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Long Duration of Ground Motion in 
the Paradigmatic Valley of Mexico
V. M. Cruz-Atienza1, J. Tago2, J. D. Sanabria-Gómez3, E. Chaljub4,5, V. Etienne6, J. Virieux4,5 & 
L. Quintanar1

Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site 
effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground 
motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, 
where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán 
earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional 
dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away 
the city. By means of high performance computational modeling we show that, despite the highly 
dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the 
valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response 
of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration 
of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, 
respectively, which are two frequencies with the largest observed amplification. This conclusion 
contradicts what has been previously stated from observational and modeling investigations, where 
the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in 
Mexico City.

The seismic response of the Valley of Mexico has been for many years a paradigmatic study case in earthquake 
seismology and engineering. After the devastation of Mexico City (MC) in 1985, when more than 15,000 peo-
ple died due to a magnitude 8.0 earthquake beneath the coast of Michoacán, more than 450 km away from the 
city, scientists have attempted to explain site effects such as the extraordinary amplification of seismic waves 
and the extremely long duration of ground motion in the sedimentary basin where most of the city is located 
(Fig. 1). Amplification of ground motion due to local soil conditions is a well-known phenomenon. In the Valley 
of Mexico, spectral amplification for subduction earthquakes (i.e., with epicentral distances greater than 300 km) 
at soft-soil sites range from 10 to 50 at frequencies between 0.2 and 0.7 Hz with respect to hard-rock sites1,2. 
However, the hard-rock sites also experience large amplifications of about 10 due to regional site effects (quanti-
fied from attenuation relationships) associated with the volcanic arc deposits where the valley is embedded3,4. This 
means that absolute spectral amplifications in the lake-bed zone of the Valley of Mexico may reach values from 
100 to 500, which are probably the largest ever reported worldwide4.

Long-lasting ground motion in the Valley of Mexico
While the amplification of seismic waves in the Valley of Mexico has been satisfactorily explained by regional and 
local soil conditions5–12, the physical reasons for the long duration of ground motion remain an open question. 
Initial efforts addressing this issue considered two-dimensional wave propagation models in small-basin con-
figurations with realistic attenuation properties. Results from these exercises led to conclude that surface-waves 
trains generated at the edges of the basin10,13,14 suffer a rapid decay as they propagate, and thus to discard this 
mechanism as a possible explanation for the long seismic records7,15. This conclusion invoked the existence of 
regional-scale effects producing the elongation of the incoming wavefield to Mexico City from subduction earth-
quakes, such as multipathing of seismic waves due to scatterers in the crust and surroundings of the basin16,17, 
and seismic energy entrapment in both the accretionary prism near the source region and the Transmexican 
Volcanic Belt (TMVB)18,19. The interaction between the incoming wavefield and the local basin conditions may 

1Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico. 2Facultad de Ingeniería, Universidad 
Nacional Autónoma de México, Mexico. 3Escuela de Física, Universidad Industrial de Santander, Bucaramanga, 
Colombia. 4Univiversité de Grenoble Alpes, ISTerre, F-38058 Grenoble, France. 5CNRS, ISTerre, F-38058 Grenoble, 
France. 6ARAMCO, Advanced Research Center, Saudi Arabia. Correspondence and requests for materials should be 
addressed to V.M.C.-A. (email: cruz@geofisica.unam.mx)

received: 20 June 2016

accepted: 15 November 2016

Published: 09 December 2016

OPEN

mailto:cruz@geofisica.unam.mx


www.nature.com/scientificreports/

2Scientific Reports | 6:38807 | DOI: 10.1038/srep38807

also elongate the ground motion when the resonant frequencies of the basin coincide with the dominant periods 
of the wavefield20.

