergoes the more or less sudden creation of a discon- 
t inui ty across the "faul t"  surface. 

Perhaps the most complete solution to the dislocation problem has been given 
by  Knopoff and Gilbert. These authors showed that  a model of an earthquake can 
be represented as a linear combination of the solutions to a number of fundamental 
problems. The remaining problem, that  of determining the appropriate linear 
combinations, was not attempted. 

Although Knopoff and Gilbert were primarily interested in the radiation patterns 
from their various dislocation models they also provided the force equivalents tha t  
would produce the same first motions as each of their sources. In  this paper we find 
the force equivalents for physically and mathematically reasonable dislocation 
models. 

Nabarro (1951) obtained the radiation from a spreading dislocation by essentially 
the same method as Knopoff and Gilbert but  in a less explicit form. He had in 
mind mainly metallurgical applications. Recently Maruyama (1963) has a t tempted 
to derive the force equivalents but  his results are obscured by algebraic detail as- 
sociated with the explicit expression of a certain Green's function. 

In  this paper we specifically exclude consideration of the radiation pattern.  We 
are concerned with the body force which would have to be applied in the absence 
of the fault to produce the same radiation (in all respects, not only first mot ions)  
as a given dislocation. We find that  the force equivalent depends only upon the 
source mechanism and the elastic properties of the medium in the immediate 
vicinity of the fault and not upon any reflecting surfaces or other inhomogeneities 
which may be present in the medium. The theory is developed for dislocations in 
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an inhomogeneous, anisotropic medium although in the specific examples given at 
the end of the paper we have assumed isotropy. 

We assume from the outset that  the Green's function exists. This is physically 
reasonable since it is the response to an instantaneous body force concentrated at 
a point. We then derive a representation theorem in terms of this Green's function 
and interpret the surface integrals as representing certain surface distributions of 
body forces and "couples." Finally, specific examples are exhibited. 

2. A REPRESENTATION THEOREM AND RECIPROCITY RELATION 

The equations of motion for an inhomogeneous anisotropic elastic solid are 

(c,i,q(x)u~,,~(x, t ) ) , j  - p ( x ) a d x ,  t) = - f , ( , , ,  t) (1) 

where u d x ,  t )  is the /-component of the displacement vector, cijpq(X) are the 
elastic constants of the medium and fi(x,  t) the / -component  of the body force at 
the point x = (x~, x~, Xa) and time t. The coordinate system is rectangular car- 
tesian. We have used the notation F,s  = OF/Ox~ and F = OF~Or. The summation 
convention applies to letter subscripts, csjpq = c¢ivq = Cpq~i, and for an isotropic 
solid cs~.pq = ),~s¢Svq + g(SspS~q + &qSjv) where h and ~ are the Lain6 constants of 
the medium and ~ the Kronecker delta. 

Suppose vdx, t) is another motion due to body forces gi(x, t). Then 

( CSjpq~}!a,q) , j  - -  P~S = - - g S  . (2)  

Equations (1) and (2) are satisfied in a volume V bounded by a surface S ,  and for 
all time. We assume that  f i  and gs vanish for t < - T ,  T a constant, and that  us 
and vs also vanish for t < - T .  This last is a causality condition which guarantees 
tha t  the disturbance does not start  before the force which causes it. 

On replacing t by - t  in equation (2) we have 

where 

and 

[csjpq~p,q].i- pvs = -a~  

~ (x ,  t) = v~(x, -- t ) ,  g'(x, t) = gdx, --t)  

vv = O, t > T. 

(3) 

We now multiply (1) by Os, (3) by u~, subtract, integrate over all of V, and 
further integrate with respect to t from - oo to ~ .  This yields 

.o _ e ( ~  _ u ~ )  

- -  clj~,~(~i.~u~,q - -  us . i~, ,q)  = ~ d t  d V ( u i ~ s  - ~ i f l ) .  

(4) 
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The integrals over t are in fact finite since the integrands vanish outside the interval 
( - T ,  T). 

