

UNIVERSIDAD NACIONAL AUTÓNOMA

DE MÉXICO

FACULTAD DE INGENIERÍA

DIVISIÓN DE CIENCIAS DE LA TIERRA

"POLARIZACIÓN DEL MOVIMIENTO DE PARTÍCULA DE TREMORES TECTÓNICOS Y SU LOCALIZACIÓN EN EL ESTADO DE GUERRERO"

T E S I S

QUE PARA OBTENER EL TÍTULO DE: INGENIERO GEOFÍSICO

PRESENTA:

EMMANUEL CABALLERO LEYVA

DIRECTOR DE TESIS DR. VÍCTOR MANUEL CRUZ ATIENZA

CIUDAD UNIVERSITARIA, MÉXICO, D.F., JUNIO 2015

Agradecimientos

Este trabajo se lo dedico a mi familia, a mi madre Sara, sin la cual no hubiera podido salir adelante, gracias por tu fuerza que me ha mantenido en el camino a lo largo de mi vida, este trabajo es enteramente tuyo.

A mis tíos, Marcela, Alejandro, Cristina, Miguel, Magdalena y Pedro, por su apoyo incondicional a lo largo de estos años.

A mi tutor Víctor Manuel Cruz Atienza, por su dirección y paciencia para la dirección de esta tesis, por la oportunidad de trabajar con él durante estos años, y enseñarme este hermoso mundo de la sismología.

Agradezco a mis sinodales, Vladimir Kostoglodov, Sara Ivonne Franco Chávez, Allen L. Husker y David Escobedo Zenil, por haber tenido la molestia de leer esta tesis, y haberme brindado su apoyo y supervisión.

A mis amigos de la universidad, por haberme acompañado a lo largo de 5 años, y haber compartido esos divertidos momentos en las prácticas de campo.

Gracias a mis amigos de toda la vida, Gabriela, Rafael, Josué, Eduardo y Armando por todas esas experiencias que pasamos juntos, por haber despejado mi mente en los momentos más obscuros.

A la Universidad Nacional Autónoma de México, por la oportunidad que me brindó para estudiar; por esos 8 años de aprendizaje dentro y fuera de clases.

Al Instituto de Geofísica, por haberme abierto las puertas y apoyado con una beca para la realización de este proyecto.

Índice

Resumen	9
Introducción	
Origen y características de los tremores tectónicos	
Origen de los NVT	14
Relación con las mareas	
Características de la fuente de tremor	
Eventos de deslizamiento lento	17
Relación de los SSE con los NVT	17
Clasificación de los SSE	
SSE en México	
Modelos para explicar los eventos de deslizamiento lento	20
Relación de los SSE con los tremores tectónicos y los LFE	
Momento sísmico de los tremores tectónicos	24
Sismos de baja frecuencia (Low Frequency Earthquakes LFE)	
Fuente de los sismos de baja frecuencia	27
Sismos de muy baja frecuencia (Very low frequency earthquakes VLF)	
Relación entre los diferentes fenómenos de la zona de subducción	

Métodos para la detección y localización de tremores y LFE	
Métodos de detección y localización de LFE dentro de tremores:	
Métodos de detección y localización de tremores:	
Tremores Tectónicos, Eventos de Deslizamiento Lento, Sismos de Baja y muy	Baja Frecuencia
en el mundo	
Cascadia (Canadá y Estados Unidos de América.)	
Japón	
Tremores Disparados	
Tremores Tectónicos en el Estado de Guerrero	
Estructura cortical	
Geometría de la placa oceánica subducida	54
Eventos de deslizamiento lento en México	
Localización de Tremores tectónicos en el estado de Guerrero	64
Localización de sismos de baja frecuencia en México	
Metodología de trabajo	
Polarización del movimiento de Partícula	
Parametrización del método de polarización	
Descripción del método TREP	

Resultados82
Comparación de la linearidad con la energía espectral82
Variación en la linearidad con respecto a la frecuencia
Linearidad en función de la distancia a la trinchera88
Variación del back-azimuth con respecto al tiempo93
Localización de tremores tectónicos con el método TREP96
Discusión y conclusiones105
Bibliografía108
Anexos

Índice de Figuras

Figura 16 Modelo de resistividades, isotermas y facies de metamórficas. Tomada de Manea & Manea (2010)
Figura 17 Cociente de velocidades Vp/Vs (arriba) y relación de Poisson (abajo), con la localización de tremores (puntos rojos). Tomada de Kim et al. (2010)
Figura 18 Funciones de receptor. Tomada de Pérez-Campos et al. (2008)
Figura 19 Zona de subducción con USL, SSE, zona sismogénica y arreglo MASE. Modificada de Song et al. (2009)
Figura 20 Esquema general de la placa de Cocos: Norte y Sur junto con la placa de Rivera. Tomada de Dougherty et al. (2012)
Figura 21 Desplazamiento acumulativo total (arriba) y evolución temporal del evento de deslizamiento lento del 2006. Modificada de Radiguet et al. (2011)
Figura 22 Modelado poro-elástico del evento de deslizamiento lento del 2006. Evolución de la presión de confinamiento (izq.) y evolución de la presión de poro con la velocidad de fluidos y localización de tremores (der.). Tomada de Villafuerte (2014)
Figura 23 A) Energía liberada por NVTs . B) Localización de la energía de los NVTs con respecto a la trinchera. C) Desplazamientos N-S y E-W,incluyendo el SSE del 2006. D) Perfil de la zona de subducción. Tomada de Kostoglodov et al. (2010)
Figura 24 Comportamiento del catálogo de LFEs a través del tiempo. Tomada de Frank et al. (2015)
Figura 25 Comportamiento de la derivada temporal de la rectilinearidad para diferentes parametrizaciones
Figura 26 Mejor parametrización obtenida para el método de polarización: tw= 5s, bandfreq=0.25 Hz y filtro mediano de 10 s
Figura 27 Parametrización con los resultados más deficientes: Tw= 20s , ban freq= 0.45 Hz. y filtro mediano= 30 s
Figura 28 Espectrogramas de energía, rectilinearidad y sismograma filtrado entre 1 y 2 Hz., para el día 6 de marzo del 2005, para las estaciones A)-SATA y B)-TONA
Figura 29 Espectrogramas de energía, rectilinearidad y sismograma filtrado entre 1 y 2 Hz., para el día 2 de noviembre del 2005, para la estación TONA
Figura 30 Espectrogramas de la estación CIEN (arriba) y perfiles de rectilinearidad para diferentes bandas de frecuencia (abajo), para el día 6 de marzo de 2005
Figura 31 Perfiles de energía, recilinearidad, back-azimuth y sismograma filtrado entre 1-2 Hz para las 5:50 hrs, el eje X es la distancia perpendicular a la costa y el eje "Y" es la variación de la energía, rectilinearidad y back-azimuth
Figura 32 Perfiles de energía, rectilinearidad, back-azimuth y sismograma, para las 9:50 hrs, el eje X es la distancia perpendicular a la costa y el eje "Y" es la variación de la energía, rectilinearidad y back-azimuth

Figura 33 Mapa de las estaciones del arreglo MASE con su back-azimuth, el eje x representa la distancia perpendicular a la costa (trench-perpendicular distance) y el eje y la distancia paralela a la misma (trench-paralel distance); espectrograma de rectilinearidad (linearity) de SATA, donde el eje x significa las horas transcurridas (time hour), el eje y la frecuencia (frequency) y la paleta de colores el grado de rectilinearidad (rectilinearity); y sismograma filtrado entre 1-2 Hz de la misma estación, para las 5:50 hrs.

Resumen

En este trabajo se estudió el movimiento de partícula de los tremores tectónicos en el estado de Guerrero, con el fin de averiguar si es posible detectar estos fenómenos por medio de la rectilinearidad, la cual se obtiene del movimiento de partícula. También se utilizó el *back-azimuth* obtenido a partir del movimiento de partícula en el método TREP, con el fin de obtener las localizaciones de tremores con una alta definición.

El movimiento de partícula se obtuvo con el método descrito por *Jurkevics (1988)*, para el cual, se obtuvieron diferentes parámetros para maximizar la rectilinearidad. Lo anterior se realizó para asegurar que la función de rectilinearidad fuera óptima.

A continuación se comparó la rectilinearidad con diferentes métodos para probar su efectividad para la detección de tremores tectónicoss. Asimismo, se obtuvieron las localizaciones de todos los tremores tectónicos acontecidos durante el evento de deslizamiento lento del 2006, para estudiar las profundidades de los mismos en diferentes zonas: la zona del *transient* y la zona del *sweet spot*.

Los resultados muestran que la rectilinearidad es capaz de muestrear de una manera veraz los cambios que ejercen en el campo de ondas los tremores tectónicos, por lo que es viable usar esta propiedad para la detección de tremores.

In this work we studied the particle motion of tectonic tremors in the state of Guerrero, to find out if it's possible to detect these phenomena by the rectilinearity, that is obtained by the particle motion. We also studied the back-azimuth obtained by the particle motion in the TREP, to obtain high definition locations.

The particle motion was obtained with the method described by Jurkevics (1988), for which we achieved different parameters to maximize the rectilinearity, wherewith we assurance that the rectilinearity function was optimal.

Next, we compared the rectilinearity with different methods to test his effectiveness for the tectonic tremors detection. As well, the locations of the tectonic tremors that occurred during the 2006 SSE, in order to study the depths of tremors in different zones: the transient zone and the sweet spot zone.

The results show that the rectilinearity is capable of sampling in a very true manner, the changes that the tectonic tremor wave field makes. Therefore, it's viable using this property for detecting tectonic tremors.

Introducción

En los últimos años se han realizado numerosas investigaciones sobre los tremores tectónicos en el mundo (también llamados "*Nonvolcanic Tremor*" o NVT). Pero ¿qué son? Una definición simple y precisa es la siguiente: "los NVT son movimientos continuos y débiles de la tierra" (Beroza & Ide, 2011¹) y fueron descubiertos en 2002 por Kazushige Obara (2002) en la zona de subducción de Japón. Sin embargo, su origen sigue sin esclarecerse por completo, ya que se ha observado que tienen relación con otros fenómenos recientemente descubiertos, éstos son: los eventos de deslizamiento lento (SSE "*Slow Slip Events*") y los sismos de baja y muy baja frecuencia (LFE "*Low Frequency Earthquakes*" y VLF "*Very Low Frequency*", respectivamente). Cabe señalar que el descubrimiento de estos fenómenos fue posible gracias al despliegue y al avance de la tecnología, notables en los sismómetros de banda ancha y los sistemas de posicionamiento global (i.e., GNSS "*Global Navigation Satellite System*").

La detección y localización de los NVT es una tarea difícil debido al carácter emergente y sostenido de los tremores, y su baja relación señal a ruido. Por esta razón existen diversos

¹ Beroza, G. C., and Ide, S. (2011). Slow earthquakes and nonvolcanic tremor, "*Annu. Rev. Earth Planet. Sc*i. ",vol. 39, pp. 271–296

métodos que utilizan diferentes propiedades (i.e. la energía de la señal, envolventes y formas de onda, entre otras).

Aunado a su detección, se buscan indicios que nos lleven a la comprensión de la fuente de estos fenómenos, la cual está muy relacionada con los episodios de deslizamiento lento y muy probablemente con la difusión de fluidos en la zona de contacto entre las placas (*Peacock, 2009²*). Las teorías actuales sugieren que los SSE pueden monitorearse por medio de los tremores tectónicos, y que dichos fenómenos pueden ser ocasionados o bien modulados por telesismos de magnitud considerable (*Obara, 2002³*) y por la acción de las mareas terrestres (Houston, 2015)⁴

Esta investigación pretende identificar y caracterizar los tremores tectónicos por medio de la polarización que sufre el movimiento de las partículas sujetas a su campo de onda incidente. Por otro lado, se utilizará dicha propiedad, para localizar estos eventos utilizando el método TREP (*"Tremor Energy and Polarization"; Cruz-Atienza et al., 2015⁵*). Este estudio se llevó a cabo en el

4 Houston, H. (2015). Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress, *Nature Geoscience*, vol. 8, pp. 409-415.

5 Cruz-Atienza V. M., Husker, A., Legrand, D., Caballero, E., and Kostoglodov, V. (2015). Nonvolcanic tremor locations and mechanisms in Guerrero, Mexico, from energy-based and particle motion polarization analysis, *Journal of Geophysical Research. Solid Earth*, 120, doi:10.1002/2014/JB011389.

² Peacock, S. M. (2009). Thermal and metamorphic environment of subduction zone episodic tremor and slip, *Journal of Geophysical Research*, vol. 114, B00A07.

³ Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan, *Science*, vol. 296, pp. 1679-1681.

estado de Guerrero con diferentes arreglos de estaciones sísmicas durante la ocurrencia del SSE de 2006 para tratar de encontrar alguna relación entre ellos. Asimismo, se determinarán los parámetros que maximizan la función de polarización y se compararán los resultados obtenidos con otros métodos para verificar la validez del método propuesto. Con esta investigación se pretende obtener más información del comportamiento de los tremores, su influencia en el movimiento del suelo, las características temporales y espaciales de su fuente, y su interacción con otros fenómenos como los episodios de deslizamiento lento (SSE). Comparaciones de las fuentes de estos dos fenómenos permitirán entender mejor si ambos comparten el mismo origen, lo que contribuirá al estudio de la relación que tienen los NVT, los SSE y los sismos potencialmente peligrosos.

Origen y características de los tremores tectónicos

Los tremores tectónicos fueron descubiertos por Obara en 2002 en la zona de subducción al oeste de Japón, desde el área de Tokai al canal de Bungo. En el estudio se describieron características fundamentales de los NVT, como son:

- Gran profundidad y baja amplitud;
- Duración que varía desde minutos hasta horas;
- frecuencias predominantes que oscilan entre 1 y 10 Hz, y;

• migración de su fuente.

Origen de los NVT

Relacionado al origen de los tremores, Obara propuso la presencia de fluidos producto de la deshidratación de minerales en la placa oceánica, por lo que el origen de los NVT podría ser fracturamiento hidráulico o cambios en el criterio del fracturamiento de la roca por el incremento de la presión de poro⁶.

Otro posible origen fue propuesto en los estudios de *Shelly et al. (2006)*⁷ y *Shelly et al. (2007-a)*⁸, donde se propone que los NVT son causados por fallamiento cizallante *fluid-enabled* de pequeñas asperezas sobre una misma falla. Otra conclusión obtenida de estos trabajos fue que los NVT se pueden definir como un enjambre de LFEs, debido a que los episodios de tremor tienen una cantidad considerable de estos sismos, además los NVTs son dominados en su mayoría por ondas S.

⁶ Obara, K. (2002), op. cit.

⁷ Shelly, D. R., Beroza, G. C., Ide, S. And Nakamula, S. (2006). Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip, *Nature*, vol. 442, pp. 188-191.

⁸ Shelly, D. R., Beroza, G. C. and Ide, S. (2007-a). Non-volcanic tremor and low-frequency earthquake swarms, *Nature*, vol. 446, pp. 305-307.

Relación con las mareas

Las investigaciones de *Shelly et al. (2007-b)* hallaron que las mareas tienen un efecto significativo en los tremores, puesto que llegan a tener un periodo de recurrencia de 12 horas al estar cerca de la costa⁹. Trabajos más recientes indican que los esfuerzos producidos por las mareas en el contacto entre las placas, pueden modular la actividad de tremor durante la ocurrencia de sismos lentos en Cascadia (Houston, 2015)¹⁰.

Características de la fuente de tremor

Consistente con la teoría de fuente propuesta, *Wech & Creager (2007)* determinaron la dirección del movimiento de partícula (*back-azimuth*) de diferentes tremores, y las compararon con datos sintéticos generados asumiendo que los NVT son causados por un deslizamiento paralelo a la dirección con la que subduce la placa Juan de Fuca¹¹.

