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1 Tensors and tensor multiplication in indicial notation

Indicial notation is a compact way of writing systems of equations. It can be used as a
replacement for longhand writing of equations or matrix representation. A matrix is more
valuable for representing the storage of values in the system, but for writing equations in a
compact form, and especially for higher order tensors, indicial notation is superior.

Unless otherwise stated, all indices go between 1 and 3. Boldface type lowercase letters
are matrices and boldface uppercase letters are matrices. Let us start with the simple
representation of a vector in indicial notation:

a = ai i = 1 . . . 3 (1)

The three entries in the vector a are represented by a1, a2, a3. The index letter is incremented
from its starting value (1) to its ending value (3). If i = 1 . . . 1, then ai is a scalar, also
called a 0th order tensor. A scalar can also be represented simply by a. If i = 1 . . . k and
k > 1 then ai is a vector, also called a 1st order tensor.

Let us look at scalar-vector multiplication in indicial notation:

c · a = b =

b1

b2

b3

 =

c · a1

c · a2

c · a3

 (2)

c · ai = bi; b1 = c · a1; b2 = c · a2; b3 = c · a3; (3)

It is simple to see that the index (i) is incremented between 1 and 3 in equation (3), and
the multiplication is carried out, giving the same answer as in equation (2).

Note: The number of indices indicates the order of the tensor. The scalar (c) does not
have an index, indicating that it is a 0th order tensor. The vector (a) has one index (i),
indicating that it is a 1st order tensor. This is trivial for this case, but becomes useful later.

Let us examine the vector dot product, which has a scalar result. Here we learn a new
feature of index notation: sum over repeated indices.

a · b =
[
a1 a2 a3

] b1

b2

b3

 = a1b1 + a2b2 + a3b3 = c (4)

aibi = a1b1 + a2b2 + a3b3 = c (5)
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It is easily seen that as the index i is incremented, the multiplication takes place and the
result is added together. For i = 1, we multiply a1 and b1, then i is incremented and we
multiply a2 and b2, then i is incremented and we multiply a3 and b3. The repeated index i
indicates that the results of the three multiplications should be added.

Note: There are two important things that are shown by the indicial notation in equation
(5), but not by the vector notation in equation (4). The first is that the repeated index in
ai and bi shows that the dimensions of a and b must be the same. The vector notation does
not show this, even though one should know that this needs to be the case for this simple
example. This becomes more useful in higher order tensors. The second piece of informa-
tion is the fact that the final result will be a 0th order tensor, or scalar. Anytime there are
repeated indices in a tensor multiplication, this degree of the tensor will be canceled out.
So in the case where two 1st order tensors are multiplied, the index i cancels out, and this
shows that the final result will not have an index, therefore it is a scalar result. Again, these
observations may be apparent here, but they are very useful for higher order tensors. The
repeated index is called a dummy index.

Let us take another step and examine matrices, or 2nd order tensors:

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 = Aij i = 1 . . . 3; j = 1 . . . 3 (6)

There are now two unique indices (i and j). As noted previously, the number of unique
indices indicates the order of the tensor, 2nd order, in this case.

Note: The total number of entries in a tensor can be determined by multiplying the range
of all unique indices. Since i = 1 . . . 3 and j = 1 . . . 3 above, the total number of entries in
the tensor is 3 · 3 = 9, this is confirmed by the 3x3 matrix above.

Let us examine scalar-matrix multiplication:

cA =

cA11 cA12 cA13

cA21 cA22 cA23

cA31 cA32 cA33

 = B =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 (7)

Bij = cAij (8)

This case is simple, since the same scalar multiplies each entry in Aij as i and j are
incremented. There are not any repeated indices, therefore no summation. Also, there is
no reduction in the order of the tensor, as indicated by the fact that there are no repeated
indices. Finally, since the scalar does not have any indices, the bounds on i and j do not
matter as far as compatible dimensions are concerned.
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For the matrix-vector case, there are several things made apparent by the indicial no-
tation:

d = A · b (9)
di = Aijbj (10)

The repeated index (j) indicates that you should sum over the index j (this is illustrated
in detail below). It also indicates that the the second dimension of the matrix must match
that of the vector. Finally, the repeated index will be canceled, leaving only the index i.
One index indicates a 1st order tensor, or a vector, which is, of course, what happens when
a matrix and vector are multiplied. Let us carry out the multiplication in equation (10) in
detail:

i = 1; j = 1 . . . 3; Keep i fixed and sum for all values of j as it is incremented:

d1 = A11b1 + A12b2 + A13b3 (11)

i = 2; j = 1 . . . 3; Keep i fixed, reset j and sum for all values of j as it is incremented:

d2 = A21b1 + A22b2 + A23b3 (12)

i = 3; j = 1 . . . 3; Keep i fixed, reset j and sum for all values of j as it is incremented:

d3 = A31b1 + A32b2 + A33b3 (13)

This is the same procedure as matrix-vector multiplication, except we are following the
indicial notation rules, which say sum over repeated indices. This procedure also illustrates
another important technique: increment the repeated indices while keeping the unique indices
fixed; when the repeated indices have been fully incremented, increment the unique index,
reset the repeated index, and the increment the repeated index fully again. Repeat this until
all indices have been fully incremented at least once.