The last term on the left-hand side of (4) vanishes since c~j~q = % ~ .  Since p 
is independent of t we may integrate the second term with respect to t and find that  
the result vanishes since u~ and ~ vanish f o r t  < - T  and ~ and ~ vanish for 
t > T. The first term on the left-hand side may be transformed by means of the 
divergence theorem so that  we have the identity 

f_: dt fv d V ( u ~  - O~f~) =- I :  dt fs dSnj(O~c~j~,qu~,q - u~c~i~qO~,q), (5) 

where n~ is an outward drawn unit vector normal to S. 
If we now set gi(x, t) = $~ 5(x, t; y, - s) where ~(x, t; y, - s) -- 5(x1 - yl)$(x2 - 

y2)5(x3 - y3)~(t -t- s), y is a point in V, and 5 is the Dirac delta function, then 
~i(x, t) = ~ ( x ,  t; y ,s)  and (5) becomes 

u , (y ,s )  = ~ dt G~,(x, - t ;  y, --s)f~(x, t)dV~ 

-t- f_: dt fs nj{G,~(x, - t ;  y,-s)c~i~q(x)u~,q(x,t) (6) 

- -  ui(x, t)c~j~q(x)G~n,q(x, - t ;  y, - s ) }  dS~, 

where G~n(x; t; y, s) is the displacement in the/-direct ion at (x, t) due to an in- 
stantaneous point force of unit impulse in the n-direction at  (y, s). 

If, in (6), u i  and G~ satisfy the same homogeneous boundary conditions on S 
then the surface integral will vanish. If, in addition, fi(x, t) = &m~(x, t; y ' ,  s'), 
then (6) gives 

G,~m(y, s; y' ,  s') = G~,~(y', - s ' ;  y, - s )  (7) 

where G~m(x, t; y', s') satisfies the same boundary conditions as G,,,(x, t; y, s). 
Therefore (6) may be rewritten as 

un(y, s) -- dt G,i(y, s; x, t)fi(x, t)dVx 

+ dt n~,{G,i(y, s; x, t)c~pq(x)Up.q(X, t) (8) 

- u~(x, t)cispq(x)G,~p,q,(y, s; x, t) }dSx. 

Here 

0 G~p(y,s; x,t) G,,~,~,(y, 8; x, t) = 
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where q' indicates that  the subscript refers to the second set of arguments of Gnv 
and the summation convention still applies. 

Equation (7) is the reciprocal theorem. I t  was examined by Knopoff and Gangi 
(1959). I t  is a special case of Helmholtz's reciprocal theorem in generalized me- 
chanics (see Whittaker, 1944; Lamb, 1889). Equation (5) is Betti 's reciprocal 
theorem applied to u~ and ~ and integrated with respect to t. (Love, 1944, pp. 173- 
174) Equation (8) is the representation theorem which we shall use in the next 
section. De Hoop (1958) derives a similar theorem for an isotropic homogeneous 
medium and our notation has followed his. The first representation theorem of this 
type was derived by Knopoff (1956). 

Let it be assumed that  we wish to find the radiation from prescribed discontinui- 
ties in the displacement and its derivatives across a surface Y~ imbedded in V (Figure 
1 ). Let  v be the unit normal to ~ and let [u~] (x, t) and [up.q] (x, t) be the discontinui- 
ties in ui and up.q across ]~ and in the direction of ~ at  the point x at  time t. Assume 
ul and G~- satisfy the same homogeneous boundary conditions on S and apply 

S 

FIo. 1. Schematic diagram of surfaces and volume used in the integration.  

equation (8) to the region bounded internally by ~ and externally by S. Gmi does 
not have prescribed discontinuities on Z. Then the surface integral over S vanishes 
and we are left with the surface integral over Z only: 

u,~(y,s) = ~ dt Gm~(y, s; x, t)f~(x, t)dV~ 

(9) 

- G~i(y, s; ~, t)cljpq(~)[U~,q](~, t)}dY,~. 

Equation (9) is a representation of um in terms of the prescribed discontinuities in 
u and its derivatives across Z. 