Although our current understanding of the duration of ground motion in the lake-bed zone of MC is clearly 
rooted in the nature of the incoming wavefield, the actual effects produced by the sedimentary basin itself have 
been underestimated. Figure 2a shows the seismic records (f <​ 1 Hz) of a magnitude 3.4 earthquake that occurred 
~4 km below the city on December 1, 2014 (Fig. 1). These unprecedented records were possible thanks to a 
recently-installed permanent broadband network (blue circles) in the Valley of Mexico operated by the Servicio 
Sismológico Nacional (SSN). Despite the small magnitude of the event, ground motion in the basin lasted 
more than two minutes (e.g. at lake-bed sites VRVM, ICVM and PBVM). This can be better appreciated in the 
band-pass filtered signals at 0.3 Hz, where the long coda is dominated by the harmonic beating widely reported 
in the literature for subduction earthquakes recorded in MC16,21. In contrast, this beating is barely present at 
hard-rock sites such as CUIG and CJVM, where the motion is dominated by a single wave package with duration 
no longer than 20 s. This observation strongly suggests that ground motion in the lake-bed zone experiences very 
long durations in the absence of regional-scale effects. Local basin conditions are thus preponderant in the dura-
tion of ground shaking across the basin at frequencies where the amplification of seismic waves is the largest. The 
leading question of this work is thus raised about the mechanisms allowing long-lasting wave propagation within 
a highly dissipative sedimentary basin. Two main hypotheses may be advanced: (1) the basin incoming wavefield 
suffers from multiple-scattering even at a local scale, and/or (2) the sedimentary basin itself enhances sustained 
wave trains generation and efficient propagation.

Though certainly true, hypothesis one does not seem to have first order implications in the duration of ground 
motion at the lake-bed zone, as revealed by the absence of significant seismic energy in the coda of hard-rock sites 
(Fig. 2). On the other hand, considering the highly dissipative and fluid saturated sediments that cover large part 
of the basin (see next section), a plausible idea supporting hypothesis two is the efficient propagation of seismic 
energy in the deep basin, carried by surface-waves overtones. In this work we examine this argument based on 
realistic 3D wave propagation modeling to understand whether local soil conditions within the basin may explain 
the observed long seismic records.

A basin model for the Valley of Mexico
The Valley of Mexico is located in the southern and volcanically active part of the TMVB (Fig. 1). This region is 
composed by Oligocene volcanics overlaying Cretaceous limestones. On top of these formations within the valley, 
there are Miocene volcanics overlain by a ~100 m thick sequence of tuffs or sands, gravel and recent lava flows11,22, 
averaging a thickness of ~2 km for the TMVB above the Cretaceous limestones12,23. Geotechnically speaking, this 
geologic setting corresponds to the hill zone of the valley (region outside the blue contour in Fig. 1), which may 

Figure 1.  Topographic setting of Mexico City (MC) and the Valley of Mexico. Color scale corresponds to the 
basin thickness (i.e., the basin contact with the Oligocene volcanics of the Transmexican Volcanic Belt, TMVB). 
Stars show the epicenters for the vertical body forces applied at the free surface (green) and the magnitude 3.4 
earthquake of December 1, 2014 (red). This figure has been created using the Generic Mapping Tools (GMT) 
Version 5.3.0, http://gmt.soest.hawaii.edu.

http://gmt.soest.hawaii.edu
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be considered hard-rock sites (e.g. CUIG, MHVM and CJVM). The stratigraphy of the MC basin is essentially 
the same as in the hill zone except for the absence of recent lava flows and the presence of clays with high water 
content of 10 to about 100 m thickness24,25. The basin is geotechnically known as the lake-bed zone of the valley 
(region within the red contour in Fig. 1) and it is where the largest amplification of ground motion is observed. 
The transition region in between the lake-bed and the hard-rock zones is mainly composed by alluvial depos-
its. The composition and thickness of the surficial clay deposits changes laterally within the basin8,22. However, 
shear-wave speed measurements on core samples from different boreholes in the lake-bed zone show extremely 
low values in these deposits (i.e. 30–100 m/s), with an average thickness of about 50 m24. Laboratory tests26 and 
field estimates27 also show that the clays are highly dissipative, with very low shear Q values ranging from 10 to 50. 
These observations led to a four-layer velocity model for the basin with very high Vp/Vs values on top to explain 
experimental data from several earthquakes28. We adopt this model for the lake-bed zone in our calculations 
(Figure A1a and Table A1).

