DINÁMICA DE PROCESOS Y GEOFORMAS VINCULADAS AL RETROCESO DEL GLACIAR O’HIGGINS - CAMPO DE HIELO PATAGÓNICO SUR, CHILE.

DYNAMIC OF PROCESSES AND GEOMORPHS ASSOCIATED TO THE RETREAT OF GLACIER O’HIGGINS, SOUTHERN PATAGONIA ICEFIELD, CHILE.

Rodolfo J. Iturraspe 1 & Jorge A. Strelin 2

RESUMEN

Durante los últimos 100 años el glaciar O’Higgins, afluente del lago O’Higgins - San Martín, experimentó un marcado retroceso de su frente y una notable disminución en su espesor. Las laderas del valle, de fuerte pendiente y cubiertas con depósitos morrénicos se encuentran marcadamente desestabilizadas, favoreciendo procesos de degradación tales como remoción en masa, deflación, caracavamiento y génesis de dunas. Otro proceso vinculado a la presente pérdida de masa glaciaria fue el vaciamiento parcial de un importante cuerpo de agua, el lago Perdido, endiciado por el glaciar GAEA. Se han identificado y estudiado estas importantes alteraciones, y considerando su desarrollo gradual se han definido seis zonas con características morfológicas diferentes. A los procesos promovidos por el cambio del clima se suman impactos antrópicos más recientes, como el sobrepastoreo y la quema de matorrales y praderas de altura para el rebrote, que favorecen la desertificación y con ello el deterioro de la singular belleza paisajística de este sector del Campo de Hielo Patagónico Sur.

Palabras clave: erosión, deflación, cárcavas, dunas, glaciares, cambio climático, glaciar O’Higgins, glaciar GAEA, Campo de Hielo Patagónico Sur.

ABSTRACT

In the last 100 years the O’Higgins glacier (tributary of the O’Higgins - San Martín lake) had a significant retreat and thickness reduction. The hillsides have here steep slopes and destabilised moraine deposits. Degradation processes as deflation, mass wasting, denudation and dune generation are strongly active. Another phenomenon associated to the present mass loss of the glaciers is the partial drainage of the Perdido lake, dammed by the GAEA glacier. These important alterations are explained herein and, taking into account the gradual development of these processes, six zones with different geomorphological conditions are defined. At the present time the anthropic impacts such as overgrazing and shrub burning are additional factors to climatic change, enhancing a general desertification process and the degradation of the singular beauty of this landscape.

Key Words: erosion, denudation, dunes, glaciers, climatic change, O’Higgins glacier, GAEA glacier, Southern Patagonia Icefield.

1 CONICET. Centro Austral de Investigaciones Científicas (CADIC). CC 92, (9410) Ushuaia, Argentina. E-mail: iturraspe@udfuego.com
2 CONICET. CADIC - Instituto Antártico Argentino. CC 92, (9410) Ushuaia, Argentina. E-mail: jstrelin@satlink.com.
INTRODUCCIÓN

El área de estudio se ubica en el sector SW del lago O’Higgins-San Martín y comprende fundamentalmente el área perimetral al sector montañoso situado entre el nuevo brazo del lago que ingresa hasta el frente del glaciar O’Higgins, el lago Chico, el glaciar GAEA y el valle Perdido (Fig. 1).

El glaciar O’Higgins, de 810 km² (Casassa et al. 2000) es la geoforma más destacada de la región. Es el cuarto en extensión del Campo de Hielo Patagónico Sur (CHPS) superado únicamente por los glaciares Pío XI, Viedma y Upsala. Se encausa por un valle de orientación WNW-ESE y su frente glaciar culmina sobre el lago O’Higgins-San Martín (250 m s.n.m. según cartografía IGM Argentina 1:50,000).