3. EQUIVALENT FORCES 

By means of the properties of the delta function and its derivatives we shall in- 
troduce volume integrals into the second term on the right hand side of (9). 
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We note that  

and 

where 

and 

G~(y,s ;  ~,t) = f~ ~(x, [ )G~(y ,  s; x, t)dV~. 

-G,,~,q,(y, s; ~, t) = fv ~q(x; ~)G~(y,  s; x, t)dV, , 

~(x;  ~) = ~(x~ - ~ )~ (x~  - $~)~(z~ - ~ )  

~q(x; ~) = ~x~ ~(x; ~). 

If  these expressions are substituted in (9) we get 

um(y, s) = i :  dt fv Gmp(y,s; x,t) [t'p(x, t ) -  f~ d2~.{[ui](~, t)c~,q(~)~q(x, ~.) 

~- [u~,q](~, t)%~.~q(~)8(x; ~) }] dV~. 

But  f~(x, t) represents a body force; since the surface integral within the square 
bracket is involved in the same way as fp ,  we conclude that  the effect of the pre- 
scribed discontinuities across Z is the same as the effect of introducing extra body 
forces ep(x, t), given by  

t) _- - f dZ~{[u~](~, t)clspq(~)8q(x; ~) + [u~.q](~, t)cp~.~q(~)~(x; ~) }, (lO) 

into an unfaulted medium. 
Equation (10) holds for any inhomogeneity and anisotropy of the elastic medium 

provided only that  the equations of motion are given by (1), and ciipq = c~q~i at 
each point of V. 

4. MATHEMATICALLY CONSISTENT DISCONTINUITIES 

We cannot assign values to [u~] and to [Up,q] completely arbitrarily. For instance, 
if 2; is part  of the plane x3 = 0, then [u~,l] = [up]a and [up,2] = [up],~ so that  the 
discontinuities in these tangential derivatives are determined when [up] is specified. 
The discontinuities in the normal derivatives [u~,3] however, may be specified in- 
dependently. This feature was not considered by Knopoff and Gilbert. 

The discontinuity in the normal traction across x3 = 0 is given by 

[T~] = Iv31] = c3~pq[up,q] = [3~1 + c3i~3[u~,3] 

where r~.~ is the stress tensor and [3i] is the part  of the discontinuity [T~] that  is de- 
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termined when [u~] is specified. Clearly [T~]" may be given arbitrary values by 
specifying [up.3] suitably if det c3~p3 ~ 0. This condition is certainly satisfied by an 
isotropic solid since only the diagonal terms are non-zero, and c3m -- c3223 = /~, 
c3333 = ~ -F 2# where X and/~ are the Lamd constants of the medium. I t  is not 
satisfied, however, by a liquid since u = 0, 

From now on we shall assume that we may choose the six quantities [u~] and 
[Ti] = ~.[r~.] independently. We rewrite (10), accordingly, as 

e~(x, t) = -- f~ {[u,](~, t)~c,jpq(~)6q(x, ~) Jc [Tp](~, t)6(x, ~) }dY,~. (11) 

The quantities [T~] measure the failure of the two sides of the discontinuity to obey 
the law of equal and opposite action and reaction, that  is that sources of stress are 
introduced on Z. 

We note that  the equivalent force depends only on the local properties of the 
medium in the immediate vicinity of the surface ~. 

5. EQUIVALENT TOTAL 'FoRcES WHEN THE TRACTIONS ARE CONTINUOUS 

In this case the total equivalent force obtained by integrating over V is given by 

fv e,(x, t)dV = - f= t){fv 6~(x, ~)dV,} d2;~. 

I t  is seen to be zero since 

fv 6q(x, ~)dV= = fs n4$(x, ~)dS= = 0 

for ~ on ~, since S and ~ have no common point. 
Also the total moment about  any coordinate axis is zero since the moment M 

about any axis may be written as 

f 
M -- .Iv {x,ep(x, t) - xper(x, t) }dV. 