Observations within the basin show that depths (H) to the deep, geotechnically consistent deposits are pro-
portional to the natural vibration periods (T0) of the sites (i.e., H =​ (β​/4)*T0)3. These periods are thus proportional 
to the thickness of the surficial clay layers that we have assumed constant in our model. However, to confine the 
underlying deep-basin deposits in depth, from a large data set of natural vibration periods across the basin2,29 and 
assuming an average shear-wave speed (β​) of 400 m/s, we generated the bed-rock geometry shown in Fig. 1. This 
interface represents, in our model, the contact between the basin deposits and the Oligocene volcanics of the TMVB 
(i.e., fourth interface in Figure A1a). A cross section of our basin model along the dotted line of Fig. 1 is shown 
later in section “Dominance of surface waves overtones”. Regarding the crustal structure surrounding the basin, 
we adopted a 1D model determined from the inversion of receiver functions at the CUIG site30, which includes 
a relatively low-velocity layer on top, associated with the ~2 km thick TMVB (see Figure A1a and Table A1).  
To minimize numerical errors, the interfaces of the model were vertically homogenized before discretizing the 
model by averaging the S- and P-slownesses and densities31 (circles in Figure A1a). The homogenization length is 
50 m, which is about half of the minimum wavelength in the surficial clay layers. Using the computational method 
introduced in the next section we calibrated, by trial and error, the attenuation properties of the seismic model so 
that the durations of the intense phases of ground motions (i.e., time between 5% and 95% of the Arias intensity)32  
observed for the M3.4 earthquake in nine stations are similar to those predicted by our model assuming a 4 km 
depth reverse faulting below the epicenter (Figs 2b and A2), as suggested by the first P-wave arrivals. These 
properties, which are in accordance with laboratory and field measurements26,27, are such that Qs =​ 0.3*Vs for 
Vs <​ 400 m/s and Qs =​ 0.1*Vs otherwise, with Qp =​ 2*Qs everywhere (Table A1).

Computational method for viscoelastic wave propagation
Simulating the propagation of seismic waves in extreme sedimentary basins represents a big challenge. In our 
seismic model for the Valley of Mexico, the S-wavelength at 1 Hz shortens from 4.8 km in the deep crust to 
only 50 m in the top layer of the basin during propagation. To obtain an accurate solution of the elastodynamic 
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Figure 2.  (a) Observed velocity seismograms in two different frequency bands at nine broadband seismic 
stations for a M3.4 earthquake with 4 km depth (see Fig. 1). Records are aligned with the P-wave arrival 
and scaled with the factors given for each trace. Notice the long seismic records in the lake-bed stations. 
(b) Observed and modeled durations of the strong shaking phase for f <​ 1 Hz. The corresponding synthetic 
seismograms are shown in Figure A2.
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equations governing the propagating waves with such modulation, the numerical scheme must handle pow-
erful capabilities to sample the wavefield efficiently in the whole simulation domain. For this reasons we have 
developed an hp-discontinuous Galerkin finite element method (DG-FEM) called GEODG3D that handles both 
unstructured domain decompositions (h-adaptivity) and different approximation orders per element in space 
(p-adaptivity)33–35. GEODG3D is an extension for viscoelastic wave propagation of a method previously intro-
duced for elastic waves33. It solves the velocity-stress formulation of the visco-elastodynamic equations in three 
dimensions with rock quality factors, Qs and Qp, chosen to be nearly constant in the frequency range of interest 
(i.e., f <​ 1 Hz). For a detailed description of the viscoelastic model and the DG-FEM see Methods.

To maximize the integration time step imposed by the Courant stability criterion, GEODG3D locally adapts 
the elements’ approximation order depending on both the elastic properties of the medium and the size of the 
tetrahedra (p-adaptivity) (Figure A3a). For decomposing the simulation domain in tetrahedral elements, we fol-
lowed a meshing strategy that guarantees the same numerical accuracy across the whole domain33. Given a max-
imum resolvable frequency (1 Hz in this work) and starting from a regular coarse mesh, the strategy iteratively 
refines the elements until the accuracy criterion (i.e., 3 elements per minimum wavelength; Figure A5) is satisfied 
locally in at least 99.8% of the elements (h-adaptivity) (Figure A3b). Figure 3 shows the resulting mesh for the 
upper part of the simulation domain, where the elements are clearly adapted to both the actual topography and 
the extremely low velocities of the basin (compare with Fig. 1). Numerical verification (Figure A4) and conver-
gence analysis (Figure A5) of the GEODG3D viscoelastic solver have been thoroughly done35, finding excellent 
results for different international benchmark problems (see Section 3 of Methods). Table A2 provides useful num-
bers related to the tetrahedral mesh and discretization parameters used in all simulations of this study.