Durante reiterados avances glaciales, hasta el último, conocido como la Pequeña Edad del Hielo Tardía (Strelin et al. 2001), el glaciar O’Higgins cubrió la totalidad del valle, permaneciendo su frente en una posición estable hasta principios del siglo veinte. Luego inició su retroceso, el que hasta 1995 alcanzó un total de 14,6 km, de los cuales 11,5 km corresponden al período 1945-1980 (Casassa et al. 1997). Debido al carácter reciente de este proceso, la configuración costera resultante en este sector del lago O’Higgins-San Martín no está debidamente representada en gran parte de la cartografía existente. No habiéndose hallado topónimo para el mismo, y a los efectos de facilitar las referencias, se utiliza informalmente la denominación “brazo O’Higgins”, considerando que el mismo fue modelado por el glaciar homónimo. También de manera informal y con la misma finalidad, se hace referencia al “valle Perdido” y al “lago Perdido” (Fig. 1).

El lago Chico es un cuerpo de agua elongado en dirección SW-NE, de 8,5 km de

![Fig. 1. Área de estudio y su zonificación. La clasificación geomorfológica, la hidrografía y los límites de los glaciares fueron representados en base a la imagen satelital Landsat 7 TM del 13/1/2000, excepto en el sector del frente del glaciar O’Higgins, en donde se ha basado en observaciones in situ y fotografías tomadas en septiembre de 2001. Los topónimos “brazo O’Higgins”, “lago Perdido” y “valle Perdido” no tienen carácter oficial.](image-url)
largo, resultante del retroceso del glaciar Chico. En fotografías aéreas de 1945 se advierte que el frente de este glaciar se hallaba en una posición apenas más avanzada a la actual, no obstante se aprecia que ha experimentado desde entonces una importante pérdida de espesor.

La dinámica del glaciar GAEA, de 36 km², estuvo regulada por el bloqueo ejercido por el glaciar O'Higgins, el cual inducía su desvío hacia el valle Perdido, de acuerdo a fotos de 1945. Posteriormente, el glaciar GAEA retrojo su desarrollo sobre ese valle y la posición de su frente se estabilizó contra el lóbulo de influencia del glaciar O'Higgins, pero experimentando una importante pérdida de espesor.

El valle Perdido es un estrecho y corto corredor descubierto de hielo, ubicado entre los glaciar GAEA y Chico. Su orientación es NW-SE, casi paralela al valle ocupado por la lengua del glaciar O'Higgins. Posee unos 5.5 km de largo, y la mitad occidental se encuentra ocupada por el lago Perdido. Este lago es endicado por la lengua del glaciar GAEA. La extensión del lago Perdido se halla significativamente reducida respecto a la que se observa en fotografías aéreas tomadas en 1982. El clima riguroso, particularmente por la intensidad de los vientos catabáticos que descieñden sobre el CHPS, impide el poblamiento arbóreo de este valle.

El sector montañoso comprendido entre estos cuatro valles alcanza cotas máximas del orden de los 1.700 m, con portezuelos que cortan los filos cumbre a cotas de 1.300 m. Sobre algunos faldeos altos se conservan glaciaris en nichos de nivación que alimentan pequeñas cuencas hídricas. La vegetación boscosa crece más favorablemente a sotavento de los cordones montañosos, sobre los faldeos que miran hacia el E y siempre a cierta distancia del CHPS. En el sector occidental del brazo O'Higgins el límite superior del bosque se sitúa a 950 m, alcanzando cota 1.100 m sobre los faldeos del lago Chico.

Clima

Existen escasas precisiones relativas al clima local. El mismo está muy influenciado por la proximidad del CHPS, situado a barlovento. El efecto Foehn y corrientes de viento catabáticas generan condiciones hostiles en un medio que aún no ha sido repoblado por la vegetación luego del retiro de los hielos.

La orografía determina un fuerte gradiente regional E-W en el régimen de precipitaciones. El invierno es la estación más húmeda, por lo que prevalecen las precipitaciones nivales. La nieve se acumula especialmente por encima del sistema morrénico que flanquea los niveles superiores del valle, en donde las pendientes son menos pronunciadas y existen mejores condiciones morfológicas y térmicas para la estabilidad del manto nival. La intensidad de los vientos del W se evidencia por un lado en la vegetación que crece preferentemente en sectores protegidos y por otro en la geometría y granulometría de depósitos de origen eólico.