This is 

M =  --f= v~[u~](~, t){c~,q(~) fv x ,~q(x,~)dVx- 

But  

f + f X~r (Xj ~)dV ¢ lr 

Cljrq(~) iv  Xp~q(X' ~)dV= t dY, 

since cii~r = cljr~. 

= - c ~ i p ~ ( ~ , ) * , q  + c~s,qS~,, 

= --cij~r + C~ir~ = 0 
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Hence, in an anisotropic, inhomogeneous medium the application of a displace- 
ment  dislocation leads to force equivalents tha t  have zero total  moment  and zero 
resultant  force at  all instants of time. 

6. SOME SPECIFIC EXAMPLES 

We now consider only faulting in a neighborhood in which the medium is iso- 
tropic. First  we consider some cases in which the normal tractions are continuous, 
i.e. [Tp] = 0. Let  x3 = 0 be the surface Z across which the displacements are dis- 
continuous. Thus ~ = 0, ~2 = 0, ~3 = 1. 

Non-propagating faults 

(i) [u~] = ~(x~)8(x~)H(t), [u2] = 0 ,  [u~] = 0 .  

@ 3,H(t) @ 

~ 2  
~ 5.H (t) 

Fro. 2. a) Displacement dislocation at the focus for model i. b) Equivalent double couple 
in an unfaulted medium for model i. 

I n  this model a tangential displacement of the material  in xa > 0 occurs relative 
to tha t  in x3 < 0. The displacement has a sudden onset at  t = 0; thereafter it re- 
mains constant.  The formal s ta tement  above implies tha t  the area over which the 
faulting occurs has been shrunk in the limit to the origin. 

In  (11) the only non-zero terms are those for which (ijpq) is (1, 3, 1, 3) and 
(1, 3, 3, 1). 

Thus 

= ~ ' el(x, t) - -~(x l )  (x2)~ (x3)H(t) 

e~(x ,  t)  = 0 

e3(x, t) = -p8'(xl)8(x2)~(x3)H(t). 

This is the familiar "double couple" force equivalent which begins to act  a t  t = 0 
and thereafter  is held at  a constant level. I t  may  be represented schematically as 
shown in Figure 2. 

(ii) [u~] = 0, [u2] = a(xl)a(x~)H(t), [m] = 0. 

This is similar to (i). The x2-axis replaces the xl-axis. 
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e~(x,  t) = 0 

e:(,,, t) = - ~ ( x ~ ) ~ ( ~ ) ~ '  (x~)H ( t) 

e3(x, t) = -#~(x l )~ ' (x~)~(x~)H(t ) .  

Again  the  result  is a double couple. 

(iii) [u~] = 0, [u2] = 0, [m] = 8(x l )~(x2)Y( t ) .  

This  represents  a sudden  separa t ion  of the two sides of the  faul t  as for  example,  
an  explosion in a plane crack.  Fo r  this case the  non-zero t e rms  in (i, j ,  p, q) are 
(3, 3, 1, 1), (3, 3, 2, 2) and  (3, 3, 3, 3) .  

® 

J 

3 ® 
oH(t) 

~ 2 

3.He,) 

FIG. 3. a) Displacement dislocation at the focus for model 3. b) Equivalent doublets in an 
unfaulted medium for model 3. 

F r o m  (11) we get  

e~(x, t) = - ~ '  (xl)~(x2)~(x3)H ( t) 

e2(x, t) = - ~ ( x ~ ) ~ '  (x2)8(x3)H(t) 

e3(x, t) = - ( h  + 2~)~(x~)~(x2)~'(x3)H(t).  

The  force equiva len t  consists of three  l inear double ts  aligned along the  three coor- 
d inate  axes (Figure  3).  

Unilateral moving faults 

( iv)  lull = H(vt  - x l ) {H(x l )  - H ( x l  - a)}6(x2), [u2] = 0, [us] = 0. 

I n  this case m a t t e r  in x3 > 0 be tween xl = 0 and  xl = vt on the  line x2 = x3 - 0 
has  a p e r m a n e n t  t angent ia l  d i sp lacement  in the  xl-direction relat ive to the  m a t t e r  
ad jacen t  to it in x3 < 0. The  dislocation s tops a t  x~ = a where  a is the  length of 
the  fault .  