En la figura 1 se observan los resultados de las direcciones teóricas y observadas en diferentes días. Claramente la concordancia de los datos sintéticos con las observaciones se deteriora en las

⁹ Shelly, D. R., Beroza, G. C. and Ide, S. (2007-b). Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan, *Geochemistry Geophysics Geosystems*, vol. 8 no.10.

¹⁰ Houston, H. (2015), op. cit.

¹¹ Wech, A. G., and Creager, K. C. (2007). Cascadia tremor polarization evidence for plate interface slip, *Geophysical Research Letters*, vol. 34, L22306.

zonas alejadas del epicentro. A partir de estos resultados, concluyeron que los NVTs son causados por una fuente de fallamiento cizallante.

La Rocca et al. (2005) utilizaron el método ZLCC (*"zero lag cross-correlation"*) y el movimiento de partícula para calcular las lentitudes, la polarización del movimiento de partícula y los *back-azimuths*, con el fin de obtener mayores características de los tremores¹². Con base en los resultados obtenidos, dedujeron que los tremores tectónicos están compuestos por ondas SH.

Figura 1 Dirección del back-azimuth teórico y observado con respecto al tiempo, la flecha negra indica la dirección de subducción. Tomada de Wech & Creager (2008)

¹² La Rocca, M., McCausland, W., Galluzo, D., Malone, S., Saccorotti, G., Del Pezzo, E. (2005). Array measurements of deep tremor signals in the Cascadia subduction zone, *Geophysical Research Letters*, vol. 32, L21319.

Eventos de deslizamiento lento

Los eventos de deslizamiento lento, también llamados sismos lentos (*"Slow Earthquakes"*, SSE), son desplazamientos súbitos que se generan en la zonas de subducción o en fallas transcurrentes (i.e., falla de San Andrés), fueron descubiertos por *Dragert et al. (2001)*¹³ en la zona de subducción de Cascadia. Medidos con GPS, los SSE producen desplazamientos en la placa continental aproximadamente contrarios al movimiento de subducción de la placa oceánica. Estos desplazamientos se originan en la zona de transición de la interface de placas (*downdip* de la zona acoplada), por lo que se ha sugerido que la perturbación de los esfuerzos causada por los SSE, podría provocar sismos de gran magnitud en la zona acoplada de la interface.

Relación de los SSE con los NVT

Los sismos lentos están íntimamente ligados a los NVT. *Rogers & Dragert (2003)*¹⁴ definieron al *Episodic Tremor and Slip* (ETS), como los eventos periódicos en Cascadia durante los que ocurren simultáneamente, sismos lentos y tremores tectónicos. *Dragert et al. (2004)*¹⁵ sugirieron que los

¹³ Dragert, H., Wang, K., and James T. S. (2001). A silent slip event on the deeper Cascadia subduction interface, *Science*, vol. 292, pp.1525-1528.

¹⁴ Rogers, G., and Dragert H. (2003), op. cit.

¹⁵ Dragert, H., Wang, K., and Rogers, G. (2004). Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone, *Earth Planets Space*, 56, pp. 1143-1150.

ETS pueden ayudar a definir los límites de la zona sismogénica. Se estima que los sismos lentos llegan a tener magnitudes Mw equivalentes a sismos comunes de 6.0.

En la figura 2 se muestra un esquema general de una zona de subducción, junto con el comportamiento de los desplazamientos y los esfuerzos en cada una de las partes de la interface: la zona acoplada, la zona de transición, la zona de ETS y la zona plástica de deslizamiento libre

En la figura 3, se observan los sismos lentos junto a la actividad de tremor diaria; ésta aumenta visiblemente cuando se presenta un SSE, también se aprecia claramente el desplazamiento inverso en los datos de GPS cuando ocurre un SSE.

Figura 2 Esquema general de una zona de subducción, el panel superior representa los desplazamientos, el panel intermedio los esfuerzos y el panel inferior una vista de perfil de la subducción. Tomada de Dragert et al. (2004).

Figura 3 Comportamiento de los tremores con respecto al tiempo y su relación a los desplazamientos provocados por los eventos de deslizamiento lento. Tomada de Rogers & Dragert 2002.

Clasificación de los SSE

Los SSE se pueden clasificar según su duración y periodo de retorno. Con base en los diferentes tipos de SSE que ocurren en Japón, Obara (2011)¹⁶ ha propuesto la siguiente clasificación:

- Short-term slow slip events (*Nankai type*)
- Short-term slow slip events (*Boso type*)
- Long-term slow slip events

16 Obara, K. (2011), op. cit.

SSE en México

Los sismos lentos fueron descubiertos en México por *Lowry et al. (2001)*¹⁷; con el evento que tuvo lugar en 1998 en el estado de Guerrero. A partir de entonces, han ocurrido cuatro SSE hasta la fecha en dicho estado, de los cuales se hablará más adelante.

Modelos para explicar los eventos de deslizamiento lento

Dada la importancia de los sismos lentos en el proceso de subducción, se han propuesto diferentes modelos cinemáticos de su fuente, para explicar los desplazamientos registrados en superficie por redes de GPS. Uno de los primeros modelos fue obtenido por *Dragert et al. (2004)*¹⁸ en Cascadia. Partiendo de un modelo de dislocación simple sobre el contacto entre las placas, se invirtieron los desplazamientos horizontales. En la figura 4 se muestran los deslizamientos finales de cuatro eventos lentos estudiados. Ahí se puede observar que los SSE no ocurren uniformemente sobre la placa, sino que su tamaño y localización cambian en el tiempo.

¹⁷ Lowry, A. R., Larson, K. M., Kostoglodov and V. Bilham R., (2001). Transient fault slip in Guerrero, southern Mexico, *Geophysical Research Letters*, vol. 28, pp. 3753-3756.

¹⁸ Dragert, H., Wang, K., and Rogers, G. (2004), op. cit.

Figura 4 Diferentes eventos de deslizamiento lento en Cascadia, se muestran los datos teóricos y observados para las estaciones GPS utilizadas para la inversión. Tomada de Dragert et al. (2004)

*Kostoglodov et al. (2003)*¹⁹ obtuvieron modelos de fuente para el sismo lento del 2001 en Guerrero (Mw = 7.1). Para ello se usó un modelo 2D de dislocación en un semi-espacio elástico homogéneo que admitió dos posibles modelos de fuente para explicar las observaciones:

El primer modelo predice un deslizamiento inverso a través de la porción de la interface que se encuentra acoplada durante la fase intersísmica. Este modelo implica una reducción del potencial sísmico de la zona sismogénica.

¹⁹ Kostoglodov, V., Krishna Singh, S., Santiago, J. A., Franco, S. I., Larson, A. R., Lowry, A. R. and Bilham, R. (2003). A large silent earthquake in the Guerrero seismic gap, Mexico, *Geophysical Research Letters*, vol. 30 no. 15.

El segundo modelo presenta mayor deslizamiento en un segmento pequeño de la zona de transición de la interface (*downdip*). Esto la dejaría someramente acoplada y ocasionaría que el esfuerzo, en la parte profunda de la zona sismogénica, incrementara.

A pesar de que se han obtenido varios modelos de fuente para los SSE, los datos obtenidos con los GPS existentes son insuficientes para resolver completamente el proceso en profundidad. Dada la relación que éstos tienen con los NVT (ETS), *Shelly et al.* (2007-b)²⁰ propusieron utilizar la localización de los tremores tectónicos para estimar la propagación del deslizamiento lento con una mayor precisión que la obtenida con los GPS.

Relación de los SSE con los tremores tectónicos y los LFE

Obara (2010²¹ y 2011²²), estudió la relación que existe entre los tremores tectónicos y otros fenómenos que ocurren en la zona de subducción. Con los eventos de deslizamiento lento encontró que éstos no siempre son acompañados por tremores tectónicos.

²⁰ Shelly, D. R., Beroza, G. C. and Ide, S. (2007-b), op. cit.

²¹ Obara, K. (2010). Phenomenology of deep slow earthquake family in southwest Japan: Spatiotemporal characteristics and segmentation, *Journal of Geophysical Research*, vol. 115, B00A25.

²² Obara, K. (2011). Characteristics and interactions between non-volcanic tremor and related slow earthquakes in the Nankai subduction zone, southwest Japan, *Journal of Geodynamics*, 52, pp. 229-248.

Como se ha explicado anteriormente, una de las teorías de los tremores es que éstos están formados por sismos de baja frecuencia (LFE), por lo que Obara se ocupó en buscar LFEs inmersos en la señal de los tremores; encontrando que los LFEs no siempre acompañan a la señal del tremor tectónico.

En la figura 5 podemos observar la detección de NVTs junto a la de LFEs y la correlación temporal entre ambos. Se compara la envolvente de los sismogramas en negro, con las detecciones de tremores (puntos rojos) y de sismos de baja frecuencia (puntos azules), es claro que los LFEs y los NVTs sólo ocurren al mismo tiempo en algunas ocasiones.

Figura 5 Envolvente de sismogramas para la estación BPF en Japón 2003/8/29; se muestran los tremores tectónicos detectados (puntos rojos) y los sismos de baja frecuencia (puntos azules). Tomada de Obara (2010). La fuente de los NVTs migra. Es decir que la localización de los tremores cambia en periodos cortos. Por ejemplo, en la región de Shikoku, Japón, se ha observado la migración de tremores de 10 Km/día. En su artículo de 2009, *Obara & Sekine²³* observaron que en la región de Aichie y Mie en Japón, los tremores migraron a lo largo del rumbo de la placa oceánica filipina (paralelo a la costa) desde la región de Mie hacia la región de Aichie. Estos NVT tenían una profundidad de 30 a 40 kilómetros, lo cual concuerda con la profundidad del Moho, por lo que se cree que esta migración está relacionada con eventos de deslizamiento lento creados por fallas inversas.

Momento sísmico de los tremores tectónicos

Cuantificar la energía liberada por los tremores no volcánicos es un objetivo esencial para entender su rol dentro del proceso de subducción. Para esto Obara (2010)²⁴ emplea la relación que existe entre los eventos de deslizamiento lento y los tremores, postulando dos hipótesis excluyentes:

a) los episodios de tremores pueden ocurrir sin SSE, y

24 Obara K. (2010), op. cit.

²³ Obara, K., and Sekine S. (2009). Characteristic activity and migration of episodic tremor and slowslip events in central Japan, *Earth Planets Space*, vol.61, pp. 853-862.

b) todos los episodios de tremores son causados por SSE.

Obara valida la segunda hipótesis y estima la magnitud de momento de los tremores, asumiendo que el tamaño de la falla del supuesto SSE es equivalente a la distribución epicentral de tremores:

$$Mo = \mu DS$$

Donde D es el deslizamiento, S el área, y μ es la rigidez igual a 30 Gpa, para estimar finalmente Mw con la relación:

$$\log(Mo) = 1.5Mw + 9.1$$

Otro trabajo realizado para obtener el momento sísmico fue desarrollado por *Kao et al.* (2010)²⁵. En él se compararon las amplitudes máximas de las ondas S en ventanas de 5 segundos por estación, con las obtenidas de sismogramas sintéticos. Emplearon entonces el cociente entre estos dos para estimar el momento sísmico de los tremores.

²⁵ Kao, H., Wang, K., Dragert, H., Kao, J. Y., and Rogers G. (2010). Estimating seismic moment Magnitude (Mw) of tremor bursts in northern Cascadia: Implications for the "seismic efficiency" of episodic tremor and slip, *Geophysical Research Letters*, vol. 37, L19306.

Sismos de baja frecuencia (Low Frequency Earthquakes LFE)

Uno de los primeros trabajos que reportó la existencia de sismos de baja frecuencia (LFE "*Low frequency earthquakes*") fue *Katsumata & Kamaya (2003)*²⁶. Ellos encontraron señales embebidas dentro de los tremores tectónicos, utilizando un catálogo de eventos que la agencia meteorológica japonesa (JMA, "Japanese Metereological Agency") comenzó a realizar desde 1999. Utilizando este catálogo, se logró distinguir las ondas S que son características de estos fenómenos.

A continuación *Shelly et al. (2006)*²⁷ analizaron los LFEs en Cascadia La profundidad promedio en la que localizaron estos eventos fue de 30 Km. Como se ha mencionado con anterioridad, se ha sugerido que los tremores tectónicos son enjambres de LFE's, debido a que en este estudio se encontraron una serie de arribos de ondas S coherentes dentro de una señal de tremor.

Dadas las características que poseen, se cree que los LFEs son generados por deslizamiento cizallante en la interface de las placas, el cual parece ser promovido por altas presiones de poro. También se encontró que los pulsos de sismos de baja frecuencia oscilan entre 1 y 5 Hz.

²⁶ Katsumata, A., and Kamaya, N. (2003). Low-frequency continuos tremor around the Moho discontinuity away from volcanoes in the southwest Japan, *Geophysical Research Letters*, vol. 30 no. 1, 1020.

²⁷ Shelly, D. R., Beroza, G. C., Ide, S. And Nakamula, S. (2006), op. cit.

En la figura 6 podemos observar los espectros de diferentes señales sísmicas, en los cuales se aprecia una clara similitud entre los espectros de los tremores y los LFEs; esto hace suponer que la fuente de los dos fenómenos está relacionada.

Figura 6 Espectros de diferentes señales sísmicas: Sismos de magnitud Mw mayor y menor a 1, sismos de baja frecuencia, tremores tectónicos y ruido. Tomada de Shelly et al. (2007a).

Fuente de los sismos de baja frecuencia

Como se describió en el párrafo anterior, con base en la localización y forma de onda de los LFEs, se infirió que éstos son producidos por deslizamiento cizallante en profundidad. Para sustentar

esta hipótesis, I*de et al. (2007)*²⁸ obtuvieron los mecanismos focales de los LFEs de dos formas diferentes: (1) utilizando el movimiento del primer arribo de onda P y; (2) con la inversión del tensor de momentos sísmicos (usando funciones de Green empíricas). Con estos resultados, *Shelly et al. (2007-a)*²⁹ calcularon también el mecanismo de los SSE y de sismos inversos ocurridos en la zona.

En la figura 7 se muestran los mecanismos focales obtenidos a partir de los movimientos de la primera onda P de LFE, la inversión del tensor de momentos de ondas S de LFE, del evento de deslizamiento lento y del sismo de Nankai de 1946, los cuales coinciden con la dirección en la cual se está subduciendo. Todo esto apoya la hipótesis de que los tres fenómenos que hemos estudiado, TT, LFE y SSE son diferentes manifestaciones de un mismo proceso ligado a la subducción de la placa oceánica.

²⁸ Ide, S., Shelly, D. R., and Beroza, G. C. (2007). Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip o the plate interface, *Geophysical Research Letters*, vol. 34, L03308.

²⁹ Shelly, D. R., Beroza, G. C. and Ide, S. (2007-a), op. cit.

Figura 7 a) Mov. de la primera onda P de LFEs. b) Inversión del tensor de momentos de LFEs. c) Mecanismo de tres diferentes SSEs. d) Mecanismo focal del sismo de Nankai de 1946. Tomada de Shelly et al. (2007-a).

Sismos de muy baja frecuencia (Very low frequency earthquakes VLF)

Los sismos de muy baja frecuencia (que oscilan entre los .02-0.05 Hz), fueron estudiados por primera vez por *Ito et al. (2007)³⁰. Éstos* tienen una profundidad promedio entre 30 a 35 Km, contienen ondas de cuerpo (Ondas S principalmente), presentan migración, y son acompañados por señales de tremor tectónico. Debido a la relación que tienen éstos con los deslizamientos

³⁰ Shelly, D. R., Beroza, G. C. and Ide, S. (2007-a), op. cit.

lentos, se llegó a la hipótesis de que los VLF son parches que se encuentran adentro de la zona de transición, donde ocurren los SSE y los tremores tectónicos, que son microfracturas.

En la figura 8 se observa un modelo esquemático de la zona de subducción. En la zona sismogénica hay asperidades causantes de sismos de gran magnitud, mientras que en la zona de transición se encuentra la zona donde ocurren los deslizamientos lentos, los parches de VLF y las microfracturas de los tremores tectónicos.