Matrix-matrix multiplication follows in a similar manner, with an added index:

D = A ·B (14)
Dik = AijBjk i = 1 . . . 2; j = 1 . . . 3; k = 1 . . . 2 (15)

What do these indices tell us? We must sum over the index j. The second dimension of A
(a 2x3 2nd order tensor) and the first dimension of B (a 3x2 2nd order tensor) must match.
Finally, the resulting tensor D, will be a 2x2 2nd order, because the index j cancels out and
we are left with two unique indices (i and k), each with a dimension of 2. The indices i and
k can be of arbitrary size. Let us examine the mechanics of the multiplication in detail:

i = 1; k = 1; j = 1 . . . 3; Keep i and k fixed and sum for all values of j as it is incremented:

D11 = A11B11 + A12B21 + A13B31 (16)

i = 1; k = 2; j = 1 . . . 3; Increment k, reset j, then keep i and k fixed and sum over j as
it is incremented:

D12 = A11B12 + A12B22 + A13B32 (17)
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i = 2; k = 1; j = 1 . . . 3; Increment i, reset j and k, then keep i and k fixed and sum over
j as it is incremented:

D21 = A21B11 + A22B21 + A23B31 (18)

i = 2; k = 2; j = 1 . . . 3; Increment k, reset j, then keep i and k fixed and sum over j as
it is incremented:

D22 = A21B12 + A22B22 + A23B32 (19)

It can be readily verified that the indicial procedure is the same as a standard matrix-
vector multiplication. Again, the repeated index is incremented while the unique indices are
fixed. The unique indices are also incremented. Even though k as incremented fully twice,
and i only once, the results would be the same if the procedure was reversed.

2 Derivatives in indicial notation

The indication of derivatives of tensors is simply illustrated in indicial notation by a comma.

2.1 Gradients of scalar functions

The definition of the gradient of a scalar function is used as illustration. The Cartesian
coordinates x, y, z are replaced by x1, x2, x3 in order to facilitate the use of indicial notation.

g = ∇f =
[

∂f
∂x1

∂f
∂x2

∂f
∂x3

]
(20)

gi = f,i =
∂f

∂xi
i = 1 . . . 3 (21)

The two definitions are equivalent. The comma in the indicial notation indicates to take
the derivative of f with respect to each coordinate xi, which is the definition of a gradient.
Since there are no repeated indices, there is no summation. Again, the number of unique
indices still indicates what the order of the resulting tensor will be. In this case, there is one
unique index (i), therefore a 1st order tensor results, as is the case for gradients of scalar
functions.

2.2 Divergence of vector

The divergence of a vector is defined below:

h = ∇ · g =
[

∂
∂x1

∂
∂x2

∂
∂x3

] 
∂f
∂x1

∂f
∂x2

∂f
∂x3

 =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

= ∇2f (22)

h = gi,i =
∂gi

∂xi
=

∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

= f,ii (23)
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Again, the definitions are equivalent. The notation gi,i shows that we have started with a
vector (gi) and that for each value of i, a derivative with respect to xi should be taken.
Since the index i is repeated, we sum over it. Also, since the index i is repeated, they cancel
and the result is a scalar. The notation f,ii indicates that the second derivative with respect
to xi should be taken and summed, giving the same results as gi,i. This is where the real
confusion and utility of index notation can start.

2.3 Gradients of vector functions

The gradient of a vector function is defined as follows:

∇f =


∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

∂f3

∂x1

∂f3

∂x2

∂f3

∂x3

 (24)

fi,j =
∂fi

∂xj

(25)

Both definitions are equivalent. The two unique indices tell you that the result of fi,j will
be a 2nd order tensor.

3 Special operators

3.1 Kronecker delta function

The Kronecker delta is a convenient way of expressing the identity in indicial notation:{
δij = 1 i = j

δij = 0 i 6= j
(26)

The Kronecker delta follows all of the same rules of index notation.

Aik = δijAjk (27)

Where i and j have the same dimensions, therefore Aik = Ajk. You should check, using
indicial multiplication rules, that the Kronecker delta really does function as an identity.
Consider: why does δii = 3, not 1?

3.2 Permutation operator

The permutation symbol is also known as the Levi-Civita operator. It is defined as follows:

εijk =


+1 for a forward permutation of ijk

−1 for a backward permutation of ijk

0 if i, j or k are equal

(28)
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Forward permutations are defined as three unique numbers which read 1,2,3 from left to
right (allowing for wrapping), e.g. ε123, ε312, or ε231. Backward permutations read 3,2,1
from left to right (allowing for wrapping), e.g. ε321, ε132, or ε213. A useful relationship for
the permutation operator is that:

εijk = −εikj (29)

This does not indicate, however, which one is positive or negative (or zero), just that they
are of opposite sign.

This more complex operator is useful for defining cross products:

d =

d1

d2

d3

 = a× b =

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 (30)

di = εijkajbk (31)

The two above definitions are identical, please check to verify this.