As in (1) the  only two te rms  in (11) are  ( i , j ,  p, q) = (1, 3, 1, 3) and  (1, 3, 3, 1). 



BODY FORCE EQUIVALENTS 1883 

Hence  (11) gives 

O(x,t)  = --tL f f  H ( v t  - }){H(})  -- H ( }  -- a) }6(7)6(x~ - })6(x2 -- 7) 

. 6 ' ( x 3 ) d } d 7  

e2(x,  t)  ---- 0 

e3(x, t) = - ~ ,  f f  H ( v t  - -  } )  { H ( } )  - -  H ( }  - -  a )  } ~ ( 7 ) 8 ' ( x l  - -  } ) 8 ( x 2  - -  '7) d d  

• 8 (x3) d }dn. 

® W].(,I ® 
,3 

~ 2 

" ~ ' ~  ~ ~ e ' ~ r ~  r~ r~ t'~ J 

\ o H ( v t - x , )  

FIG. 4. a) Propagating displacement dislocation in the seismic source for model iv. b) 
Equivalent propagating double couple in an unfaulted medium for model iv. 

This shows tha t  in this case we have an  extending line of double couples s tar t ing  
at  t = 0 and extending between x ~ 0 and st until  vt = a, when no fur ther  propaga-  
t ion takes place. 

I t  follows tha t  

O(x, t) = - t ~ H ( v t  - X l ) { H ( X l )  - -  H ( X l  - -  a ) } (~ (x2 ) (~ t  ( x ~ )  

e2(x, t) = 0 

e~(x, t) = -t~{5(xl) - ~(xl - min(a ,  v t ) ) } ~ ( x 2 ) 5 ( x ~ ) H ( t ) .  

This is shown schematical ly in figure 4. We note t ha t  the line of double couples 
gives a line of single couples el together  with two isolated single forces e3 when the  
integrat ions are carried out.  

(v)  [Ul] = 0, [u2] = H ( v t  - x l ) { H ( x l )  - H ( x l  - a)}~(x2), [u3] = 0. 

This represents a relative tangential  displacement  over the same region as in 
model (iv) bu t  in the x~-direction 

el(X, t) = 0 
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e~(x, t) = - - u H ( v t  - x l ) { H ( x l )  - -  H ( x l  - a ) } 6 ( x 2 ) 6 ' ( x a )  

e~(x, t) = - - u H ( v t  - -  x l ) { H ( x l )  - -  H ( x ~  - -  a ) } 6 ' ( x 2 ) 6 ( x 3 ) .  

This  is shown schematical ly in figure 5 as an  extending line of double couples. 

(vi)  In1] = 0, [u~] = 0, [ua] = H ( v t  - x l ) { H ( x l )  - -  U ( x ~  - -  a)}6(x2). 

This represents the opening of a growing lenticular cavity.  Formula  (11) now 
gives 

el(x, t) = -~{6(x l )  - ~(xl - min(vt, a ) ) } 6 ( x 2 ) 8 ( x a ) H ( t )  

e2(x, t)  = - - X H ( v t  - x l ) { H ( x l )  - H ( x l  - -  a ) } 8 ' ( x 2 ) ~ ( x a )  

e3(x, t)  = - (~  q-  2 ~ ) H ( v t  - x ~ ) { H ( x , )  - -  H ( x l  - -  a ) } ~ ( x = ) 6 ' ( x a ) .  

® L3 ® 

*H(vt-x 0 

2 

~'J~"~'~'?"'~v t ~ 1  

5 

• H (v t  -x=) 

~ v t  ~ 1  

FIG. 5. a) Propagating displacement dislocation on the seismic source for model v. b) 
Equivalent propagating double couple in an unfaulted medium for model v. 

This  m a y  be represented as in Figure 6. The  solution consists of a set of propagat ing  
doublets  in the three cardinal directions. The  doublets  in the xl-direction integrate  
into two single forces at  the ends of the fault.  