MATERIALES Y MÉTODOS

A partir del conocimiento de la distribución regional de las glaciaciones Holocenas, de los cambios climáticos en el siglo veinte y de la identificación de procesos geomórficos activos, asociados a la recesión de los glaciares locales y también a factores climáticos, se diseñó una campaña intensiva con el objeto de relevar y caracterizar estos procesos y analizar su zonificación. Atendiendo al escaso conocimiento de las particularidades de los procesos morfológicos del área de estudio, se ha incorporado a los resultados una significativa componente descriptiva. La actividad de campo, desarrollada entre el 22 y el 29 de septiembre de 2001, fue planificada sobre la base de interpretaciones de fotografías aéreas del año 1982 (Instituto Geográfico Militar de Argentina); de imágenes Landsat 5 TM del 17/3/97 y Landsat 7 TM del 13/1/2000 y 24/8/2000 cedidas por la CONAE (Argentina). Para el análisis del retroceso del glaciar O’Higgins y variaciones del espejo del lago Perdido se usaron también mapas de autores que oportunamente se citan, fotografías aéreas Trimetrogón US Airforce de 1945, del Servicio fotogramétrico de Chile del
año 1975 e imágenes satelitales ERTS-MSS del 9/11/73 y del 25/2/76, Landsat 5 TM del 26/12/84 y SIR-C X-SAR del 14-4-94 y 5-10-94. Los cambios morfológicos detectados en el análisis multitemporal y las observaciones realizadas in situ durante la campaña permitieron arribar a resultados novedosos sobre la dinámica de los procesos actuantes, considerándose muy interesante la posibilidad de su monitoreo futuro como indicadores del cambio ambiental.

RESULTADOS

Glaciaciones recientes

Sobre las laderas de los valles glaciares, en parte ocupados por cuerpos lacustres, se preservan espesos depósitos morrénicos generados durante los diversos reavances de los glaciares O’Higgins, Chico y GAEA. Estos depósitos conforman lomadas morrénicas laterales y frontales que, de acuerdo a sus características morfológicas, se agrupan en tres sistemas morrénicos, señalados en la figura 2.

El sistema morrénico externo tiene un importante desarrollo sobre las laderas marginales al lago, disponiéndose sobre pendientes que alcanzan los 40° de inclinación. En el sector suroccidental del valle los arcos morrénicos llegan a cotas de 950 m s.n.m., alcanzando el límite del bosque de lenga (Nothofagus pumilio) y descenden hasta niveles de aproximadamente 500 m a la altura del lago Chico. El sistema morrénico se resuelve en tres arcos laterales múltiples: el arco morrénico M1 parcialmente cubierto por el bosque de lenga, el arco morrénico M2 dispuesto internamente, generalmente a la par del primero y el arco morrénico M3 situado a unos 100 a 50 m por debajo de los anteriores. Los dos últimos arcos se halla fuertemente erosionados y sólo en parte cubiertos por vegetación de bajo porte, fundamentalmente Empetrum rubrum. Morrenas correspondientes a este sistema se reconocieron sobre ambas laderas en el brazo O’Higgins y sobre ambas márgenes de los valles ocupados por el glaciar GAEA, lago Perdido, glaciar Chico y lago Chico. También en el pequeño istmo que separa el lago Chico del lago O’Higgins-San Martín, se preservan cierres morrénicos de este sistema relacionados a un antiguo avance del glaciar Chico. La disposición de los arcos morrénicos correspondientes detectados en el valle Perdido, demuestra que durante los avances que los depositaron, la lengua que se encauzaba por dicho valle confluyá con la del glaciar Chico.
El siguiente sistema morrénico se detecta con claridad únicamente en el valle Perdido, donde se reconocen tres cierres morrénicos múltiples asociados a antiguas difusencias de los glaciares Chico, desde el SE y GAEA y O'Higgins, desde el NW. A partir de las geoformas reconocidas se pudo establecer que durante el primer pulso glaciario se produjo el encuentro de ambas difusencias dentro del valle Perdido, generándose una “morrena compartida”. Durante los siguientes dos pulsos ya no se produjo la unión de ambas difusencias, formándose en su lugar un lago glacial, el lago Perdido, cuyos antiguos niveles de playa se reconocen aún hoy en los laterales del valle Perdido.