Figura 8 Esquema general de la zona de subducción y las diferentes fuentes generadoras de LFEs, VLFs, tremores y sismos. Tomada de Ito et al. (2007).

I*to et al. (2009-b)*³¹ investigaron más a fondo las características de los VLF en Japón; dividieron los VLF en:

1. Deep VLF, encontrados en la parte downdip de la zona de subducción y;

2. Shallow VLF, que ocurren en el prisma acrecionario.

Además, encontraron los hipocentros de los VLFs y su vector de deslizamiento, el cual concuerda con el vector de deslizamiento de la zona de subducción. El momento sísmico de los VLF es aproximadamente el 0.1 % de los SSE, este hallazgo los hizo deducir que sólo ocurren en una pequeña superficie de la zona de deslizamiento lento. Los puntos anteriores sostienen la teoría de que los VLFs son causados por deslizamiento cizallante en la interface de las placas. En la figura 9 podemos observar 5 diferentes familias de VLFs encontradas en Japón, de las cuales se obtuvieron los diagramas de rosa del vector strike, el cual prácticamente es perpendicular al vector deslizamiento de la zona de subducción.

³¹ Ito, Y., obara, K., Matsuzama, T., and Maeda T. (2009-b). Very low frequency earthquakes related to small asperities on the plate boundary interface at the locked to aseismic transition, Journal of *Geophysical Research*, vol. 114, B00A13.

Figura 9 Diferentes familias de VLFs a lo largo de la zona de subducción de Japón. Tomada de Ito et al. (2009-b).

Relación entre los diferentes fenómenos de la zona de subducción

Como hemos observado, la familia de sismos lentos interactúan de diferentes y muy cercanas maneras, es por eso que se han realizado modelos para tratar de explicar estos fenómenos; *Ando et al. (2010)*³² obtuvieron un modelo físico sencillo para los deslizamientos lentos. Este modelo

³² Ando, R., Nakata, R., and Hori, T. (2010). A slip pulse model with fault heterogeneity for low-frequency earthquakes and tremor along plate interfaces, *Geophysical Research Letters*, vol. 37, L10310.

involucra parches en la zona de deslizamiento para explicar los tremores y LFEs, sin embargo sólo es aplicable para la zona de transición. Está basado en tres observaciones:

1.- Los LFEs y TTs son disparados por cambios en los esfuerzos debido a los deslizamientos lentos;

2.- se asumen regiones de fricción inestable y;

3.- las fuentes de tremores y LFEs están alineadas.

La fig. 10 muestra el modelo utilizado; en él se puede observar el frente del deslizamiento lento y como va activando las zonas de tremores tectónicos, LFEs y VLFs.

Figura 10 Modelo de la zona de subducción, en la cual figura los parches causantes de LFEs y tremores, los cuales se activan con el paso del SSE. Tomada de Ando et al. (2010).

Métodos para la detección y localización de tremores y LFE

En la actualidad, existen diversos métodos para fines variados, no obstante, sólo se van a enumerar algunos.

Métodos de detección y localización de LFE dentro de tremores:

- Brown et al. (2008)³³ filtraron los datos en una banda de frecuencia, posteriormente, se utilizó la auto-correlación de los datos para encontrar LFEs repetidos en el mismo tremor. De esta manera, se realizaron correlaciones cruzadas de *waveforms* para encontrar los retrasos en tiempo, y así, localizar sismos de baja frecuencia.
- Frank et al. (2013)³⁴ utilizaron plantillas de LFEs para obtener correlaciones de las formas de onda de las señales, las correlaciones semejantes se apilaron para obtener arribos claros de onda P y onda S y con éstos, localizar la fuente haciendo una búsqueda en una malla y comparando los *moveouts* teóricos con los observados.

³³ Brown, J. R., Beroza, G. C., and Shelly, D. R. (2008). An autocorrelation method to detect low frequency earthquakes withn tremor, *Geophysical Research Letters*, vol. 35, L16305.

³⁴ Frank, W. B., Shapiro, N. M., Kostoglodov, V., Husker, A. L., Campillo, M., Payero, J. S., and Prieto, G. A. (2013). Low-frequency earthquakes in the mexican sweet spot, *Geophysical Research Letters*, vol. 40, pp. 2661-2666.

- Frank & Shapiro (2014)³⁵ realizaron una detección automática de LFEs: alinearon los sismogramas para hacer coincidir los *moveouts* de una fuente potencial a cierta profundidad, las energías de las señales fueron sumadas, si se presentaba algún pico que cumpliera con ciertas características, se consideraba un LFE.
- La Rocca et al (2008)³⁶ utilizaron el método zero-lag cross-correlation para obtener los vectores de lentitud y el back-azimuth, a partir de los cuales con un método probabilístico se obtiene la localización de los tremores.
- Shelly et al. (2007-a) usaron formas de ondas de LFEs en la región como "eventos plantillas" en una técnica de filtro coincidente, ésto con el fin de buscar formas de ondas en señales de tremor; en algunas señales se percibió una o más plantillas.

Métodos de detección y localización de tremores:

• Kao & Shan (2004)³⁷ desarrollaron el método "T*he source-Scanning Algorithm*" que emplea información de la forma de onda como lo es la amplitud y los tiempos de arribo. Para llevar a

³⁵ Frank W. B., and Shapiro, N. M. (2014). Automatic detection of low-frequency earthquakes (LFEs) based on a beamformed network response, *Geophysical Journal International*, vol. 197, 1215-1223.

³⁶ La Rocca, M., Galluzo, D., Malone, S., McCausland, W., Saccorotti, G., and Del Pezzo, E., (2008). Testing small-aperture array analysis on well-located earthquakes, and application to the location of deep tremor, *Bulletin of the Seismological Society of America*, vol. 98, no. 2, pp. 620-635.

cabo la localización, los sismogramas se normalizaron, a partir de ellos, se calculó una función llamada "*brightness*", la cual estaba en función de cada punto de búsqueda n y de un tiempo definido. Además de esta técnica, *Kao et al.* (2007)³⁸ realizaron un método de detección automática de tremores, que aunado al método descrito, sirvió para localizar y detectar diferentes tremores tectónicos en la región de Cascadia.

- Maeda & Obara (2009)³⁹ aprovechan la densidad de energía del arreglo de estaciones y la diferencia en los tiempos de arribo de las correlaciones cruzadas de las envolventes, para que a partir de estas dos características se elija la localización con menor error.
- Obara (2002)⁴⁰ utiliza correlaciones cruzadas de las envolventes de las señales para que, a partir de ellas obtener diferencias en los tiempos de viaje y de este modo localizar los NVTs como si fueran un sismo normal.

39 Maeda, T., and Obara K. (2009). Spatiotemporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku, Japan, *Journal of Geophysical Research*, vol. 114, B00A09.

40 Obara, K. (2002), op. cit.

³⁷ Kao, H., and Shan S. (2004). The source-scanning algorithm: mapping the distribution of seismic sources in time and space, *Geophysical Journal International*, vol. 157, pp. 589-594.

³⁸ Kao, H., Thompson, P. J., Rogers, G., Dragert, H., and Spence, G. (2007). Automatic detection and characterization of seismic tremors in northen Cascadia, *Geophysical Research Letters*, vol. 34, L16313.
- Wech & Creager (2008)⁴¹ realizaron un método que localiza y detecta tremores tectónicos. Para desarrollarlo, se empleó un método de correlaciones cruzadas que maximizó la señal; en las correlaciones se buscó encontrar la mejor solución dentro de una malla; de estas soluciones, las que tuvieron un error estimado menor a 5 km, eran catalogadas como un tremor tectónico.
- Husker et al. (2010)⁴² desarrollaron un método de detección de tremores basado en la energía; se hizo un catálogo de los tremores comprendidos del 2005 al 2007.
- *Cruz-Atienza et al.* (2015)⁴³ emplearon la energía, la derivada espacial de la energía y el *back-azimuth* del movimiento de partícula como parámetros para hacer una inversión, con la cual se obtiene la localización y el mecanismo focal que mejor se adecúa a los datos observados.

⁴¹ Wech, A. G., and Creager, K. C. (2008). Automated detection and location of Cascadia tremor, *Geophysical Research Letters*, vol. 35, L20302.

⁴² Husker, A., Peyrat, S., Shapiro, N., and Kostoglodov, V. (2010). Automatic non-volcanic tremor detection in the mexican subduction zone, *Geofísica Internacional*, 49(1), pp. 17-25.

⁴³ Cruz-Atienza V. M., Husker, A., Legrand, D., Caballero, E., and Kostoglodov, V. (2015), op. cit.

Tremores Tectónicos, Eventos de Deslizamiento Lento, Sismos de Baja y muy Baja Frecuencia en el mundo

En este capítulo revisaremos brevemente los estudios y las investigaciones que se han realizado en diferentes zonas del mundo. Schwartz & Rokosky (2007)⁴⁴ realizaron una recopilación de las características principales de los eventos de deslizamiento lento y de tremores tectónicos en diferentes lugares, aunque no estén mencionadas en el estudio citado, algunas regiones donde ocurren estos fenómenos son: Alaska, Australia, Cascadia, Costa Rica, la falla de San Andrés, Japón, y Nueva Zelanda,

Cascadia (Canadá y Estados Unidos de América.)

Generalidades

La zona de subducción de Cascadia comprende desde la isla de Vancouver, Canadá, hasta una porción del estado de California, E.U.A., pasando por el estado de Oregon. En esta región, la placa de Juan de Fuca se subduce a una velocidad aproximada de 4 cm/año bajo la placa de Norteamérica. Al igual que en otras zonas de subducción (i.e. Guerrero, México), se ha observado que existe una región de baja velocidad, la cual se presume es corteza oceánica subducida, que a

⁴⁴ Schwartz, S. Y., and Rokosky J. M. (2007). Slow slip events and seismic tremor at Circum-Pacific subduction zones, *Reviews of Geophysics*, vol. 45, RG3004.

cierta distancia de la costa sufre una deshidratación; esto contribuye a la presencia de fluidos en el slab.

*Audet et al. (2010)*⁴⁵ utilizaron funciones de receptor para mapear la región y encontraron que la zona de baja velocidad se encuentra prácticamente en toda la región de Cascadia, asimismo realizaron un modelo para explicar la generación de ETS a partir de la presión de poro y la liberación de fluido hacia los límites de la placa.

En la figura 11 se muestra un mapa general de esta zona de subducción.

Figura 11 Zona de subducción de Cascadia. Tomada de Gomberg et al. (2010).

45 Audet, P., Bostock, M. G., Boyarko, D. C., Brudzinski, M. R., and Allen R. M. (2010). Slab morphology in the cascadia forc arc and its relation to episodic tremor and slip, *Journal of Geophysical Research*, vol. 115, B00A16.

Episodic Tremor and Slip Events en Cascadia

*Rogers & Dragert (2003)*⁴⁶ definieron los ETS en Cascadia debido a la continua recurrencia de sismos lentos acompañados de tremores tectónicos. Los eventos lentos en esta región tienen una duración aproximada entre 1 y 5 semanas, pueden tener una o dos direcciones de propagación y corresponden aproximadamente a 5 mm de desplazamiento en la superficie; para rastrearlos se han utilizados los tremores tectónicos, pues con su migración podemos monitorear el frente de propagación del sismo lento. *Kao et al. (2006)*⁴⁷ localizaron tremores tectónicos pertenecientes a 2003 y 2004, con los cuales se logró ver un patrón espacio-temporal de migración; *Ghosh et al. (2009)*⁴⁸ obtuvieron parches de tremor tectónico del ETS de 2008, los cuales tienen prácticamente el mismo patrón de migración que los obtenidos para los años 2003 y 2004, por lo que se puede inferir que ese patrón de migración sino constante, sí es muy recurrente en la zona.

⁴⁶ Rogers, G., and Dragert H. (2003), op. cit.

⁴⁷ Kao, H., Shan, S., Dragert, H., Roger, G., Cassidy, J. F., Wang, K., James, T. S. Ramachandran, K. (2006). Spatial-temporal patterns of seismic tremors in northern Cascadia, *Journal of Geophysical Research*, vol. 111, B03309.

⁴⁸ Ghosh, A., Vidale, J. E., Sweet, J. R., Creager, K. C., and Wech, A. G. (2009). Tremor patches in Cascadia revealed by seismic array analysis, *Geophysical Research Letters*, vol. 36, L17316.

En la figura 12 observamos las localizaciones de los tremores realizada por *Ghosh et al. (2009)*, la cual migra a lo largo del tiempo, definiendo parches de tremor que se activan con el paso del sismo lento, lo que sugiere que se puede monitorear el SSE con los tremores tectónicos.

Figura 12 Localizaciones de tremores en Cascadia a lo largo del tiempo (izquierda) y número de tremores localizados por zona (derecha). Modificada de Ghosh et al. (2009).

La importancia de tener una mejor comprensión de los ETS, es debido se cree los tremores tectónicos pueden delimitar la zona sismogénica, es por eso que *Chapman & Melbourne* (2009)

realizaron un análisis de los ETS de los últimos 11 años para encontrar el límite *downdip* de la zona sismogénica, el cual localizaron aproximadamente a 25 Km de profundidad⁴⁹.

Sismos de baja frecuencia

Aunque no se observan con la misma frecuencia que en la zona de subducción japonesa, los LFEs también han sido estudiados en Cascadia. Brown et al. (2009)⁵⁰ localizaron estos fenómenos en una zona estrecha en la región de Cascadia, justo en la interface de la zona de subducción, a una profundidad promedio entre 30-40 Km. *Gomberg et al. (2010)⁵¹* realizaron una minuciosa investigación para encontrar como se relacionan los sismos lentos, los tremores tectónicos y los sismos de baja frecuencia, específicamente para el ETS del 2008, aunque definen posibles modelos y fuentes de estos fenómenos, éstos siguen sin esclarecerse del todo.

⁴⁹ Chapman, J. S., and Melbourne, T. I. (2009). Future Cascadia megathrust rupture delineated by episodic tremor and slip, *Geohysical Research Letters*, vol. 36, L22301

⁵⁰ Brown, J. R., Beroza, G. C., Ide, S., Ohta, K., Shelly, D. R., Schwartz S. Y., Rabbel, W., Thorwart, M., and Kao, H. (2009). Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones, *Geophysical Research Letters*, vol. 36, L19306.

⁵¹ Gomberg, J. And the Cascadia 2007 and Beyond Working Group (2010). Slow-slip phenomena in Cascadia from 2007 and beyond: A review, Geological Society of America Bulletin, vol. 122, pp. 963-978.

Japón

Generalidades

La zona de subducción de Japón se extiende a través de diferentes regiones: Shikoku, la península de Kii y Tokai, en la figura 13 se muestran las primeras localizaciones que se obtuvieron de los tremores tectónicos por *Obara (2002)*⁵².

Figura 13 Zona de subducción de Japón junto con las localizaciones de tremores tectónicos. Tomada de Obara (2002).

52 Obara, K. (2002), op. cit.

Al igual que en Cascadia, las propiedades físicas del *slab* juegan un papel relevante en el comportamiento de la familia de sismos lentos. *Kato et al.* (2010)⁵³ realizaron un método de funciones de receptor para mapear la zona de subducción, entre sus hallazgos se encontró la presencia de fluidos a alta presión liberados por la deshidratación metamórfica, lo que favorece la proliferación de los diferentes fenómenos de la zona de subducción.

Además de la presencia de fluidos; *Matsubara et al.* (2009)⁵⁴ encontraron que en la zonas donde acontecen los tremores, el cociente entre las velocidades de onda P y S (Vp/Vs) es alto.

Episodic Tremor and Slow Slip Events en Japón.