Before considering the  discontinuous t ract ions we calculate the equivalent  forces 
in cases (i), (ii) and (iii) when the axes are rotated.  

Let  us take  the fault  plane as xs = x.~ t a n  4; hence vl = 0, v2 = - s i n  4, v3 = 
cos 4. Let  } and v be coordinates in the faul t  plane, dE = d } d n  and 

~ ( x ,  6 )  = ~(x~  - ~ ) ~ ( x 2  - n c o s  4 ) ~ ( x 3  - ~ s i n  4 ) .  

(vii)  [ul] = 6 (} )6 (n)H( t ) ,  [u2] = 0, [us] = 0. 

This  is like case (i), bu t  a ro ta t ion  th rough  an angle 4 about  the xl-axis has been 
performed. 

Formula  (11) is, in this case, 

t) = - f { 8 ( } ) 6 ( n ) H ( t ) v f l ¢ p q S q ( x ,  4) }d dn 

= - -~¢c i¢v~6~(x )H( t )  
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The non-zero terms are those for which (p,j, q) are (1, 2, 2), (1, 3, 3), (2, 2, 1) 
and (3, 3, 1). Collecting these results we have 

e,(x,t)\ i--p,~l(Xl)~(x2)~t(x3)H(,)\ t--p,~(Xl)~l(x2)~(x,3)H(t) \ 

e3(x, t) l  \--tL6 (xl)~(x2)~(x3)H(t) I 

Thus, in this case, the equivalent force appears as a linear combination of the force 
equivalents for a fault in the plane x8 = 0 and one in the plane x2 = 0. The coef- 
ficients are the x2 and x8 components of the normal to the fault plane. 

@ 

J 

15 

~ 2 

l l l l [  

® 

.H(.t) 

5 

.H(vt -x , )  

" [ [ ~ [ l  .8(vt-x,) 

FIG. 6. a) Propagating displacement dislocation on the seismic source for model vi. b ~} 
Equivalent propagating doublets in an unfaulted medium for model vi. 

(viii) [u~] = 0, [us] = 6(})6(v)H(t )  cos ¢, [u3] = 6(})6(~)H(t)  sin ¢. 

This is a tangential  displacement perpendicular to tha t  in (vii) and represents a 
rotat ion of model (ii) about  the x~-axis through an angle ¢. Formula (11) gives 

e,(x. t) = -- f ~)d~d~ 

For  a non-zero contribution i ~ 1, j ~ 1. 
Collecting the contributions from the various terms, we have 

u2(x,t) = cos 2¢ --g~(xl)(f(x2)~'(x3)H(t) + sin 2¢ g~(xl)~'(x~)~(x3)H(t) 

us(x, t) \ - -  ~ (  xl)(f' ( x2) ~( x~) H ( t) / \ - -  t~( xl) ~( x2) ~' (.c~) H (t) / 

The diagram in figure 7 shows the force equivalent for ¢ = 45 ° in which case 
cos 2¢ = 0 and sin 2¢ = 1. 

For  ¢ = 0 this force equivalent looks somewhat different from tha t  of example 
(ii), but  by  rotating the axes through an angle ¢, resolving the forces along the 
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new axes, and then using relations like 

0 t t 
, z~ ~(x~') + ~ (x~ ' )0~  ~'(x~') ~(x~)~ (x~) = ~(xJ) ox~ ox~ 

where x~ is one of the old coordinates and x~' and x~' are new ones, it can be seen that  
(ii) and (viii) are but different deseriptions of the same set, of force equivalents. 
The same remark may be made for models (i) and (vii). 

(ix) lug] = 0, [u2] = --sin ¢$(})5(n)H(t),  [ua] = cos ¢6(})~(n)H(t). 

@ ~5 

2 

® 

....--- 

3 

.H(t) 
$ 7  2 

Fro,  7, a) D i s p l a c e m e n t  d i s loca t ion  at  t h e  focus  for mode l  (viii), b) E q u i v a l e n t  doub le t s  
in an  u n f a u l t e d  m e d i u m  for  mode l  (viii). 