Los depósitos morrénicos correspondientes al tercer sistema se identifican también claramente sobre los laterales y el fondo del valle Perdido. En estos casos se establecieron para ambas difusencias glaciares 5 cierres morrénicos constituidos por múltiples crestas cuya particularidad es la escasa cubierta de suelo y vegetación. También en este caso los sucesivos pulsos glaciares ocasionaron fluctuaciones en el nivel del lago Perdido. Durante el reavance que depositó este sistema morrénico, de manera similar a lo ocurrido durante el que acumuló el sistema más antiguo, el glaciar O'Higgins habría alcanzado el extremo nororiental del valle, destacándose que en los sectores donde el flujo glacial se vea obstruido, los depósitos morrénicos de este tercer sistema se elevan a cotas del orden de las morrenas del sistema más antiguo.

Los cambios morfológicos de los últimos 100 años

Importantes cambios en las condiciones climáticas, la inestabilidad en las pendientes de los valles y la baja tasa de repoblamiento vegetacional tras el retiro de los hielos, promovieron la activación de significativos procesos geomórficos. Éstos han impactado notablemente sobre formas del relieve más antiguas, provocando severos cambios ambientales. Entre los procesos geomorfológicos y geoformas resultantes cabe mencionar:
- Fluvial: desarrollo de extensas cárcavas.
- Remoción en masa: reptaje, caída y flujos semiencauzados.
- Eólico: deflación y generación de dunas.
- Lacustre: variaciones de nivel del lago Perdido con desarrollo de paleoplayas y el paleoauce del antiguo efluente.

Las geoformas resultantes se encuentran zonificadas de acuerdo al tiempo y tipo de relieve expuesto tras el retiro de los glaciares y a factores exógenos como precipitaciones, grado de insolación, exposición a los vientos, temperatura, el desarrollo de suelos, cubierta vegetal y el impacto antrópico. Según las geoformas presentes y su grado de desarrollo, se diferencian 6 zonas, indicadas en la figura 1.

Zona 1

La Zona 1 (Z1 en Fig. 1) corresponde al extremo oriental del faldeo S del brazo O'Higgins, abarcando una longitud de 4 km paralela a la costa. Predomina una pendiente rocosa situada entre el nivel del lago y la cota 500 m, con una inclinación media de 30°, subvertical por sectores. Los arcos morrénicos M1 y M2 del sistema morrénico más antiguo, se alinean allí en dirección W-E, subparalelamente a la arista superior del faldeo, mientras que las morrenas M3, de crestas más discontinuas, se ubican 20 a 30 m por debajo de las anteriores. Sobre el faldeo predominan marcadamente los afloramientos del sustrato rocoso, con muy escasa cubierta sedimentaria glaciogénica, exiguos desarrollo de suelo y muy bajo repoblamiento boscoso. El avance fluvial, con reducida cuenca de aporte, se adapta a la estructura de las rocas. Las crestas morrénicas superiores ejercen un fuerte control sobre el desagüe, encauzando las aguas hacia sectores donde las crestas se encuentran aportilladas. Los taludes de los arcos morrénicos están estabilizados por presencia devegetación de bajo porte y en parte boscosa. En un solo sector, se advierte una cicatriz de deslizamiento que afecta al arco morrénico M3. La presencia de la vegetación y la alineación con la dirección del viento predominante de esta sección del brazo determina la casi ausencia de geoformas cólicas.

Zona 2

Corresponde al tramo en el que la ladera del valle describe un amplio arco que además de oponerse a los vientos dominantes del oeste, obstruye antiguamente el flujo del hielo glaciar. Esta configuración topográfica y la dinámica glacialia durante los diferentes episodios glaciales
favorecieron la concentración sobre esta ladera de espesos depósitos morrénicos constituidos por till de matriz limo-arcillosa, compacto, con esporádicos niveles glaciuviales y glacialacustres intercalados. Una vista general de las zonas 2 y 3 puede apreciarse en la figura 2.