Los ETS en Japón son diferentes a los acontecidos en Cascadia, ya que en esta región encontramos una diversidad de deslizamientos lentos. Los *short-term SSE (Nankai type)* tienen una duración de días y van acompañados de tremores y *burst* de LFEs, su magnitud de momento oscila entre 5.5 y 6.2 y ocurren a profundidades entre 30 y 40 Km. Asimismo encontramos en la región los *short-term SSE (Boso type)*, éstos ocurren aproximadamente cada 6 años y a diferencia de los

⁵³ Kato, A., iidaka, T., Ikuta, R., Yoshida, Y., Katsumata, K., Iwasaki, T., Sakai, S., Thurber, C., Tsuura, N., Yamaoka, K., Watanabe, T., Kunitomo, T., Yamazaki, F., Okubo, M., Suzuki S., and Hirata, N., (2010). Variations of fluid pressure within the subducting oceanic crust and slow earthquakes, *Geophysical Research Letters*, vol. 37, L14310.

⁵⁴ Matsubara, M., Obara, K., and Kasahara, K. (2009), High-Vp/Vs zone accompanying non-volcanic tremors and slow slip events, *Tectonophysics*, vol. 472, pp. 6-17.

anteriores no están ligados a burst de tremores aunque si a swarms de sismos regulares, estos deslizamientos son más someros aunque su magnitud de momento es mayor (Mw 6.4-6.6).

Por último tenemos a los *long-term SSE*, con duraciones de medio año y recurrencia de una vez cada cinco años, estos deslizamientos van acompañados de tremores tectónicos, sus magnitudes varían entre 6.5 y 7 en magnitud de momento.

En la figura 14 observamos la distribución de tremores tectónicos (puntos rojos), sismos de muy baja frecuencia (estrellas amarillas) y en contornos los diferentes tipos de SSE que acontecen en la zona.

Figura 14 Zona de subducción japonesa con NVTs (rojo), VLFs (amarillo), diferentes tipos de SSE (contornos) y dirección de subducción (flecha blanca). Tomada de Obara (2011).

45

Sismos de baja frecuencia

Los LFEs fueron descubiertos en Japón por *Katsumata & Kamaya* en 2003⁵⁵; a partir de entonces, se han observado embebidos a los tremores tectónicos, aunque sus características espaciales no son del todo idénticas. *Obara* (2010)⁵⁶ encontró que, si bien los dos fenómenos presentan migración, la localización de los LFEs no concuerda del todo, puesto que los sismos de baja frecuencia se encuentran más concentrados.

Tremores Disparados

Al igual que con los sismos comunes, los tremores tectónicos pueden ser producidos por otros sismos que exciten el campo de esfuerzos o deformaciones de la región; desde su descubrimiento en 2002, Obara plantea que varios burst del recién encontrado fenómeno fueron producidos por sismos de muy variada magnitud, o en caso contrario, algunos *burst* acabaron su actividad con el paso de un sismo.⁵⁷

⁵⁵ Katsumata, A., and Kamaya, N. (2003), op. cit.

⁵⁶ Obara, K. (2002), op. cit.

⁵⁷ Obara, K. (2002), op. cit.

Aunque Obara propuso la idea de sismos disparados, no se ahondo más en el tema hasta el 2005, cuando *Miyazawa & Mori⁵⁸* estudiaron tremores disparados en Japón por el sismo de Tokachi-Oki, el cual tuvo una magnitud de momento de 8.1; como resultado de su análisis se llegó a la conclusión de que los tremores disparados se visualizan en altas frecuencias (5-20 Hz) y son causados por ondas superficiales. El tipo de onda (Love o Rayleigh) que causa el tremor aún no se define, puesto que es dependiente del evento, por ejemplo *Miyazawa & Mori (2006)⁵⁹* determinaron que para los tremores disparados en Japón por el sismo de Sumatra-Andaman del 2004 con Mw= 9.2, las ondas Rayleigh fueron las que dispararon los tremores al causar un cambio en la deformación volumétrica y por ende la presión de poro se vio afectada. Sin embargo las ondas Rayleigh no son las únicas capaces de producir tremores disparados, *Rubinstein et al. (2007)⁶⁰* examinaron el área de Vancouver durante el sismo de Denali en Alaska en 2002, el cual tuvo una magnitud Mw=7.8. A partir de su análisis encontraron que las ondas Love, al incrementar el esfuerzo cizallante, fueron las responsables de disparar los tremores.

⁵⁸ Miyazawa, M., and Mori J. (2005). Detection of triggered deep low-frequency events from the 2003 Tokachi-oki earthquake, *Geophysical Research Letters*, vol. 32, L10307.

⁵⁹ Miyazawa, M., and Mori, J., (2006). Evidence suggesting fluid flow beneath Japan due to periodic seismic triggering from the 2004 Sumatra-Andaman earthquake, *Geophysical Research Letters*, vol. 33, L05303.

⁶⁰ Rubinstein, J. L., Vidale, J. E., Gomberg, J., Bodin, P., Creager K. C., and Malone S. D. (2007). Non-volcanic tremor driven by large transient shear stresses, *Nature*, vol. 448, pp. 579-582.

Aunque las ondas superficiales son primordialmente las causantes de los tremores disparados, existen casos documentados donde las ondas de cuerpo son las detonantes. Z*igone et. al. (2012)*⁶¹ analizaron en Guerrero los tremores tectónicos y el segundo subevento del SSE de 2010 después del sismo de Maule, Chile (Mw 8.8). A través del análisis de los tremores y del evento de deslizamiento lento, se llegó a la conclusión que los tremores fueron disparados desde el arribo de ondas S y que el segundo subevento del deslizamiento lento del 2010 fue disparado por el sismo de Chile.

⁶¹ Zigone, D., Rivet, D., Radiguet, M., Campillo, M., Voisin, C., Cotte, N., Walpersdorf, A., Shapiro, N. M., Cougoulat, G., Roux, P., Kostoglodov, V., Husker, A., and Payero, J. S. (2012). Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake, Journal og Geophysical Research, vol. 117, B09304.

Tremores Tectónicos en el Estado de Guerrero

Las propiedades de la corteza juegan un papel crucial en el origen de los tremores tectónicos. Peacock (2009)⁶² realizó una investigación en la cual determinó ciertas características similares en diferentes zonas de subducción, entre las que destacan:

- Ocurren en cortezas oceánicas relativamente jóvenes.
- No están confinados a una temperatura ni a una fase metamórfica.
- Hay una existencia considerable de fluidos.

Es por lo tanto importante estudiar la composición de la corteza oceánica mexicana, específicamente el estado de Guerrero, para entender mejor las causas y propiedades de los tremores tectónicos

Estructura cortical

La zona de subducción mexicana se compone de tres placas: las placas oceánicas de Cocos y Rivera, y la placa continental de Norteamérica. En este estudio sólo analizaremos la relación entre la placa de Cocos y la de Norteamérica. La zona en la cual se empieza a subducir la placa de Cocos

⁶² Peacock, S. M. (2009), op. cit.

se conoce como la "*Middle American Trench*" y se encuentra aproximadamente a 70 Km de Acapulco.

Aunado a la interface entre estas dos placas, existen otras propiedades que producen variaciones en los campos de onda al propagarse. Por esta razón es importante tener un modelo de velocidades razonablemente bueno para la localización tanto de sismos como de tremores.

La zona de subducción de Guerrero comparte ciertas características con las de Cascadia y Japón. Una de ellas es la posible presencia de fluidos en ciertas zonas del *slab (Peacock, 2009).* En México, estas zonas se lograron identificar por medio de diferentes estudios:

Jödicke et al. (2006)⁶³ realizaron un estudio magnetotelúrico ("*MT*") para caracterizar la zona sur de México. Sus resultados muestran una buena correlación entre zonas de alta conductividad y zonas donde se cree que hay metamorfismo y liberación de fluidos. Además, estudiaron la fundición parcial que acontece en el *slab*; con base en los estudios realizados a los volcanes del centro de México y a la alta conductividad obtenida, se llegó a la conclusión de que la fundición parcial es la causa de esta alta conductividad. En la figura

⁶³ Jödicke, H., Jording, A., Ferrari, L., Arzate, J., Mezger, K., and Rüpke, L. (2006). Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: Implications for the generation of volcanism and subduction dynamics, *Journal of Geophysical Research*, vol. 111, B08102.

15 se observa que estas zonas de alta conductividad coinciden en gran medida con las localizaciones que se han obtenido de los tremores tectónicos en el *slab*.

Figura 15 Perfil de resistividad (arriba) con las diferentes zonas de conductividad identificadas. Perfil de facies metamórficas a lo largo del slab (abajo). Tomada de Jödicke et al. (2006).

 Manea & Manea (2010)⁶⁴ obtuvieron, mediante modelado numérico la estructura térmica de la zona de subducción. A partir de su modelo llegaron a la conclusión de que los fluidos liberados en el slab provienen de diferentes fuentes. En la figura 16 se visualizan las tres

⁶⁴ Manea, V. C., and Manea, M. (2010). Flat-slab thermal structure and evolution beneath central Mexico, *Pure and Applied Geophysics*.

fuentes de fluidos encontradas, además se muestra una correlación que se hizo con el estudio anterior de *Jödicke et al. (2006)*⁶⁵.

Figura 16 Modelo de resistividades, isotermas y facies de metamórficas. Tomada de Manea & Manea (2010).

Además de la liberación de fluidos, hay otras características comunes en las zonas de subducción donde se han hallado tremores tectónicos:

⁶⁵ Jödicke, H., Jording, A., Ferrari, L., Arzate, J., Mezger, K., and Rüpke, L. (2006). op. cit.

- Alta presión de poro debida al fluido liberado por el metamorfismo y la fusión parcial que ocurre en el *slab. Manea et al. (2004)⁶⁶* analizaron las isotermas de la zona de subducción y llegaron a la conclusión de que el cociente entre la presión poro y la presión litostática es casi uno, lo que significa que la presión efectiva es casi cero.
- Relación de Poisson y cociente de Vp/Vs altos. Estas dos propiedades sugieren la existencia de fluidos altamente presurizados (Peacock et al., 2011)⁶⁷. *Kim et al. (2010)⁶⁸* descubrieron que estas dos propiedades son especialmente altas justo en la parte en la cual el *slab* se vuelve horizontal. En la figura 17 se muestran los valores de estas propiedades que se obtuvieron para el *slab* junto con las localizaciones de tremores tectónicos de Payero et al. (2008)⁶⁹.

⁶⁶ Manea, V. C., Manea, M., Kostoglodov, V., Currie, C. A., and Sewell, G. (2004). Thermal structure, coupling and metamoprphism in the Mexican subduction zone beneath Guerrero, *Geophysical Journal International*, vol. 157, pp. 775-784.

⁶⁷ Peacock, S. M., Christensen, N. I., Bostock, M. G., and Audet, P (2011). High pore pressures and porosity at 35 km depth in the Cascadia subduction zone, *Geology*, vol. 39 no. 5, pp. 471-474.

⁶⁸ Kim, Y., Clayton, R. W., and Jackson, J. M. (2010). Geometry and seismic properties of the subducting Cocos plate in central Mexico, *Journal of Geophysical Research*, vol. 115, B06310.

⁶⁹ Payero, J. S., Kostoglodov, V., Shapiro, N., Mikumo, T., Iglesias, A., Pérez-Campos, X., and Clayton, R. W. (2008). Nonvolcanic tremor observed in the Mexican subduction zone, *Geophysical Research Letters*, vol. 35, L07305.

Geometría de la placa oceánica subducida

Del mismo modo que las características físicas juegan un rol importante en la proliferación de tremores tectónicos, la geometría de la placa subducida es un factor significativo en el estudio de los fenómenos geotectónicos.

Actualmente la placa de Cocos subduce a la de Norteamérica a una velocidad de 6 cm/año a un ángulo aproximado de 50° cerca de la placa de Rivera, cabe mencionar que estos parámetros varían dependiendo de la ubicación geográfica.

La geometría de la subducción se ha redefinido a lo largo de los años. *Kostoglodov et al. (1996)⁷⁰* delimitaron la geometría de la zona de subducción usando datos sísmicos y gravimétricos; uno de los hallazgos más significativos fue que la zona sismogénica se encuentra justo antes de la parte horizontal del *slab. Pérez-Campos et al. (2008)⁷¹* modelaron la zona de subducción hasta aproximadamente 250 Km tierra adentro (justo por debajo del Valle de México), a partir de esta distancia, el *slab* se sumerge hacia el manto oceánico con un *dip* aproximado de 75°. Con este estudio se llegó a la conclusión de que a aproximadamente 80 Km de la costa, la subducción se vuelve horizontal. En la figura 18 se muestran las funciones de receptor obtenidas por *Pérez-Campos et al.;* de colores rojo y azul, las diferentes polaridades de las ondas.

⁷⁰ Kostoglodov, V., Bandy, W., Domínguez, J., and Mena, M. (1996). Gravity and seismicity over the Guerrero seismic gap, Mexico, Geophysical Research Letters, vol. 23 no. 23, pp. 3385-3388.

⁷¹ Pérez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., Pacheco, J. F., Singh, S. K., Manea, V. C., and Gurnis, M. (2008). Horizontal subduction and truncation of the Cocos plate beneath central Mexico, *Geophysical Research Letters*, vol. 35, L18303.

Figura 18 Funciones de receptor. Tomada de Pérez-Campos et al. (2008).

Además de la geometría del *slab*, se localizaron dos capas justo en la interface: una capa de baja velocidad y una capa de ultra baja velocidad (*"Ultra Slow Velocity Layer"*). La USL fue estudiada por *Song et al. (2009)*⁷², quienes corroboraron que las propiedades vistas anteriormente (*i.e.*

⁷² Song, T. A., Helmberger, D. V., Brudzinski, M. R., Clayton, R. W., Davis, P., Pérez-Campos, X., and Singh, S. K. (2009). Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico, *Science*, vol. 324, 502-506.

Cociente de Poisson alto, alta presión de poro) se deben principalmente a la presencia de esta capa, la cual tiene un grosor variable entre 3 y 5 Km, *y* se encuentra entre las isotermas de 350°C y 450°C. Lo anterior que concuerda espacialmente con los modelos termales. Por último, se encontraron evidencias que sugieren que la USL influye de manera significativa en los SSE, en la figura 19 se muestran los parches de SSE junto con los contornos del evento de deslizamiento lento, podemos observar una gran concordancia en la localización de ambos, lo que nos lleva a la hipótesis de que donde hay USL ocurren SSE. Estudios recientes (Dougherty and Clayton, 2014), muestran la posibilidad de que la USL se localice al este de la región propuesta por Song et al., (2009). El límite oriental de la USL propuesto por Dougherty and Clayton, (2014), concuerda con el límite del Cinturón Volcánico Transmexicano.

Figura 19 Zona de subducción con USL, SSE, zona sismogénica y arreglo MASE. Modificada de Song et al. (2009). Hasta este momento se ha hablado de la placa de Cocos como un cuerpo sin discontinuidades, sin embargo estudios recientes sugieren que presenta una heterogeneidad lateral considerable, *Dougherty et al.* (2012)⁷³ estudiaron esta variación espacial a lo largo de la placa de Cocos, sus resultados sugieren que la placa de Cocos actualmente se divide en dos: Norte y Sur y el límite entre estas divisiones es la zona de fractura de Orozco (*"Orozco Fracture Zone"*). Además de dividir la placa de Cocos, la *OFZ* posiblemente es el límite de la USL, en la figura 20 se muestra un esquema general de la zona de subducción.

Figura 20 Esquema general de la placa de Cocos: Norte y Sur junto con la placa de Rivera.

Tomada de Dougherty et al. (2012).

73 Dougherty, S. L., Clayton, R. W., and Helmberger, D. V. (2012). Seismic structure in central Mexico: Implications for fragmentation of the subducted Cocos plate, Journal of Geophysical Research, vol. 117, B09316.