This corresponds to model (iii) with a rotation of axes. The results, which are not 
as elegant as those for (vii) and (viii) are 

el(x, t ) )  

e~(x, t) 

e3(x, t) 

= ~--X~(xl)~'(x2)~(x3)H(t)) 

\--XS(xl)~(x2)~' (x3)H(t) / 

+ ( 0 t --2t~ sin 2 ¢~(xl)~'(x2)~(x3)H(t) 

- 2 g  cos 2 ¢~(xl)~(x2)6'(xa)H(t)/ 

+ 

(: o ) 
sin 2¢/~(xl)/~(x2)~'(x,)H(t) . 

sin 2¢~(xl)5' (x2)~(x3) H (t) / 

Equivalent forces when the displacements are continuous but the tractions are not. 
The basic equation (11) reduces in th~s case to 

e~(,,, t) = - £  [T~](~, t)~(,,, ~)d~. 

If  we again specialize to xs = 0 for ~, then [T~] = [rp3] where r~j is the stress tensor. 

(x). Non-propagating fault 

[T~] = t~(xl)6(x2)H(t). 
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• where tv is a constant vector 

e~(x, t) = - t p S ( x l ) ~ ( x 2 ) ~ ( x 3 ) H ( t ) .  

This  is an isolated force acting at the point (0, 0, 0) in the opposite direction to 
that  of the discontinuity in traction and with the same magnitude. 

.(xi). Unilateral propagating fault 

[Tp] = t p H ( v t  - x l ) { H ( x l )  - -  H ( x ~  - -  a)}~(x2) 

ep(x, t) = - t v H ( v t  - x l ) I H ( x l )  - H ( x l  - a ) } ~ ( x 2 ) ~ ( x 3 ) .  

Here, the equivalent force is a line distribution of force propagating along the line 
of  faulting. The force always agrees in magnitude and direction with - [Tv] ,  the 
negative of the discontinuity in the traction. 

(xii). Bilateral faults 

Bilateral faulting can be considered for all these models. The mathematics in all 
cases is relatively simple since the solutions for the unilateral prototypes have al- 
ready been given. We replace the unilateral propagator H ( v t  - x i ) H ( t )  by the 
bilateral propagator l H ( v t  ~-  Xl) - H ( - v t  Jr- x ~ ) l H ( t  ). No new features are in- 
troduced into the solutions already obtained. The results obtained in the earlier 
models are simply modified to take into account that  the dislocations also propagate 
in the opposite direction. 

7. GENERAL REMARKS 

Although the body forces equivalent to a given dislocation are supposed to act in 
an unfaulted medium and therefore cannot in any sense represent real forces acting 
on the real medium, these force equivalents may nevertheless provide a useful the- 
oretical tool. Their usefulness lies in the fact that  if two dislocations have the same 
equivalent force they also emit the same radiation. Thus, when we wish to find the 
radiation from a given dislocation, it is sometimes possible to find, by means of the 
equivalent forces, a second dislocation giving the same radiation as the original 
source; the radiation from the second source may be simpler to t reat  analytically. 
BmTidge, Lapwood, and Knopoff (1964) have used this technique to compute the 
radiation from a dislocation in the presence of a plane free surface. 

As another example we mention a method of finding the source function in 
spherical polar coordinates corresponding to an isolated point body force acting at 
the point (b, 0, ¢). In this method the point force is expressed as a series of vector 
harmonic surface distributions over the sphere r = b (Morse and Feshbach, 1953, 
p. 1898). The radiation corresponding to each term of the series may then be found 
by  imposing discontinuities in traction across r = b in accordance with our formula 
(11) when [ui] = 0. This type of sinmlation of point sources was also used by 
Lamb (1904) for the half space. 

The results of the present calculations show that  for propagating or non-propagat- 
ing displacement dislocation faults, the propagating or non-propagating double 
couple model is appropriate, whether boundaries are present or not. 
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