En fotografías aéreas de 1945 se aprecia que el nivel del glaciar alcanzaba en esta zona entre 50 y 100 m por sobre el nivel del lago. En 1960 el frente glacial se ubicaba en el límite entre las zonas 1 y 2 (Casassa et al. 1997). Se detectó que el colapso más significativo de la lengua a la altura de la Zona 2 (y parte de la Zona 3) se produjo entre noviembre de 1973 (imagen ERST MSS) y marzo de 1975 (Mapa de Casassa et al. 1997), con una retracción de 4 km en longitud y 11 km² en superficie en menos de 16 meses. Pero ya a fines del siglo diecinueve, el adelgazamiento paulatino del glaciar inestabilizaba las pendientes del valle, debido a la desaparición del sostén que ofrecía el hielo glaciar y al continuo descalce de los depósitos morrénicos provocado por el descenso del nivel de base de las aguas de escorrentía superficial y subterránea. El accionar de la remoción en masa en forma de flujos semiencauzados, deslizamientos y caídas generó una serie de cicatrices que canalizaron aguas de escorrentía superficial y subterráneas aflorantes, generando cárcavas de marcada erosión retrocedente. Estas cárcavas se bifurcaban pendiente arriba, generando múltiples canales, fuertemente entallados en los depósitos morrénicos. Según se advierte al comparar la situación actual con la de la fotografía aérea del año 1982, la expansión de las cárcavas sobre este sector de la pendiente no tuvo un mayor desarrollo debido a la falta de aportes de escorrentios superficiales significativos.

Como ya se mencionara, el proceso eólico se ve potenciado por la orientación perpendicular a los vientos dominantes que posee la ladera en la presente zona. Un importante volumen de arena, aportado principalmente desde el sector de cárcavas, es transportado pendiente arriba hasta alcanzar la cresta más elevada del arco morrénico M1, en cota 720-780 m (Fig. 2). Allí se deposita, al reparo de la cresta principal, y sobre la misma, un importante espesor (hasta 2 m) de arena mediana a gruesa, muy bien seleccionada (Fig. 3). Las "dunas al reparo" así generadas invaden el bosque que crece a lo largo del canal que flanquea el lateral externo de arco morrénico M1 (Fig. 4). En el bosque enarenado no crecen renovales ni árboles jóvenes. Perfiles levantados en cortes que afectan a los médanos indican procesos recurrentes de acumulación eólica que en algunos casos provocaron la mortandad de árboles cuyos

![Fig. 3 Duna sobre arco morrénico invadiendo bosque de Nothofagus](image-url)
troncos yacen junto con algunos niveles de tefras pumíceas intercalados entre capas de arena.

Zona 3

Comprende la porción occidental del faldeo sur del brazo O′Higgins, hasta las proximidades del frente glacial actual.

De acuerdo a mapa de Casassa et al. (1997), el descalce completo de los laterales del valle por desaparición del glaciar en la Zona 2 y gran parte de la Zona 3 ocurrió en relativamente poco tiempo, entre 1960 y 1975, lo cual en apariencia no contribuiría a explicar las diferencias morfológicas existentes entre ambas zonas. Sin embargo, el espesor del glaciar frente a la Zona 2 se habría reducido con mucha anterioridad. Según fotos aéreas de 1945, el nivel de hielo sobre el lago (en las márgenes) alcanzaba en ésta no más de 100 m, superando en cambio los 400 m en el occidente de la Zona 3, según se deduce de estimaciones de pérdida de espesor en este último sector de Casassa et al. (1997).

Sendas de animales aún bien definidas, truncadas por cárcavas cuyo borde superior retrocedente se ubica 20-30 m por arriba de la cota de la senda, son signo evidente de la gran actividad erosiva (Fig. 5). El retroceso horizontal del límite superior de las cárcavas se estima para los últimos 20 años en 40 a 50 metros. Hay sectores...
en los que el carcañamiento localizado sobrepasa el eje del arco morrénico M1, habiéndose perdido inclusive suelo vegetado estable no afectado por la glaciación reciente. Por encima del nivel topográfico del arco morrénico M1 se observaron muchos cursos superficiales menores. Mediciones realizadas mediante flotadores determinaron caudales entre 100 y 150 l/s (valores superiores a los medios anuales en estos cursos, dadas las condiciones de deshielo existentes). La actividad fluviial se correlaciona claramente con las cárcavas más desarrolladas situadas a niveles topográficos inferiores a dicho arco. En muchos casos, el arco morrénico M1 intercepta el escorrentío de estos arroyos, induciendo un tramo de escorrentío paralelo al arco, que favorece la alimentación de vertientes que afloran en las cárcavas y aceleran el proceso erosivo. Las zonas sedimentarias menos afectadas por la erosión son aquellas en las que aflora el zócalo rocoso subyacente.