Eventos de deslizamiento lento en México

Eventos de deslizamiento lento: 1997-2001

En capítulos anteriores se analizó de manera breve los eventos de deslizamiento lento en México, el primero *SSE* en analizarse fue el acontecido en 1998 y modelado en 2001 por *Lowry et al.*⁷⁴. El siguiente *SSE* en ser estudiado ocurrió en 2001-2002. K*ostoglodov et al. (2003)*⁷⁵ obtuvieron un modelo de dislocación del cual ya se ha hablado con anterioridad. Además de los modelos de dislocaciones, Iglesias et al. (2004)⁷⁶ realizaron una inversión del deslizamiento lento.

Evento de deslizamiento lento del 2006

Este evento ha sido el mejor estudiado en México ya que se contó con una gran cantidad de información tanto de sismógrafos como de GPS's. *Larson et al. (2007)*⁷⁷ obtuvieron la deformación

⁷⁴ Lowry, A. R., Larson, K. M., Kostoglodov and V. Bilham R., (2001), op. cit.

⁷⁵ Kostoglodov, V., Krishna Singh, S., Santiago, J. A., Franco, S. I., Larson, A. R., Lowry, A. R. and Bilham, R. (2003), *op. cit.*

⁷⁶ Iglesias, A., Singh, S. K., Lowry, A. R., Santoyo, M., Kostoglodov, V., Larson, K. M., and Franco-Sánchez, S. I. (2004). The silent earthquake of 2002 in the Guerrero seismic gap, Mexico (Mw=7.6): Inversion of slip on the plate interface and some implications, Geofísica Internacional, vol. 43, num. 3, pp. 309-317.

⁷⁷ Larson, K. M., Kostoglodov, V., Miyazaki, S., and Santiago, J. A. S. (2007). The 2006 aseismic slow slip event in Guerrero, Mexico: New results from GPS, *Geophysical Research Letters*, vol. 34, L13309.

de la corteza; más adelante *Radiguet et al. (2010)*⁷⁸ Por medio de la inversión de datos de GPS's, obtuvieron la evolución espacio-temporal del evento de deslizamiento.

En la figura 21 se observa la distribución del deslizamiento acumulativo, el cual tiene un máximo de 0.15 m cerca de la estación MEZC y un deslizamiento promedio de 0.55 cm, de este estudio se obtuvo que la magnitud de momento sísmico equivalente fue de Mw= 7.5, además consiguieron modelar la propagación temporal del deslizamiento.

⁷⁸ Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Valette, B., Kostoglodov, V., and Cotte, N. (2011). Spatial and temporal evolution of a long term slow slip event: the 2006 Guerrero slow slip event, Geophysical Journal International, vol. 184, pp. 816-828.

Figura 21 Desplazamiento acumulativo total (arriba) y evolución temporal del evento de deslizamiento lento del 2006. Modificada de Radiguet et al. (2011).

En los capítulos anteriores se empezó a abordar la relación que tienen los eventos de deslizamiento lento con las propiedades de la corteza, en 2011, *Rivet al al.*⁷⁹, *e*studiaron las variaciones en la velocidad de las ondas que suceden a profundidades entre 5 y 20 Km; estos cambios están relacionadas a las variaciones de la dilatación; sin embargo el máximo cambio en la dilatación no concuerda temporalmente con la máxima variación de la velocidad; es por eso que se concluyó que los cambios en las velocidades son debidos a deformaciones no lineales durante el SSE del 2006.

Otro estudio relacionado a las propiedades de la corteza fue el realizado por *Villafuerte (2014)⁸⁰*, en el cual se estudiaron la migración de fluidos junto con la evolución temporal de la presión de confinamiento, en la figura 22 observamos las presiones de confinamiento que se modelaron a lo largo del SSE del 2006, junto con la presión de poro y la velocidad de los fluidos, una conclusión importante de este estudio fue que el transporte difusivo no es en sí la fuente de los tremores, sin embargo sí podría alentar su ocurrencia.

⁷⁹ Rivet, D., Campillo, M., Shapiro, N. M., Cruz-Atienza, V., Radiguet, M., Cotte, N., Kostoglodov, V. (2011). Seismic evidence of nonlinear crustal deformation during a large slow slip event in Mexico, *Geophysical Research Letters*, vol. 38, L08308.

⁸⁰ Villafuerte-Urbina, C. D. (2014). Modelado poroelástico de sismos silenciosos en Guerrero, Tesis de Licenciatura, *Universidad Nacional Autónoma de México*, México.

Figura 22 Modelado poro-elástico del evento de deslizamiento lento del 2006. Evolución de la presión de confinamiento (izq.) y evolución de la presión de poro con la velocidad de fluidos y localización de tremores (der.). Tomada de Villafuerte (2014).

Localización de Tremores tectónicos en el estado de Guerrero

Los tremores no volcánicos fueron descubiertos en México por *Payero et al. (2008)⁸¹.* En su estudio se analizaron más de 100 *burst* (i.e., eventos) de tremores con lo que obtuvieron las siguientes características:

- Su profundidad oscila entre 5 y 40 Km y;
- Se concentran en dos *clusters* entre 150-170 y 210-240 Km.

Más adelante, *Kostoglodov et al. (2010)*⁸², analizaron la energía emitida por los tremores tectónicos y la relación que éstos tienen con los eventos de deslizamiento lento, específicamente con el acontecido en 2006, en la figura 23 observamos la energía liberada por tremores tectónicos con respecto al tiempo y al espacio, también se muestra el SSE del 2006.

⁸¹ Payero, J. S., Kostoglodov, V., Shapiro, N., Mikumo, T., Iglesias, A., Pérez-Campos, X., and Clayton, R. W. (2008), *op. Cit.*

⁸² Kostoglodov, V., Husker, A., Shapiro, N. M., Payero, J. S., Campillo, M., Cotte, N., and Clayton, R. (2010). The 2006 slow slip event and nonvolcanic tremor in the Mexican subduction zone, *Geophysical Research Letters*, vol. 37, L24301.

Aunque existe un aumento en la energía liberada por los tremores tectónicos al paso del evento de deslizamiento lento, esta liberación no es suficiente como para poder concluir que los NVT y los SSE tienen la misma fuente, ya que también se observan aumentos en la actividad de NVT aun cuando no hay SSE. Asimismo notamos que la energía se acumula en la parte donde el slab es horizontal, sin embargo no se tiene una gran resolución.

Figura 23 A) Energía liberada por NVTs . B) Localización de la energía de los NVTs con respecto a la trinchera. C) Desplazamientos N-S y E-W,incluyendo el SSE del 2006. D) Perfil de la zona de subducción. Tomada de Kostoglodov et al. (2010).

65

En el capítulo de métodos se nombró brevemente el método de autodetección de *Husker et al.* 2010⁸³, sin embargo es necesario adentrarnos un poco más en él, ya que fue la base para crear el catálogo de tremores que utilizaremos más adelante para la localización de los mismos.

El algoritmo de la autodetección es el siguiente:

- Se aplica un filtro pasa-bandas entre 1 y 2 Hz.
- Se aplica un filtro mediano de 10 minutos para remover el efecto de sismos locales.
- Se aplica el método de normalización de coda para remover efectos de sitio.
- Se quita la tendencia y los valores medianos de cada estación.
- Se hace un promedio de todas las estaciones para obtener una única señal.
- Si el promedio supera un umbral en dos puntos continuos (i.e 2.25) es considerado un tremor tectónico.

Usando el catálogo creado con el método descrito, *Husker et al. (2012)*⁸⁴ definieron con mayor precisión las regiones en las cuales se localizan los NVT: la región del *sweet spot* (aproximadamente a 215 Km de la trinchera), donde se concentra la mayor cantidad de energía

⁸³ Husker, A., Peyrat, S., Shapiro, N., and Kostoglodov, V. (2010), op. cit.

⁸⁴ Husker, A. L., Kostoglodov, V., Cruz-Atienza, V. M., Legrand, D., Shapiro, N. M., Payero, J. S., Campillo, M., and Huesca-Pérez, E. (2012). Temporal variations of non-volcanic tremor (NVT) locations in the mexican subduction zone: Finding the NVT sweet spot, *Geochemistry Geophysics Geosystems*, vol. 13 num. 3, Q03011.

liberada por tremores y la región del *transient* (aproximadamente a 180 Km de la trinchera) en la cual la ocurrencia es sumamente inferior. Asimismo encontraron que las localizaciones de NVTs varían en el tiempo, inclusive se observaron tremores sin la ocurrencia de SSE.

Localización de sismos de baja frecuencia en México

*Frank et al. (2013)*⁸⁵ *y Frank & Shapiro (2014)* detectaron y localizaron varias familias de LFE's en el estado de Guerrero, con este catálogo, *Frank et al. (2015)*⁸⁶ analizaron el comportamiento de los LFEs con respecto a la distancia para analizar su comportamiento.

Al igual que con los tremores tectónicos, los sismos de baja frecuencia presentan variaciones tanto espaciales como temporales, estos cambios se cree son debidos a fluctuaciones en la presión de poro, la cual migra *updip* a lo largo de la interfaz. Para realizar investigar lo anterior se clasificaron minuciosamente los LFE's con respecto a la distancia, en la figura 24 observamos la clasificación del número de sismos de baja frecuencia acumulados, normalizados y sin tendencia en diferentes periodos de tiempo y zonas (*transient y sweet spot*); para antes, durante y después del SSE del 2006.

⁸⁵ Frank, W. B., Shapiro, N. M., Kostoglodov, V., Husker, A. L., Campillo, M., Payero, J. S., and Prieto, G. A. (2013), *op. cit.*

⁸⁶ Frank, W. B., Shapiro, N. M., Husker, A. L., Kostoglodov, V., Bhat, H. S., and Campillo, M. (2015). Along-fault pore-pressure evolution during a slow-slip event in Guerrero, Mexico, *Earth and Planetary Science Letters*, vol. 413, pp. 135-143.

Figura 24 Comportamiento del catálogo de LFEs a través del tiempo. Tomada de Frank et al. (2015).

A partir de este estudio, se llegaron a las siguientes conclusiones que relacionan la presión de poro y esfuerzo efectivo para explicar lo observado en la figura anterior:

- Periodo inter-SSE. Hay una alta presión de poro, lo que conlleva a bajos esfuerzos efectivos y a una actividad continua de sismos de baja frecuencia en el *sweet spot*.
- Aceleración en el SSE. El evento de deslizamiento lento incrementa el esfuerzo cizallante, lo que incrementa la actividad de sismos de baja frecuencia en el *transient* y en el *sweet spot*, teniendo la primera mayor aceleración.
- Desaceleración en el SSE. Hay un decremento en la presión de poro, lo que conlleva a la desaceleración de la actividad de LFEs, esta desaceleración migra de profundo a somero.

Metodología de trabajo

Polarización del movimiento de Partícula

La polarización del movimiento de partícula es una manera de caracterizar un campo de ondas. Esta propiedad es empleada por el algoritmo TREP, por lo que se describirá el método con el que se obtiene el grado de polarización así como su dirección (i.e., el *back-azimuth*).

Uno de los primeros métodos para encontrar el grado de polarización fue el descrito por Flinn (1965)⁸⁷. Sin embargo, para el análisis de tremores, en esta investigación utilizaremos el método descrito por *Jurkevics (1988)⁸⁸* para sensores de tres componentes. La técnica se basa en el siguiente algoritmo:

- Se filtra la señal dentro de una banda de frecuencia.
- Se aplican una serie de ventanas de tiempo en cada componente. La resolución en frecuencia y en tiempo de la polarización son controladas por el ancho de la banda y de las ventanas de tiempo, respectivamente.

⁸⁷ Flinn E. (1965). Signal analysis using rectilinearity and direction of particle motion, Proceedings of the IEEE, vol. 53, pp. 1874-1876.

⁸⁸ Jurkevics, A. (1988). Polarization analysis of three-component array data, *Bulletin of the seismological society of America*, vol. 78 no. 5, pp. 1725-1743.

Para un sólo sensor, la polarización dentro de la ventana de tiempo es estimada de la siguiente manera: Sea X= [x_{ij}]; i=1,..., N; j=1,...3 la matriz de datos, donde x_{ij} es la muestra i de la componente j de los sismogramas, y N es el número de muestras en la ventana de tiempo. La matriz de covarianza S es evaluada como:

$$S_{jk} = \frac{XX^T}{N} = \left[\frac{1}{N}\sum_{i=1}^N x_{ij}x_{ik}\right]$$

La matriz de covarianza es de 3x3, real y simétrica. Sus componentes son las auto-varianzas y las cross-varianzas de las tres componentes del movimiento.

Los *eigen* vectores y los *eigen* valores de esta matriz, determinan los ejes principales del elipsoide de polarización del movimiento de partícula, y por ende el grado y la dirección de su polarización.

La rectilinearidad del movimiento de partícula nos dice qué tanto éste se asemeja a una línea recta. Del mismo modo, la planaridad indica que tanto el movimiento de partícula está contenido en un plano.

El grado de rectilinearidad del movimiento de partícula está dado por 1-($(\lambda_2 + \lambda_3)/2\lambda_1$), que es un valor entre cero y uno, y donde $\lambda_1 > \lambda_2 > \lambda_3$ son los tres eigenvalores de la matriz de covarianza. Mientras que el grado de planaridad está dado por 1-($2\lambda_3/(\lambda_1+\lambda_2)$).

70

El acimut de la polarización del movimiento de partícula está dado por la dirección (horizontal) del semieje mayor del elipsoide de polarización, asociado al *eigen* valor λ_1 , como:

$$P_{azimut \ h} = \tan^{-1} \left(\frac{u_{21} sign(u_{11})}{u_{31} sign(u_{11})} \right)$$

Donde u_{j1} son los cosenos directores del *eigen* vector u₁.

Para finalizar, aplicamos un filtro mediano al conjunto de valores de polarización asociados a cada ventana de tiempo. Cabe mencionar que el ancho de ventana y de la banda de frecuencia son de suma importancia en este método, ya que pueden aumentar o disminuir la influencia de ciertas señales. Por ejemplo, para obtener una cuantificación más precisa de la polarización de la partícula causada por un sismo, se necesita una ventana de menor tamaño a la necesaria para estudiar un tremor tectónico.

Valores de la rectilinearidad:

- Cero: En este caso, el movimiento de partícula es totalmente homogéneo en las tres direcciones del espacio. Es decir, el movimiento está contenido en una esfera en el espacio, por lo que no tiene una dirección preferencial de polarización.
- Uno: En este caso, el movimiento de la partícula se da sólo en una dirección del espacio describiendo una línea (sólo uno de los *eigen* valores de la matriz de covarianza es

diferente de cero).

- Cero punto cinco: En este caso pueden suceder dos cosas:
 - Los tres eigen valores diferentes de cero: En este caso, la suma de los dos eigen valores menores es igual al eigen valor mayor λ1= λ2+ λ3. Para λ2 y λ3 no hay restricciones, estos pueden tener o no el mismo valor.
 - Sólo dos eigen valores son diferentes de cero: En este caso, el eigen valor λ3 es igual a cero, por lo que la igualdad anterior queda como λ1=λ2. Gráficamente, la expresión nos indica que el movimiento de partícula está contenido en una circunferencia.

Aunque en esta investigación no se utilizará, el método introducido por *Jurkevics (1988)* puede aplicarse a un arreglo de sensores. En este caso, la polarización sufrida por el movimiento de una partícula es el promedio de las matrices de covarianza de cada sensor. También se puede obtener la polarización de un conjunto de bandas de frecuencias filtradas.

A partir de la obtención de la polarización y de la energía empleando el método de Kostoglodov et al. (2010), se obtuvieron los siguientes resultados para registros de tremores tectónicos:
- Espectrogramas de energía y linearidad, generados a partir del programa modificado de Payero et al. (2008)⁸⁹.
- Análisis frecuencial de la linearidad.
- Variación temporal del acimut, la linearidad y la energía.

Parametrización del método de polarización

Como se mencionó en el capítulo anterior, la obtención del grado de rectilinearidad depende de varios parámetros que afectan su cuantificación. Por ello, se realizó un análisis cuantitativo para determinar el mejor arreglo de variables que permitan la mejor caracterización de los tremores tectónicos.