3.3 Kronecker-permutation relationship

A useful identity is the following:

εijkεilm = δjlδkm − δjmδkl (32)

4 Example

The use of indicial notation can be illustrated through the equations of linear elasticity.
First, we define the displacements as a 1st order tensor, with components in the principal
Cartesian directions, considering only plane stress, therefore two dimensional.

displacements : ui i = 1 . . . 2 (33)

The well known linearized strains can be computed from the displacements:

εij =
1
2

(ui,j + uj,i) j = 1 . . . 2 (34)

There are no repeated indices (the same indices on the opposite sides of the plus sign do
not count), therefore there is no summation (except for the plus sign, of course). Since there
are two unique indices, the result is a 2nd order strain tensor. Written in matrix form, the
strain tensor as computed from equation (34) looks as follows:

εij =

 ∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
∂u2
∂x2

 (35)

The constitutive relationship illustrates the power of the indicial notation, since the
constitutive matrix is a 4th order tensor:

σij = Cijklεkl (36)
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Since the multiplication of a 4th order tensor with a 2nd order tensor is extremely difficult to
visualize, the indicial notation is critical. There are two repeated indices on the righthand
side (k and l), therefore they will be summed over. We already know that k and l go from
1 . . . 2, and we also know that the stress (σij) tensor is of the same dimensions. Therefore,
all indices go from 1 . . . 2. This means that the constitutive tensor is 2x2x2x2 and has 16
entries, for the simplified 2-d problem (81 entries in 3-d). Let us multiply out equation (36),
for greater detail.

σ11 = C1111ε11 + C1112ε12 + C1121ε21 + C1122ε22 (37)
σ12 = C1211ε11 + C1212ε12 + C1221ε21 + C1222ε22 (38)
σ21 = C2111ε11 + C2112ε21 + C2121ε21 + C2122ε22 (39)
σ22 = C2211ε11 + C2212ε22 + C2221ε21 + C2222ε22 (40)

Notice how, i and j are held fixed, while k and l are fully incremented and summed over.
A new equation is started when the values of i or j change. For isotropic, linear elastic
materials, Hooke’s law gives us the following relationships between stress and strain for
plane stress:

σxx = σ11 =
E

1− ν2
(ε11 + νε22) (41)

τxy = σ12 =
E

1− ν2
(1− ν) ε12 = 2Gε12 = Gγ12 (42)

τyx = σ21 =
E

1− ν2
(1− ν) ε21 = 2Gε21 = Gγ21 (43)

σyy = σ22 =
E

1− ν2
(ε22 + νε11) (44)

Based on Hooke’s law, we can determine the entries in the 4th order tensor Cijkl:

Cijkl =
E

1− ν2



[
1 0
0 ν

]
︸ ︷︷ ︸

C11

[
0 1− ν
0 0

]
︸ ︷︷ ︸

C12[
0 0

1− ν 0

]
︸ ︷︷ ︸

C21

[
ν 0
0 1

]
︸ ︷︷ ︸

C22


(45)

σij =
E

1− ν2



[
1 0
0 ν

]
︸ ︷︷ ︸

C11

[
0 1− ν
0 0

]
︸ ︷︷ ︸

C12[
0 0

1− ν 0

]
︸ ︷︷ ︸

C21

[
ν 0
0 1

]
︸ ︷︷ ︸

C22




[
ε11 ε12

ε21 ε22

] [
ε11 ε12

ε21 ε22

]
[
ε11 ε12

ε21 ε22

] [
ε11 ε12

ε21 ε22

]
 (46)

σij = C11εkl + C12εkl + C21εkl + C22εkl (47)
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Equation (47) is equivalent to equations (37)–(40).
The final step is to apply the equilibrium conditions. The repeated index j indicates

that there will be a summation over j and the the result of σij, will be a vector, since the
index j cancels out.

σij,j + bi = 0 (48)

∂σij

∂xj
+ bi = 0 (49)

where bi are the body forces acting in the Cartesian directions. The two above definitions
are equivalent. Let us look at the two equations that result by expanding these equations:

∂σ11

∂x1
+

∂σ12

∂x2
+ b1 = 0 (50)

∂σ21

∂x1
+

∂σ22

∂x2
+ b2 = 0 (51)

These strain and stress derivatives illustrate how taking derivatives can either increase or
decrease the order of the tensor result. Indicial notation makes it easy to keep track of the
appropriate derivatives and also makes it clear what the final order of the tensor will be.

Note: For numerical solvers, such as the finite element method, the dimensionality of the
strain, constitutive and stress tensors are often reduced to 1,2 and 1, respectively, in order
to ease the software implementation. The results obtained are equivalent to the full method
above.

5 Summary

Common name Tensor Order Example
Scalar 0 –
Vector 1 ui

Matrix 2 εij , σij

– 4 Cijkl

Rules of indicial notation:

1. Sum over all repeated indices

2. Increment all unique indices fully at least once, covering all combinations.

3. Increment repeated indices first

4. A comma indicates differentiation, with respect to coordinate xi

5. The number of non-repeated indices indicates the order of the tensor result of a tensor
multiplication or derivative
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