No tiene lugar aquí el desarrollo de dunas supramorrénicas pero abundan las dunas pequeñas en pendiente que interactúan con el Empetrum.

Zona 4

Comprende el faldeo que enfrenta al glaciar O'Higgins y el valle GAEA, hasta la intercepción con el valle Perdido.

Luego de mantener desde 1979 una posición estable, pero bajo una tasa muy alta de ablación vertical anual, el frente del glaciar O'Higgins vuelve a colapsar en 1998/99, desbloqueando el valle del glaciar GAEA (Figs. 1 y 6) en cuyo frente se encuentra un cuerpo de hielo relictual cubierto de sedimentos, producto de la antigua influencia del glaciar O'Higgins. hacia el valle GAEA (Fig. 7).

La margen occidental del valle GAEA se halla descubierta de vegetación boscosa y coronada por pequeños glaciares de circo, siendo allí frecuentes las avalanchas de hielo y roca, los deslizamientos y el desarrollo de cárcavas. La margen oriental del valle carece de bosque debido a la influencia del viento, a bajas temperaturas y a la altura alcanzada por las morrenas superiores M1 (cota 960 m). En los niveles inferiores a medios de la ladera los procesos erosivos dan lugar a extensas cárcavas que eliminan la capa de suelo y vegetación. En el faldeo superior, no afectado por el carcañamiento (cota 910 m) la vegetación de bajo porte, principalmente Empetrum, se encuentra parcialmente ahogada en arena.

Un torrente de barro (Fig. 1) se origina en un depósito morrénico Pleistocénico ubicado por encima del nivel M1. Sobre el mismo faldeo, entre las cotas 1.000 y 1.050 m, se identificaron potenciales sectores de deslizamientos, asociados a grietas transversales a la pendiente de 10 a 20 m de largo y de 3 a 4 m de profundidad, que captan agua de escorrentío superficial.

Fig. 6. Glaciar O'Higgins. Fotografía tomada el 25/9/2001.
A la altura del frente del glaciar GAEA, el principal curso de agua que aporta lateralmente a través de una cárcavas es captado por un gran hoyo de termokarst, drenando luego por debajo de la superficie del glaciar hacia el brazo O'Higgins.

Dada la proliferación de grandes cárcavas en esta zona, particularmente en el extremo SW del faldeo, existe un gran transporte de sedimentos, los que alcanzan el fondo del valle aportando a la formación de depósitos kame encauzados. Curiosamente, un cauce de drenaje terminoglacial, vinculado a estos depósitos kame, se encuentra cubierto por vegetación. Hay evidencias de un intenso lavado superficial sobre el lateral derecho del cuerpo de hielo en fase cubierta, indicando un caudal mayor al que pueden aportar los afluentes laterales, y que podría tener vinculación con el vaciamiento del lago Perdido. En el frente del glaciar GAEA hay un pequeño lago supraglacial, que habría adquirido muy recientemente mayores proporciones.

Zona 5

Corresponde al valle Perdido, donde la obstrucción del glaciar GAEA al NW, determina la existencia de un cuerpo de agua, el lago Perdido. Hasta al menos el año 1982 el nivel de dicho lago era regulado por las morrenas que definen el límite de la cabecera opuesta (SE), donde nacía un efluente que aportaba hacia el lago Chico. El parcial vaciamiento del lago a través del valle del glaciar GAEA ya se detecta avanzado hacia el año 1984 (Tabla 1), quedando descubierto una gran morrena frontal que se hallaba sumergida sobre su margen SW. Actualmente su nivel ha descendido 61 m (Fig. 8) y la superficie se redujo al 40% de su magnitud original (Fig. 1). Ha cambiado el destino del caudal excedente, fluyendo hacia el brazo O'Higgins por vía subglacial, a través del glaciar GAEA y del cuerpo de hielo relictual. Sobre las márgenes del lago se aprecian múltiples niveles de playa muy definidos y entre el lago y el frente del glaciar Chico se desarrolla el cauce seco del antiguo efluente.