En la figura 25 se muestra, para diferentes combinaciones de los parámetros y bandas de frecuencia, la derivada temporal de la rectilinearidad durante un tremor registrado el 22 de abril de 2013 en la estación "ARIG" del SSN. Los parámetros estudiados son la duración de las ventanas, el ancho de las bandas de frecuencia y el soporte del filtro mediano. Como se puede observar en la figura, la ventana de muestreo más pequeña (i.e., de 5 s), un ancho de banda de 0.25 Hz y un filtro mediano de 10 s es la combinación que maximiza la derivada de la rectilinearidad en casi la

⁸⁹ Payero, J. S., Kostoglodov, V., Shapiro, N., Mikumo, T., Iglesias, A., Pérez-Campos, X., and Clayton, R. W. (2008), *op. cit.*

totalidad de frecuencias entre 1 y 10 Hz, y por ende la capacidad de detección de tremores tectónicos a partir de este atributo sísmico.

En la figura 26 se muestra el espectrograma obtenido con la mejor parametrización. El eje x es el tiempo en segundos, el eje y es la frecuencia y el mapa de colores significa el grado de rectilinearidad entre cero y uno cuantificado. En contraste, la figura 27 muestra los resultados correspondientes a la parametrización con ventana de 20 s, banda de frecuencia de 0.45 Hz y filtro mediano de 30 segundos. Claramente, la parametrización óptima (Figura 26) arroja valores más altos y contrastantes de linearidad, permitiendo así identificar con más precisión los eventos de tremor.

Figura 25 Comportamiento de la derivada temporal de la rectilinearidad para diferentes parametrizaciones

Figura 27 Parametrización con los resultados más deficientes: Tw= 20s , ban freq= 0.45 Hz. y filtro mediano= 30 s.

Descripción del método TREP

La localización de tremores se realizó utilizando la técnica "*Tremor Energy and Polarization*" implementada por *Cruz-Atienza et al. (2015)⁹⁰.* Esta técnica consiste esencialmente en la búsqueda del hipocentro (localización en una malla regular 3D) y del mecanismo focal (dirección del deslizamiento) que explique mejor una serie de atributos sísmicos de la señal. Una aproximación similar empleando la amplitud del desplazamiento registrado fue propuesta por *Legrand et al. (2000)⁹¹* para la determinación de fuentes volcánicas.

El método tiene las siguientes consideraciones:

- La malla hipocentral usada para la localización fue de 140 x 60 x 60 Km con incrementos de 5 Km. Esta tiene una rotación de 15° en sentido horario desde el norte y comienza a partir de 130 Km de la trinchera.
- Los ángulos de deslizamiento explorados variaron en un rango de 30° a 150° con incrementos de 10° asumiendo dislocaciones horizontales.
- Para crear la base de sismogramas sintéticos se utilizó el método de número de onda

⁹⁰ Cruz-Atienza V. M., Husker, A., Legrand, D., Caballero, E., and Kostoglodov, V. (2014), op. cit.

⁹¹ Legrand, D., Kaneshima, S., and Kawakatsu, H. (2000). Moment tensor analysis of near-field broadband waveforms observed at Aso Volcano, Japan, *J. Volcanol. Geotherm. Res.*, vol. 101, pp. 155-169.

propuesto por *Bouchon & Aki. (1977)⁹²,* el cual discretiza los efectos de la fuente tomando como hipótesis que ésta se puede definir como una superposición de ondas planas homogéneas e inhomogéneas propagándose en ángulos discretos.

- Se consideró un medio elástico estratificado determinado por *Campillo et al. (1996)*⁹³.
- Se incluyó la atenuación intrínseca de la corteza determinada por *García et al. (2004)*⁹⁴.

Preprocesado de las señales y obtención de métricas para la inversión.

El método de TREP utiliza tres métricas para comparar la base de datos sintética con los datos registrados en las estaciones. Estas son: La distribución espacial de la energía, su derivada espacial y el *back-azimuth* del semieje mayor del elipsoide de polarización.

Debido a que se han observado migraciones de la fuente de tremor en periodos breves, el método TREP realiza un *"time-scanning"* con 2 minutos de incremento, para de este modo, obtener el

⁹² Bouchon, J. R., and Aki, K. (1977). Discrete wave number representation of seismic source wave fields, *Bulletin of Seismological Society of America*, vol. 67., pp. 259-277.

⁹³ Campillo, M., Singh, S. K., Shapiro, N., Pacheco, J., and Herrmann, R. B. (1996). Crustal structure south of the mexican volcanic belt, based on group velocity dispersion, *Geofísica Internacional*, vol. 35, pp. 361-370.

⁹⁴ García, D., Singh, S. K., Herraíz, M., Pacheco, J. F., and Ordaz, M. (2004). Inslab earthquakes of central Mexico: Q, source spectra and stress drop, *Bulletin of Seismological Society of America*, vol. 94, pp. 789-802.

patrón de migración de los tremores tectónicos.

Para cuantificar la energía se siguió la metodología de Husker et al. (2012)⁹⁵ modificada:

- Se aplica un filtro pasa-bandas entre 1 y 2 Hz.
- Se remueve la amplificación por efecto de sitio a partir de los factores para la normalización de la coda determinados por Husker et al. (2010)⁹⁶.
- Se remueve la tendencia y los valores medios de cada estación.
- Se calcula la energía como la suma de las velocidades al cuadrado en la ventana de tiempo deseada.
- Se aplica un filtro mediano de 2 minutos para remover el efecto de sismos locales.

A partir de esta señal preprocesada, obtenemos las tres diferentes métricas necesarias para la inversión de la fuente de tremor: energía a lo largo del arreglo de estaciones, derivada espacial de la energía y *back-azimuth* de la polarización. En el anexo podemos observar el grado de exactitud del *back-azimuth* para un sismo, lo que nos confirma que el *back-azimuth* puede ser una medición confiable.

⁹⁵ Husker, A. L., Kostoglodov, V., Cruz-Atienza, V. M., Legrand, D., Shapiro, N. M., Payero, J. S., Campillo, M., and Huesca-Pérez, E. (2012), op. cit.

⁹⁶ Husker, A., Peyrat, S., Shapiro, N., and Kostoglodov, V. (2010), op. cit.

Comparación entre datos observados y sintéticos: Función de costo.

Para poder realizar una comparación entre los datos sintéticos y los observados, se normalizaron las distribuciones de energía y la derivada espacial a lo largo del arreglo por el máximo valor absoluto de las tres componentes.

La cuantificación del error para la energía y su derivada espacial se realiza utilizando la norma L2:

$$\varepsilon = \sqrt{\sum_{i=1}^{n} (e_0 - e_s)^2}$$

$$D = \sqrt{\sum_{i=1}^{n} (d_0 - d_s)^2}$$

Donde n es el número de estaciones por tres (i.e., por el número de componentes del sensor), $e_0 y e_s$ son la energía observada y sintética respectivamente, ε es el error relativo a la energía, $d_0 y d_s$ son las derivadas observadas y sintéticas respectivamente y *D* es el error relativo para la derivada espacial.

Para el *back-azimuth* la función de costo sólo aplica para las proyecciones horizontales de la misma y está dada por la norma L1 con factores de pesos proporcionales a la energía total a lo largo del arreglo; donde Ci=1 es la estación con máxima energía:

$$\mathcal{P} = \sum_{i=1}^{n} (C_i \| \widehat{p_0} - \widehat{p_s} \|)$$

Donde n es el número de estaciones por tres, $p_0 y p_s$ son las proyecciones horizontales observadas y sintéticas respectivamente y *P* es el error del *back-azimuth*.

Finalmente, para establecer una función de costo balanceada, *Q*, combinamos las tres funciones de error anteriores después de realizar una normalización definida de la siguiente manera:

Sea F uno de los errores, entonces la función de error normalizada está definida por:

$$\widehat{\mathcal{F}} = \frac{\mathcal{F} - \min[\mathcal{CF}]}{\max(F) - \min[\mathcal{CF}]}$$

A partir de las funciones de error normalizadas de esta manera, se define Q como el promedio de las mismas:

$$Q = \langle \hat{\mathcal{E}}, \hat{\mathcal{D}}, \hat{\mathcal{P}} \rangle$$

A partir de Q podemos encontrar la mejor solución con el menor error.

Incertidumbre en las localizaciones

La resolución de la localización es dependiente de cada evento. Además, dada la normalización descrita, un evento con menor error podría tener mayor incertidumbre (i.e., menor resolución) en su localización que otro con mayor error.

Es por eso que para cuantificar la incertidumbre en las localizaciones de la fuente, se siguió la metodología propuesta por *Maeda & Obara (2009)⁹⁷*. De esta metodología se sigue que mientras mayor sea la pendiente de Q en los alrededores del mínimo global, mayor será la resolución y menor la incertidumbre de los parámetros. Para determinar la forma de Q, se mide la distancia del mínimo global a los puntos donde aumenta Q a un valor igual al 25% de su valor mínimo global. Cabe mencionar que Q no es simétrica, por lo que esta medida (la cual llamamos *"Resolution length"*) puede variar de una dirección a otra, por lo cual se hará un promedio del mismo.

Puesto que el RL es una medida independiente del error intrínseco de cada evento, lo utilizaremos para medir la confiabilidad de las localizaciones.

⁹⁷ Maeda, T., and Obara K. (2009), op. cit.

Resultados

Comparación de la linearidad con la energía espectral

A partir de la mejor parametrización obtenida en el punto 4.2, dada por (1) Ventanas de 5 s con corrimiento de 2 s, (2) filtro pasabandas (Butterworth) de 0.25 Hz y, (3) filtro mediano de 10 s aplicado a los valores de rectilinearidad, obtuvimos espectrogramas de rectilinearidad de diferentes días para varias estaciones del arreglo MASE⁹⁸, los cuales comparamos con la energía espectral calculada con el empleado por *Payero et al. (2008)⁹⁹*.

Las figuras 28 y 29 cuentan con tres paneles. En el panel superior tenemos el espectrograma de energía obtenido para la componente norte de la estación en cuestión, en donde el eje "x" es el tiempo (*time*) y el "y" las frecuencias (*frequency*). El panel de en medio muestra el espectrograma de la rectilinearidad (*linearity*). El mapa de colores indica el valor de rectilinearidad. Los ejes en este panel corresponden a los mismos del panel superior. El panel inferior se muestra el sismograma de las estaciones filtrado entre 1 y 2 Hz, donde se han observado los tremores tectónicos con mayor consistencia.

⁹⁸ MASE (2007). Meso American Subduction Experiment, Caltech, Dataset. Doi:10.7909/C3RN35SP.

⁹⁹ Payero, J. S., Kostoglodov, V., Shapiro, N., Mikumo, T., Iglesias, A., Pérez-Campos, X., and Clayton, R. W. (2008).

En las figura 28 se observa un tremor tectónico observado el día 6 de marzo de 2005 (delimitado con líneas rojas). Las estaciones utilizadas fueron "SATA" y "TONA" del arreglo MASE. La rectilinearidad alcanzada por el tremor tectónico fue mayor a 0.8; comparando este valor con el espectrograma de energía, encontramos una correlación temporal evidente entre los dos métodos y el sismograma filtrado entre 1 y 2 Hz.

En la figura 29 se muestran los mismos parámetros en la estación TONA para el día 2 de noviembre del 2005. Observamos la presencia de un *"burst"* de tremor tectónico que dura prácticamente todo el día, y sin embargo, el método de polarización de partícula lo logra definir con bastante claridad, alcanzando valores mayores o iguales a 0.8.

Un punto a resaltar sobre el método de polarización es que éste no es afectado por otros eventos sísmicos tales como los sismos comunes. Esto se puede observar en la figura 29; donde observamos un sismo acontecido aproximadamente a las 11:10 hrs y que tiene repercusiones en el espectrograma de energía más no en el espectrograma de rectilinearidad, debido al ancho de ventana utilizado para el análisis. Debido a lo anterior, existe la posibilidad de que la rectilinearidad no sea vea afectada y por lo tanto, que su correlación con el espectrograma de energía no sea alta.

En los dos casos descritos, se observa que el campo de ondas no polariza el movimiento de partícula en la banda de frecuencias entre 4 y 5 Hz, probablemente; debido a la naturaleza de la

fuente. Asimismo, aunque los tremores son de días de diferente mes, parecen tener un comportamiento periódico (se observan a horas similares), por lo que se sugiere analizar en un futuro la relación que estos pudieran llegar a tener.

Estos resultados son lo bastante claros como para concluir que el método de polarización de la partícula funciona para detectar, por el momento visualmente, los tremores tectónicos que acontecen en el estado de Guerrero.

Figura 28 Espectrogramas de energía, rectilinearidad y sismograma filtrado entre 1 y 2 Hz., para el día 6 de marzo del 2005, para las estaciones A)-SATA y B)-TONA.

Figura 29 Espectrogramas de energía, rectilinearidad y sismograma filtrado entre 1 y 2 Hz., para el día 2 de noviembre del 2005, para la estación TONA

Variación en la linearidad con respecto a la frecuencia

Los tremores tectónicos tienen un rango de frecuencias definido entre 1 y 10 Hz; sin embargo, el hallar una banda de frecuencia más delimitada favorecería al estudio de su fuente (i.e. los tremores disparados liberan energía en frecuencias mayores a 5-8 Hz).

Es por eso que, usando el espectrograma del movimiento de partícula, se obtuvieron perfiles de la rectilinearidad con respecto al tiempo para diferentes bandas de frecuencia.

En la figura 30 tenemos el espectrograma de la estación CIEN (arriba) y diferentes perfiles de rectilinearidad (abajo) del día 6 de marzo de 2005. Estos perfiles se obtuvieron a partir del espectrograma del movimiento de partícula; se definieron 5 bandas de frecuencia para el análisis: 1.5-3 Hz., 2 Hz., 5 Hz.6-7 Hz., y 8.5 Hz.

El eje *X* de la figura representa el tiempo en horas (*time*) y el eje *y* el grado de rectilinearidad (*linearity*) que presenta cada banda de frecuencia. Para los perfiles que fueron creados a partir de intervalos se aplicó un promedio de las bandas de frecuencia, así para el intervalo de 1.5-3Hz., se realizó un promedio entre las 4 bandas de frecuencia involucradas.

Del análisis realizado de estos perfiles, concluimos que el tremor acontecido a las 17 horas tuvo frecuencias predominantes entre 1 y 2 Hz, donde alcanzó valores de rectilinearidad incluso mayores a 0.85. Del mismo modo, observamos que el ruido en la señal es pequeño, por lo que no afecta al cálculo de la rectilinearidad. Cabe señalar que la banda de frecuencia predominante puede variar dependiendo del evento; puesto que ésta depende de la naturaleza de la fuente.

rectilinearidad para diferentes bandas de frecuencia (abajo), para el día 6 de marzo de 2005.

Linearidad en función de la distancia a la trinchera

Uno de los objetivos de esta investigación es demostrar, que, tanto la propiedad de rectilinearidad como *back-azimuth,* se pueden utilizar para la localización de los tremores tectónicos con el método TREP; para esto se comparó la energía de los tremores obtenida con el método

modificado de *Husker et al. (2010)¹⁰⁰,* y el método de polarización de la partícula, para analizar si pueden complementarse para la detección de tremores tectónicos.

La tasa de muestreo para la energía de cada estación fue de 5 minutos, para obtener los perfiles de energía se siguió el siguiente procedimiento:

- Se aplicó un filtro pasa-bandas entre 1 y 2 Hz.;
- Se aplicó un filtro mediano centrado de 5 minutos para remover el efecto de sismos locales;
- Se realizó el método de normalización de coda para remover efectos de sitio y;
- Se removió la tendencia y los valores medianos de cada estación.

Para la obtención de la rectilinearidad se siguió el mismo procedimiento descrito anteriormente con algunas variantes; para tener el mismo muestreo de la energía, se realizó un filtro mediano de 5 minutos centrado, además, sólo se usó la banda de frecuencias de 1-2 Hz.

Para eliminar efectos referentes a cada estación se realizó el siguiente procedimiento:

¹⁰⁰ Husker, A., Peyrat, S., Shapiro, N., and Kostoglodov, V. (2010), op. cit.

- Energía. Se obtuvo la energía mediana por estación y a partir de ella se hizo una normalización a cada estación, a partir de este análisis se obtuvo el porcentaje del valor absoluto de la variación con respecto a la mediana.
- Rectilinearidad. Se siguió el mismo procedimiento que para la energía.
- *Back-azimuth*. Debido a la naturaleza del *back-azimuth*, sólo se compararon los valores del back-azimuth con respecto al valor de la mediana de cada estación.

En las siguientes figuras tenemos 5 paneles, en orden descendente son:

- Energía sin normalizar (*Energy*);
- Variación de la energía en porcentaje (*Energy Var %*);
- Variación de la rectilinearidad en porcentaje (Linearity Var %);
- Variación del back-azimuth (Azimuth Var deg) y;
- Sismograma filtrado entre 1 y2 Hz.

En la figura 31 se muestran los perfiles de energía, linearidad y back-azimuth para el 6 de marzo del 2005 para las 5:50 hrs. Podemos observar una clara relación entre la energía y la linearidad, lo cual facilita la detección del tremor acontecido por medio de estos dos métodos. La energía llega a tener una variación con respecto a su mediana del 1000%, mientras que la rectilinearidad varía entre 5 y 15 % dependiendo de la estación; estos resultados acotan de mejor manera la localización de la fuente del tremor tectonico. El sismograma en la parte inferior es de la estación

SATA filtrado en la banda de frecuencias de 1-2 Hz.

Para verificar la detección, en la figura 32 se tienen los perfiles del mismo día pero en diferente tiempo (9:50 hrs.); estos resultados no experimentan grandes cambios en sus valores (la energía tiene variaciones del 10 % y la linearidad apenas alcanza valores del 2 %), debido a esto concluimos que no hay tremor tectónico en ese instante.

Figura 31 Perfiles de energía, recilinearidad, back-azimuth y sismograma filtrado entre 1-2 Hz para las 5:50 hrs, el eje X es la distancia perpendicular a la costa y el eje "Y" es la variación de la energía, rectilinearidad y back-azimuth.

Figura 32 Perfiles de energía, rectilinearidad, back-azimuth y sismograma, para las 9:50 hrs, el eje X es la distancia perpendicular a la costa y el eje "Y" es la variación de la energía, rectilinearidad y back-azimuth.

Variación del back-azimuth con respecto al tiempo.

En el punto anterior observamos que la rectilineridad es capaz de detectar y delimitar un tremor tectónico. Sin embargo, para su localización precisa con el método TREP, necesitamos conocer su *back-azimuth* y estar seguros que éste es capaz de mostrar las propiedades del campo de ondas.

En las figuras 33 y 34 tenemos los siguientes paneles:

- Variación del *back-azimuth* con respecto al tiempo y la distancia. Muestra los valores del back-azimuth de cada estación, los cuales están en función de la energía liberada, es decir, estos valores están normalizados con respecto al máximo de la energía del día analizado.
- Espectrograma del movimiento de partícula de la estación SATA (linearity).
- Sismograma filtrado entre 1 y 2 Hz de la estación SATA.

En la figura 33 se muestra el valor del back azimith para el arreglo MASE para la misma hora que la de la figura 31 (5:50 hrs). Se aprecia claramente una alineación en el back-azimuth con dirección noroeste de las estaciones TONA, SATA, ZACA, CIEN y BUCU, lo cual concuerda con los valores de energía y rectilinearidad de la figura 31.

El grado de rectilinearidad mostrado por el espectrograma del movimiento de partícula junto con el sismograma filtrado, nos hacen concluir que la dirección del back-azimuth de las estaciones citadas es causada por el campo de ondas producido por un tremor tectónico

Figura 33 Mapa de las estaciones del arreglo MASE con su back-azimuth, el eje x representa la distancia perpendicular a la costa (trench-perpendicular distance) y el eje y la distancia paralela a la misma (trenchparalel distance); espectrograma de rectilinearidad (linearity) de SATA, donde el eje x significa las horas transcurridas (time hour), el eje y la frecuencia (frequency) y la paleta de colores el grado de rectilinearidad (rectilinearity); y sismograma filtrado entre 1-2 Hz de la misma estación, para las 5:50 hrs.

La figura 34 corresponde al mismo horario de la figura 32 (9:50 hrs.), las flechas que representan el *back-azimuth* son de un menor tamaño debido a la normalización con respecto a la energía y no muestran una alineación clara; estos resultados, junto al espectrograma de rectilinearidad y el sismograma filtrado demuestran que para la hora indicada, no existen tremores tectónicos.

El análisis llevado a cabo de la rectilinearidad y el *back-azimuth* obtenido a partir de ella, nos hacer concluir que son métricas confiables para el estudio de los tremores tectónicos y que se pueden utilizar para la localización de los mismos.

Figura 34 Mapa de las estaciones del arreglo MASE con su back-azimuth, el eje x representa la distancia perpendicular a la costa (trench-perpendicular distance) y el eje y la distancia paralela a la misma (trenchparalel distance); espectrograma de rectilinearidad (linearity) de SATA, donde el eje x significa las horas transcurridas (time hour), el eje y la frecuencia (frequency) y la paleta de colores el grado de rectilinearidad (rectilinearity); y sismograma filtrado entre 1-2 Hz de la misma estación, para las 9:50 hrs.

Localización de tremores tectónicos con el método TREP

Utilizando el catálogo realizado por *Husker et al. (2012)¹⁰¹*, se realizó la localización de 240 episodios de tremor comprendidos entre 2005 y 2007, lapso en el que también ocurrió el evento de deslizamiento lento del 2006.

Como se mencionó en el capítulo 4, el método TREP tiene implementado un *time-scan*, con lo cual, aunque el tremor migre, es posible rastrear su localización para efectos de monitoreo. El *timescan* se realiza recorriendo la ventana de muestreo cada dos minutos hasta el término del tremor tectónico. De esta manera, para el tremor acontecido el 6 de marzo del 2005, a las 13: hrs., se obtuvieron 19 diferentes localizaciones.

En la figura 35 se muestran los perfiles de energía observados (rojo) y sintéticos (azul) para la primer ventana de muestreo; el panel superior muestra los resultados para la componente nortesur, el de en medio para la componente este-oeste y el inferior para la componente vertical, se observa una buena concordancia entre los datos observados y sintéticos.

En la figura 36 se muestran los perfiles de la derivada espacial de la energía observados (rojo) y sintéticos (azul) para la primer ventana del muestreo; el panel superior muestra los resultados

¹⁰¹ Husker, A. L., Kostoglodov, V., Cruz-Atienza, V. M., Legrand, D., Shapiro, N. M., Payero, J. S., Campillo, M., and Huesca-Pérez, E. (2012), *op. cit.*

para la componente norte-sur, el de en medio para la componente este-oeste y el inferior para la componente vertical; al igual que para la energía, la similitud entre los datos sintéticos y observados es clara.

En la figura 37 se muestra la mejor localización obtenida para la primer ventana del evento (estrella amarilla), la cual se encuentra a 200 Km de la costa, 15 Km a lo largo de la distancia paralela a la costa y a 40 Km de profundidad. En la imagen se aprecia una elongación de mínimos que recorren la malla con una dirección noreste. Haciendo un análisis de las diferentes localizaciones encontradas, se observó que muchas caen en esta serie. Dada la naturaleza lineal del arreglo y el hecho de que las localizaciones se encuentran en este mínimo general, la migración de los tremores dentro del *burst* es difícil de estimar.

Figura 35 Perfiles de energía teóricos (azul) y observados (rojo) en las componentes N-S, E-W y Z. El eje X es el número de estación (Station Number) y el eje Y es la energía normalizada (Normalized Energy).

Figura 36 Perfiles de la derivada espacial de energía teóricos (azul) y observados (rojo) en las componentes N-S, E-W y Z. EL eje x es el número de estación (Station Number) y el eje Y es la derivdad normalizada (Normalized Derivative)

Figura 37 Mejor localización para la primera ventana de muestreo del tremor del dia 6-03-05 (estrella amarilla). El eje x representa la distancia perpendicular a la costa (trench-perpendicular distance), el eje y es la dirección paralela a la costa (Coast-paralel distance). La barra de colores muestra el logaritmo de los valores de la función de costo (logarithm of the root mean square root), las estaciones con su valor de back azimuth observado (rojo) y sintéticos (azul). En la localización se muestran los errores en la misma (cruz blanca), el mejor rake para la localización (línea amarilla) y el rango de variación del rake.

Utilizando todas las localizaciones se hizo un análisis para encontrar la ubicación estadísticamente más probable en la cual se acumularon la mayoría de las localizaciones durante el evento de deslizamiento lento del 2006. Para esto se recorrió una malla 3D con incrementos de 1 Km y, utilizando una esfera de 5 Km de radio, se contabilizaron todas las localizaciones que caían dentro de ese rango. Para tener un mejor control sobre los datos, sólo se consideraron las localizaciones que tuvieron un *Resolution Length* en la componente vertical menor a 2 Km.

En las figuras 38 y 39 tenemos el logaritmo del número de eventos por punto de la malla, el número de eventos son todas las muestras que se obtuvieron a partir del catálogo, mientras que el número de eventos seleccionados son los que cumplieron con el criterio del *Resolution Length*, también se muestra la geometría del slab. Con base en estos resultados podemos confirmar las dos diferentes regiones en las cuales se agrupan los tremores tectónicos.

During-SSE-Number of NVT per Unit Volume (colours)

Figura 38 Localización de los eventos con RL menos a 2Km, los puntos negros son estaciones del arreglo MASE. El eje x es la distancia perpendicular a la costa (trenchperpendicular distance), el eje y es la distancia paralela a la costa (trench-parallel distance) y los cuadrados negros son las estaciones.

Figura 39 Localización de eventos con RL menor a 2 Km. El eje x es la distancia perpendicular a la costa (trench-perpendicular distance), el eje y es la distancia paralela a la costa (trench-parallel distance)

Utilizando los valores de profundidades obtenidos, se realizó un análisis para obtener las profundidades promedio de las zonas del *transient* y el *sweet spot,*. Las distancias a la trinchera para delimitar cada una de las dos zonas fueron:

- Transient zone: 145-180 Km.
- Sweet spot: 195-250 Km

En la figura 40 se muestra una comparación entre las profundidades promedio obtenidas para cada una de las zonas, el eje y es la profundidad y el eje x es el número de eventos, los cuales

están normalizados a uno. La zona del *transient* (azul) tuvo una profundidad promedio de 40 Km (azul), mientras que la del sweet spot (verde) fue de 45 Km, los errores estándar son +/- 3.93 Km y 5.72 Km, respectivamente. Cabe señalar que el número de profundidades utilizadas en el análisis es diferente para el *sweet spot* y el *transient* (i.e., se cuenta con más datos en el *sweet spot*). Debido a lo anterior, el valor de la profundidad promedio en el *sweet spot* es más certero que en la zona del *transient*.

Este resultado sugiere que, a diferencia de la zona *transient* donde los tremores parecen ocurrir en la interface de las placas, los tremores en el *sweet spot* podrían ocurrir dentro del *slab* (i.e., algunos kilómetros por debajo de la interface). Esta hipótesis concuerda con estimaciones de la evolución de la presión de poro durante el SSE de 2006 (y más específicamente con la evolución del esfuero de Coulomb, CFS) dentro del *slab* en el *sweet spot*, donde la evolución de la tasa de recurrencia de LFEs puede explicarse con la evolución del CFS (Frank et al., 2015)¹⁰².

¹⁰² Frank, W. B., Shapiro, N. M., Husker, A. L., Kostoglodov, V., Bhat, H. S., and Campillo, M. (2015), op. cit.

Figura 40 Profundidades promedios para las zonas del transient y el sweet spot. El eje X es el número de NVT por unidad de volumen normalizado (Number of NVT per Unit Volume) y el eje Y es la profundidad (Depth).

Discusión y conclusiones

Uno de los objetivos de esta investigación fue el evaluar si la linearidad del movimiento de partícula caracteriza al campo de ondas ocasionado por los tremores tectónicos en Guerrero. Para esto se realizó un análisis sistemático de la parametrización que interviene en el cálculo de la polarización del movimiento. Así se encontraron los siguientes valores de los parámetros que maximizaron el gradiente temporal de la linearidad: Ventana temporal de 5 s, ancho de banda frecuencial de 0.25 Hz y filtro mediano de 10 s.

Visualmente es posible detectar tremores tectónicos con el método de la polarización del movimiento de partícula. Incluso cuando en el espectrograma de energía no es posible acotar espacial y temporalmente los tremores tectónicos.

Además de la detección visual, el método nos provee información acerca de las frecuencias dominantes de los NVT. Sin embargo, se debe de tener especial cuidado con esta caracterización, puesto que las frecuencias en donde emerge el campo de ondas de los tremores dependen de las características de su fuente.

Se ha demostrado que la polarización del movimiento de partícula sujeto a la incidencia de un tremor tectónico posee una buena correlación con la energía de dichas señales. Por esta razón, la

polarización es un atributo sísmico eficaz para la detección de los tremores tectónicos tanto en el espacio como en el tiempo, que podrá ser utilizado en futuros trabajos.

En consecuencia con lo anterior, se demostró que el *back-azimuth* del semieje mayor del elipsoide de polarización permite caracterizar el campo de ondas del tremor, y por lo tanto, la fuente de la señal en términos de su localización y mecanismo focal.

Para caracterizar la fuente de tremor se aplicó el método TREP, que emplea cientos de miles de funciones de Green para determinar a la vez la localización hipocentral y el mecanismo focal de la fuente asumiendo dislocaciones horizontales. Un análisis de resolución de las localizaciones arrojadas por este método con el arreglo de estaciones MASE reveló incertidumbres medias de 5 Km en las tres direcciones cartesianas. Debido a lo anterior, se concluyó que el incluir los mecanismos focales en el método TREP, se logra una mejor localización de los tremores tectónicos.

Empleando una malla de 1 Km de espaciamiento, se localizó un total de 8,175 tremores tectónicos ocurridos en Guerrero entre enero de 2006 y diciembre de 2006 aplicando el método TREP con barridos temporales y move-outs teóricos. De ellos, 606 poseen una resolución superior a 2 Km en profundidad. Estas localizaciones sugieren que los tremores son sensiblemente más profundos (~5-8 Km) en el sweet spot (i.e., entre 180 y 250 Km de la trinchera) que en la transient zone (i. e., entre 150 y 170 Km de la trinchera). Asumiendo una

geometría horizontal del contacto entre las placas, esto implica que una parte importante de los tremores en el sweet spot son provocados por pequeñas dislocaciones dentro de la placa oceánica. Sin embargo, dado que el error en las localizaciones es del mismo orden que la diferencia de profundidades en ambas zonas, esta hipótesis debe considerarse con precaución.