El proceso de vaciamiento del lago a través de su nueva vía de escurrimiento se explica a partir de la retracción del glaciar O'Higgins y la reducción de nivel superficial, a un ritmo de 11 m/a (Casassa et al. 1997). Similares efectos experimentó el glaciar GAEA, ya que la comparación de fotografías de 1945 y 1982 con la situación actual evidencia reducción de la masa de hielo de éste en su difusión hacia el valle Perdido por pérdida de espesor. Esto favoreció la habilitación de un drenaje subglacial, por efecto de la subpresión. El desnivel actual entre los lagos Perdido y O'Higgins es de aproximadamente 235 metros.

A la altura de la cabecera NW del lago Perdido, las pendientes transversales de
ambas márgenes del valle son muy pronunciadas, predominando los afloramientos rocosos. Hacia la cabecera opuesta hay mayor estabilidad en los taludes, con mejor preservación de los depósitos morrénicos y de los niveles paleolacustres más antiguos. Estos últimos alcanzan unos 120 m sobre el nivel actual del lago. La vegetación del valle es de bajo porte y discontinua: el *Empetrum* se asocia aquí con arbustivas como el *Chiliotrichum diffusum*, aumentando la biodiversidad en el faldeo inferior no afectado por las oscilaciones recientes de los glaciares y del lago. Se destaca la ausencia arbórea, posiblemente debido a los vientos catabáticos que descienden por las laderas orientales del campo de hielo.

Como ya se mencionara en la sección de “Glaciaciones recientes”, el tramo de valle comprendido entre el lago Perdido y el glaciar Chico fue área de encuentro entre las influencias de este glaciar y la del GAEA-O’Higgins, presentando remanentes de las morrenas frontales correspondientes a ambos frentes glaciares junto a los niveles de playas lacustres y terrazas fluviales correspondientes.


<table>
<thead>
<tr>
<th>AÑO</th>
<th>COTA m s.n.m.</th>
<th>REFERENCIA</th>
<th>EFLUENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>546</td>
<td>Imagen ERTS MSS</td>
<td>Lago Chico</td>
</tr>
<tr>
<td>1975</td>
<td>546</td>
<td>Fotos aéreas</td>
<td>Lago Chico</td>
</tr>
<tr>
<td>1982</td>
<td>546</td>
<td>Fotos aéreas</td>
<td>Lago Chico</td>
</tr>
<tr>
<td>1986</td>
<td>505</td>
<td>Imagen Landsat 5 TM</td>
<td>Brazo O’Higgins (vía subglacial)</td>
</tr>
<tr>
<td>1994</td>
<td>485</td>
<td>Imagen SIR-C X-SAR</td>
<td>Brazo O’Higgins (vía subglacial)</td>
</tr>
<tr>
<td>1997</td>
<td>485</td>
<td>Imagen Landsat 5 TM</td>
<td>Brazo O’Higgins (vía subglacial)</td>
</tr>
<tr>
<td>2001</td>
<td>485</td>
<td>Observaciones in situ</td>
<td>Brazo O’Higgins (vía subglacial)</td>
</tr>
</tbody>
</table>
Zona 6

El avance glaciar correspondiente al sistema morrónico externo cubrió completamente la actual superficie del lago Chico, generando un cierre morrónico a 8.5 km del frente actual del glaciar. Dicho cierre morrónico se ubica sobre un istmo atravesado por un breve río de 1.200 m de longitud que descarga las aguas del lago Chico en las del lago O’Higgins.

Dado que durante los reavances glaciares posteriores, que depositaron el segundo y tercer sistema morrónico (M2 y M3), el glaciar avanzó tan sólo un máximo de 2 km respecto a su actual frente, las laderas del valle en la Zona 6 se hallan en gran parte vegetadas, cubiertas por un denso bosque. Además de su mayor período de recuperación, el valle posee mejores condiciones ambientales por su menor exposición al viento.

DISCUSIÓN Y CONCLUSIONES

La retracción del glaciar O’Higgins en el siglo veinte provocó alteraciones en una vasta zona adyacente, abarcando también los valles GAEA y Perdido hasta las inmediaciones del glaciar Chico.

Se han diferenciado seis zonas que presentan geoformas que responden a procesos similares pero que actuaron con distinta intensidad. En el valle del brazo O’Higgins los terrenos están afectados por una intensa actividad morfogénica. Se verifica en la zonación desde Z1 a Z4 muy buena relación entre la variabilidad espacial de factores desestabilizadores y efectos detectados. La actividad de los procesos erosivos y el desarrollo o alteración de geoformas glacigenicas pasadas se incrementa en aquellos sectores donde hay mayor rigor de los factores climáticos, mayor actividad fluvial, depósitos morrónicos emplazados en mayores cotas en laderas con mayores pendientes y en donde el desenganchamiento se ha producido más recientemente. La manifestación más impactante de estos procesos son las extensas cárcavas asociadas a pequeñas dunas que ascienden por los faldeos (Z2, Z3 y Z4) y a dunas supramorrónicas de mayor desarrollo. La presencia exclusiva en Z2 de estas últimas se explica por una situación más evolucionada del proceso general, por una posición topográfica más expuesta al viento y por el desarrollo del bosque adyacente a la morrena, siendo este último factor importante, por la relevancia de la interacción dinámica entre la actividad cólica y la vegetación en la geomorfología de dunas (van Dijk et al. 1999).

La zona Z6, lago Chico, se distingue por la mayor estabilidad de sus pendientes respecto a la de los faldeos próximos al brazo O’Higgins. La vegetación, desarrollada hasta el nivel del lago, indica un mayor tiempo para la estabilización de las pendientes y desarrollo de suelos, además de condiciones climáticas menos rigurosas. Tanto el valle del glaciar O’Higgins como el valle Perdido presentan una orientación más favorable para la canalización de vientos que el valle del lago Chico.

Finalmente, en Z5 se ha otorgado especial atención al tratamiento de los cambios en la morfología lacustre y del efluente fluvial. La génesis de niveles de paleoplayas entre 1982 y 1994 indica un régimen de vaciado prolongado y posiblemente intermitente o cólico, ya acentuado en diciembre de 1984. El vaciamiento parcial del lago Perdido por vía subglacial a través del glaciar GAEA es consecuencia de la pérdida de masa de este cuerpo de hielo que obtura su salida. Asimismo, es factible en el término de pocos años la ocurrencia de nuevas variaciones de nivel motivadas por la dinámica propia del glaciar GAEA, ya que el lago Perdido es regulado aún por este cuerpo de hielo y no por la topografía del lecho rocoso.

La retracción del glaciar O’Higgins ocurrida en 1998-99, que permitió el ingreso de las aguas del lago O’Higgins-San Martín al valle del glaciar GAEA, podría acelerar el retroceso de este último.

Estos procesos son indicadores del cambio climático, caracterizado por incremento de la temperatura y disminución de precipitaciones, agudizado en la última mitad de siglo, correlacionable con la ocurrencia de modificaciones de morfologías lacustres vinculadas a los glaciares Moreno, Mayo y Dickson, (descritas por Skvarca et al. 1995, Naruse et al. 1995, Peña et al. 1985, Casassa et al. 2000, Ohata et al. 1985). El monitoreo satelital de la dinámica de estos lagos asociados a glaciares puede aportar información alternativa de utilidad, teniendo en cuenta la deficiente cobertura de datos climáticos sobre el CHPS.

El área presenta un alto nivel de fragilidad, con tendencia a la desertificación, con pérdida de
suelos y de la superficie vegetada. Pese a la dificultad para su acceso existen evidencias negativas de la actividad antrópica, como la presencia de animales introducidos y la quema de matorrales arbustivos para favorecer el crecimiento de pasturas.

Existe un elevado potencial de riesgo geomorfológico y todo asentamiento que eventualmente se planifique instalar (las extraordinarias condiciones paisajísticas del lugar, probablemente darán lugar a demandas turísticas) debería ser precedido por detallados estudios de la dinámica geomorfológica local, tendiente a la seguridad de las instalaciones y a la conservación de un medio ambiente de alta fragilidad.

AGRADECIMIENTOS

Al Centro de Estudios Científicos de Valdivia, Chile. A su Director, Dr. Claudio Teitelboim, al Dr. Francisco Sepúlveda y al Jefe de la campaña 2001 al CHPS, Dr. Gino Casassa, quienes hicieron posible el presente estudio.

LITERATURA CITADA