Debido a la geometría del arreglo de estaciones utilizado, las localizaciones en la dirección paralela a la costa son en general pobres. Por esta razón, en un futuro próximo se realizará el mismo tipo de análisis con datos que tengan una mejor cobertura acimutal y que por ende permitan estudiar la migración temporal de los tremores tectónicos

Bibliografía

- Ando, R., Nakata, R., and Hori, T. (2010). A slip pulse model with fault heterogeneity for low-frequency earthquakes and tremor along plate interfaces, *Geophysical Research Letters*, vol. 37, L10310.
- Audet, P., Bostock, M. G., Boyarko, D. C., Brudzinski, M. R., and Allen R. M. (2010). Slab morphology in the cascadia forc arc and its relation to episodic tremor and slip, *Journal of Geophysical Research*, vol. 115, B00A16.
- Beroza, G. C., and Ide, S. (2011). Slow Earthquakes and Nonvolcanic Tremor, "Annu. Rev. Earth Planet. Sci. ",vol. 39, pp. 271–296.
- Bouchon, J. R., and Aki, K. (1977). Discrete wave number representation of seismic source wave fields, *Bulletin of Seismological Society of America*, vol. 67., pp. 259-277.
- Brown, J. R., Beroza, G. C., and Shelly, D. R. (2008). An autocorrelation method to detect low frequency earthquakes withn tremor, *Geophysical Research Letters*, vol. 35, L16305.
- Brown, J. R., Beroza, G. C., Ide, S., Ohta, K., Shelly, D. R., Schwartz S. Y., Rabbel, W., Thorwart, M., and Kao, H. (2009). Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones, *Geophysical Research Letters*, vol. 36, L19306.
- Campillo, M., Singh, S. K., Shapiro, N., Pacheco, J., and Herrmann, R. B. (1996). Crustal structure south of the mexican volcanic belt, based on group velocity dispersion, *Geofísica Internacional*, vol. 35, pp. 361-370.
- Chapman, J. S., and Melbourne, T. I. (2009). Future Cascadia megathrust rupture delineated by episodic tremor and slip, *Geohysical Research Letters*, vol. 36, L22301
- Cruz-Atienza V. M., Husker, A.,Legrand, D., Caballero, E., and Kostoglodov, V. (2015). Nonvolcanic tremor locations and mechanisms in Guerrero, Mexico, from energy-based and particle motion polarization analysis, *Journal of Geophysical Research. Solid Earth*, 120, doi:10.1002/2014/JB011389.
- Dougherty, S. L., Clayton, R. W., and Helmberger, D. V. (2012). Seismic structure in central Mexico: Implications for fragmentation of the subducted Cocos plate, Journal of Geophysical Research, vol. 117, B09316.
- Dragert, H., Wang, K., and James T. S. (2001). A silent slip event on the deeper Cascadia subduction interface, *Science*, vol. 292, pp.1525-1528.
- Dragert, H., Wang, K., and Rogers, G. (2004). Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone, *Earth Planets Space*, 56, pp. 1143-1150.
- Flinn E. (1965). Signal analysis using rectilinearity and direction of particle motion, Proceedings of the IEEE, vol. 53, pp. 1874-1876.
- Frank, W. B., Shapiro, N. M., Kostoglodov, V., Husker, A. L., Campillo, M., Payero, J. S., and Prieto, G. A. (2013). Low-frequency earthquakes in the mexican sweet spot, *Geophysical Research Letters*, vol. 40, pp. 2661-2666.
- Frank W. B., and Shapiro, N. M. (2014). Automatic detection of low-frequency earthquakes (LFEs) based on a beamformed network response, *Geophysical Journal International*, vol. 197, 1215-1223.
- Frank, W. B., Shapiro, N. M., Husker, A. L., Kostoglodov, V., Bhat, H. S., and Campillo, M. (2015). Along-fault pore-pressure evolution during a slow-slip event in Guerrero, Mexico, *Earth and Planetary Science Letters*, vol. 413, pp. 135-143.
- García, D., Singh, S. K., Herraíz, M., Pacheco, J. F., and Ordaz, M. (2004). Inslab earthquakes of central Mexico: Q, source spectra and stress drop, *Bulletin of Seismological Society of America*, vol. 94, pp. 789-802.
- Ghosh, A., Vidale, J. E., Sweet, J. R., Creager, K. C., and Wech, A. G. (2009). Tremor patches in Cascadia revealed by seismic array analysis, *Geophysical Research Letters*, vol. 36, L17316.
- Gomberg, J. And the Cascadia 2007 and Beyond Working Group (2010). Slow-slip phenomena in Cascadia from 2007 and beyond: A review, Geological Society of America Bulletin, vol. 122, pp. 963-978.
- Houston, H. (2015). Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress, *Nature Geoscience*, vol. 8, pp. 409-415.
- Husker, A., Peyrat, S., Shapiro, N., and Kostoglodov, V. (2010). Automatic non-volcanic tremor detection in the mexican subduction zone, *Geofísica Internacional*, 49(1), pp. 17-25.

- Husker, A. L., Kostoglodov, V., Cruz-Atienza, V. M., Legrand, D., Shapiro, N. M., Payero, J. S., Campillo, M., and Huesca-Pérez, E. (2012). Temporal variations of non-volcanic tremor (NVT) locations in the mexican subduction zone: Finding the NVT sweet spot, *Geochemistry Geophysics Geosystems*, vol. 13 num. 3, Q03011.
- Ide, S., Shelly, D. R., and Beroza, G. C. (2007). Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip o the plate interface, *Geophysical Research Letters*, vol. 34, L03308.
- Iglesias, A., Singh, S. K., Lowry, A. R., Santoyo, M., Kostoglodov, V., Larson, K. M., and Franco-Sánchez, S. I. (2004). The silent earthquake of 2002 in the Guerrero seismic gap, Mexico (Mw=7.6): Inversion of slip on the plate interface and some implications, Geofísica Internacional, vol. 43, num. 3, pp. 309-317.
- Ito, Y., Obara, K., Shiomi, K., Sekine S., and Hirose, H. (2007). Slow earthquakes coincident with episodic tremors and slow slip events, *Science*, vol. 315, pp. 503-506.
- Ito, Y., Asano, Y., and Obara, K. (2009-a). Very-low frequency earthquakes indicate a transpressional stress regime in the Nankai accretionary prism, *Geophysical Research Letters*, vol. 36, L20309.
- Ito, Y., obara, K., Matsuzama, T., and Maeda T. (2009-b). Very low frequency earthquakes related to small asperities on the plate boundary interface at the locked to aseismic transition, *Journal of Geophysical Research*, vol. 114, B00A13.
- Jödicke, H., Jording, A., Ferrari, L., Arzate, J., Mezger, K., and Rüpke, L. (2006). Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: Implications for the generation of volcanism and subduction dynamics, *Journal of Geophysical Research*, vol. 111, B08102.
- Jurkevics, A. (1988). Polarization analysis of three-component array data, *Bulletin of the seismological society of America*, vol. 78 no. 5, pp. 1725-1743.
- Kao, H., and Shan S. (2004). The source-scanning algorithm: mapping the distribution of seismic sources in time and space, *Geophysical Journal International*, vol. 157, pp. 589-594.
- Kao, H., Shan, S., Dragert, H., Roger, G., Cassidy, J. F., Wang, K., James, T. S. Ramachandran, K. (2006). Spatial-temporal patterns of seismic tremors in northern Cascadia, *Journal of Geophysical Research*, vol. 111, B03309.

- Kao, H., Thompson, P. J., Rogers, G., Dragert, H., and Spence, G. (2007). Automatic detection and characterization of seismic tremors in northen Cascadia, *Geophysical Research Letters*, vol. 34, L16313.
- Kao, H., Wang, K., Dragert, H., Kao, J. Y., and Rogers G. (2010). Estimating seismic moment Magnitude (Mw) of tremor bursts in northern Cascadia: Implications for the "seismic efficiency" of episodic tremor and slip, *Geophysical Research Letters*, vol. 37, L19306.
- Kato, A., iidaka, T., Ikuta, R., Yoshida, Y., Katsumata, K., Iwasaki, T., Sakai, S., Thurber, C., Tsuura, N., Yamaoka, K., Watanabe, T., Kunitomo, T., Yamazaki, F., Okubo, M., Suzuki S., and Hirata, N., (2010). Variations of fluid pressure within the subducting oceanic crust and slow earthquakes, *Geophysical Research Letters*, vol. 37, L14310.
- Katsumata, A., and Kamaya, N. (2003). Low-frequency continuos tremor around the Moho discontinuity away from volcanoes in the southwest Japan, *Geophysical Research Letters*, vol. 30 no. 1, 1020.
- Kim, Y., Clayton, R. W., and Jackson, J. M. (2010). Geometry and seismic properties of the subducting Cocos plate in central Mexico, *Journal of Geophysical Research*, vol. 115, B06310.
- Kostoglodov, V., Bandy, W., Domínguez, J., and Mena, M. (1996). Gravity and seismicity over the Guerrero seismic gap, Mexico, Geophysical Research Letters, vol. 23 no. 23, pp. 3385-3388.
- Kostoglodov, V., Krishna Singh, S., Santiago, J. A., Franco, S. I., Larson, A. R., Lowry, A. R. and Bilham, R. (2003). A large silent earthquake in the Guerrero seismic gap, Mexico, *Geophysical Research Letters*, vol. 30 no. 15.
- Kostoglodov, V., Husker, A., Shapiro, N. M., Payero, J. S., Campillo, M., Cotte, N., and Clayton, R. (2010). The 2006 slow slip event and nonvolcanic tremor in the Mexican subduction zone, *Geophysical Research Letters*, vol. 37, L24301.
- Larson, K. M., Kostoglodov, V., Miyazaki, S., and Santiago, J. A. S. (2007). The 2006 aseismic slow slip event in Guerrero, Mexico: New results from GPS, *Geophysical Research Letters*, vol. 34, L13309.
- Legrand, D., Kaneshima, S., and Kawakatsu, H. (2000). Moment tensor analysis of near-field broadband waveforms observed at Aso Volcano, Japan, *J. Volcanol. Geotherm. Res.*, vol. 101, pp. 155-169.

- Lowry, A. R., Larson, K. M., Kostoglodov and V. Bilham R., (2001). Transient fault slip in Guerrero, southern Mexico, *Geophysical Research Letters*, vol. 28, pp. 3753-3756.
- La Rocca, M., McCausland, W., Galluzo, D., Malone, S., Saccorotti, G., Del Pezzo, E. (2005). Array measurements of deep tremor signals in the Cascadia subduction zone, *Geophysical Research Letters*, vol. 32, L21319.
- La Rocca, M., Galluzo, D., Malone, S., McCausland, W., Saccorotti, G., and Del Pezzo, E., (2008). Testing small-aperture array analysis on well-located earthquakes, and application to the location of deep tremor, *Bulletin of the Seismological Society of America*, vol. 98, no. 2, pp. 620-635.
- Maeda, T., and Obara K. (2009). Spatiotemporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku, Japan, *Journal of Geophysical Research*, vol. 114, B00A09.
- Manea, V. C., Manea, M., Kostoglodov, V., Currie, C. A., and Sewell, G. (2004). Thermal structure, coupling and metamoprphism in the Mexican subduction zone beneath Guerrero, *Geophysical Journal International*, vol. 157, pp. 775-784.
- Manea, V. C., and Manea, M. (2010). Flat-slab thermal structure and evolution beneath central Mexico, *Pure and Applied Geophysics*.
- MASE (2007). Meso American Subduction Experiment, Caltech, Dataset. Doi:10.7909/C3RN35SP.
- Matsubara, M., Obara, K., and Kasahara, K. (2009). High-Vp/Vs zone accompanying non-volcanic tremors and slow slip events, *Tectonophysics*, vol. 472, pp. 6-17.
- Miyazawa, M., and Mori J. (2005). Detection of triggered deep low-frequency events from the 2003 Tokachi-oki earthquake, *Geophysical Research Letters*, vol. 32, L10307.
- Miyazawa, M., and Mori, J., (2006). Evidence suggesting fluid flow beneath Japan due to periodic seismic triggering from the 2004 Sumatra-Andaman earthquake, *Geophysical Research Letters*, vol. 33, L05303.
- Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan, *Science*, vol. 296, pp. 1679-1681.

- Obara, K., and Sekine S. (2009). Characteristic activity and migration of episodic tremor and slow-slip events in central Japan, *Earth Planets Space*, vol.61, pp. 853-862.
- Obara, K. (2010). Phenomenology of deep slow earthquake family in southwest Japan: Spatiotemporal characteristics and segmentation, *Journal of Geophysical Research*, vol. 115, B00A25.
- Obara, K. (2011). Characteristics and interactions between non-volcanic tremor and related slow earthquakes in the Nankai subduction zone, southwest Japan, *Journal of Geodynamics*, 52, pp. 229-248.
- Payero, J. S., Kostoglodov, V., Shapiro, N., Mikumo, T., Iglesias, A., Pérez-Campos, X., and Clayton, R. W. (2008). Nonvolcanic tremor observed in the Mexican subduction zone, *Geophysical Research Letters*, vol. 35, L07305.
- Peacock, S. M. (2009). Thermal and metamorphic environment of subduction zone episodic tremor and slip, *Journal of Geophysical Research*, vol. 114, B00A07.
- Peacock, S. M., Christensen, N. I., Bostock, M. G., and Audet, P (2011). High pore pressures and porosity at 35 km depth in the Cascadia subduction zone, *Geology*, vol. 39 no. 5, pp. 471-474.
- Pérez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., Pacheco, J. F., Singh, S. K., Manea, V. C., and Gurnis, M. (2008). Horizontal subduction and truncation of the Cocos plate beneath central Mexico, *Geophysical Research Letters*, vol. 35, L18303.
- Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Valette, B., Kostoglodov, V., and Cotte, N. (2011). Spatial and temporal evolution of a long term slow slip event: the 2006 Guerrero slow slip event, Geophysical Journal International, vol. 184, pp. 816-828.
- Rivet, D., Campillo, M., Shapiro, N. M., Cruz-Atienza, V., Radiguet, M., Cotte, N., Kostoglodov, V. (2011). Seismic evidence of nonlinear crustal deformation during a large slow slip event in Mexico, *Geophysical Research Letters*, vol. 38, L08308.
- Rogers, G. and Dragert, H. (2003). Episodic Tremor and Slip on the Cascadia subduction zone: The chatter of silent slip, *Science*, vol. 300, 1942-1943.
- Rubinstein, J. L., Vidale, J. E., Gomberg, J., Bodin, P., Creager K. C., and Malone S. D. (2007). Non-volcanic tremor driven by large transient shear stresses, *Nature*, vol. 448, pp. 579-582.

- Schwartz, S. Y., and Rokosky J. M. (2007). Slow slip events and seismic tremor at Circum-Pacific subduction zones, *Reviews of Geophysics*, vol. 45, RG3004.
- Shelly, D. R., Beroza, G. C., Ide, S. And Nakamula, S. (2006). Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip, *Nature*, vol. 442, pp. 188-191.
- Shelly, D. R., Beroza, G. C. and Ide, S. (2007-a). Non-volcanic tremor and low-frequency earthquake swarms, *Nature*, vol. 446, pp. 305-307.
- Shelly, D. R., Beroza, G. C. and Ide, S. (2007-b). Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan, *Geochemistry Geophysics Geosystems*, vol. 8 no.10.
- Song, T. A., Helmberger, D. V., Brudzinski, M. R., Clayton, R. W., Davis, P., Pérez-Campos, X., and Singh, S. K. (2009). Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico, *Science*, vol. 324, 502-506.
- Villafuerte-Urbina, C. D. (2014). Modelado poroelástico de sismos silenciosos en Guerrero, Tesis de Licenciatura, *Universidad Nacional Autónoma de México*, México.
- Wech, A. G., and Creager, K. C. (2007). Cascadia tremor polarization evidence for plate interface slip, *Geophysical Research Letters*, vol. 34, L22306.
- Wech, A. G., and Creager, K. C. (2008). Automated detection and location of Cascadia tremor, *Geophysical Research Letters*, vol. 35, L20302.
- Zigone, D., Rivet, D., Radiguet, M., Campillo, M., Voisin, C., Cotte, N., Walpersdorf, A., Shapiro, N. M., Cougoulat, G., Roux, P., Kostoglodov, V., Husker, A., and Payero, J. S. (2012). Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake, Journal og Geophysical Research, vol. 117, B09304.

Anexos

Esta tesis contribuyó parcialmente al siguiente artículo, el cual se encuentra disponible en la red:

 Cruz-Atienza V. M., Husker, A.,Legrand, D., Caballero, E., and Kostoglodov, V. (2015). Nonvolcanic tremor locations and mechanisms in Guerrero, Mexico, from energy-based and particle motion polarization analysis, *Journal of Geophysical Research. Solid Earth*, 120, doi:10.1002/2014/JB011389.