Dominance of surface waves overtones
Observational evidence for the dominance of surface waves overtones in the Valley of Mexico shows that peak 
displacements in the lake-bed zone between 0.3–0.5 Hz at different borehole depths (green circles in Fig. 1) for 
several subduction earthquakes are in accordance with theoretical eigenfunctions for the Rayleigh-waves first 
overtones in the basin model of Table A128. These observations, which are shown later in section “Dominance of 
surface waves overtones”, reveal that seismic energy barely decays with depth. Furthermore, surface waves disper-
sion diagrams generated from the correlation of ambient noise in the lake-bed zone also show the overwhelming 
dominance of first overtones36. To understand the physical reason explaining these observations and to quantify 
the implications in terms of ground motion duration, we first analyzed Green’s functions in our 3D model of 
the Valley of Mexico (Fig. 3) for eight vertical forces applied at the free surface around the basin (green stars in 
Fig. 1). The sources radiation thus corresponds to P- and S-waves followed by a dominant Rayleigh train. In order 
to quantify the effect of attenuation, we performed the simulations for both the elastic and the viscoelastic cases 
up to 220 s in the UNAM supercomputer Miztli. Velocity snapshots for the viscoelastic simulation with source S6 
are shown in Fig. 4, where amplification, diffraction and generation of surface waves at the basin edges are clearly 
observed.

Figure 5 shows normalized seismic profiles at 0.5 Hz with 500 m spacing for source S6 along the dashed line of 
Fig. 1. In the elastic case (Fig. 5a), three main pulses are observed. Two of them propagate from the basin edges 
with speed of ~66 m/s, and the other emerges at ~10 km of the array with a speed of 260 m/s. Considering the 
Rayleigh waves group-velocity dispersion curves for shallow and deep basin locations (circles in Figure A1b), 
speeds clearly correspond to the fundamental mode (R0) and first overtones (R1), respectively. It is striking that 
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Figure 3.  Top ~10 km of the unstructured tetrahedral mesh used in the study. Notice that the elements 
honor the basin geometry and the actual topography of the terrain (compare with Fig. 1). The mesh considered 
for the simulations reaches 50 km depth. This figure has been created using the TetView Linux software Version 
1.0, http://wias-berlin.de/software/tetgen/tetview.html.

http://wias-berlin.de/software/tetgen/tetview.html
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even in the absence of attenuation, the first overtone dominates in the deep basin (i.e., between 10 and 23 km 
along the array). Unlike the elastic case, attenuation rapidly dissipates the fundamental mode and makes the over-
tones dominant along almost the whole array in the viscoelastic simulation (Fig. 5b). The most prominent wave 
train in the shallow basin regions propagates with the speed of the bedrock fundamental mode (i.e., ~1,300 m/s, 

Figure 4.  Snapshots of the Green’s function for the vertical body force S6 (see Fig. 1) described by the inset 
time history with flat spectrum up to 1 Hz. Notice the topographic scattering, the generation and propagation 
of wave trains at different speeds within the basin, and their multiple diffractions. This figure has been created 
using the Matlab software Version R2016a, http://www.mathworks.com/.

Figure 5.  Seismic sections of the radial-component at 0.5 Hz for source S6 along the linear array shown in 
Fig. 1 for the elastic (a) and viscoelastic (b) models. A cross section of the basin model is shown at the bottom. 
On top, peak ground accelerations (PGAs, radial component) along the array (blue) normalized by the value at 
the station with smallest epicentral distance. Durations of the strong shaking phase along the array (orange) as 
percentages of the duration of the incoming wavefield (i.e., the duration measured at the station with smallest 
epicentral distance). As a reference, the dashed line indicates the durations considering only the 1D regional 
structure (i.e., in the absence of the basin).

http://www.mathworks.com/
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Figure A1b). This means that the incident R0 suffers a mode conversion to become the second overtone (R2) 
when transduced into the basin, and that such overtone dominates the ground motion at shallow regions thanks 
to the rapid dissipation of the basin fundamental mode, R0. Around 12 km along the array, the R1 becomes dom-
inant when surface waves propagate from shallow to deeper parts of the basin, revealing the strong influence of 
the deep sediments.

A systematic analysis is necessary to conclude that overtones dominate the ground motion in the whole basin 
model. We thus analyzed the wavefields from the eight sources at a regular network of boreholes with 1 km 
spacing (gray dots in Fig. 1). From the seismograms at the network we computed and averaged synthetic eigen-
functions of Rayleigh waves for all sources in each borehole. To do so we normalized vertical displacements along 
the boreholes by the corresponding peak values at the free surface and at the same absolute time28. Figure 6a 
and c show the average eigenfunctions with standard deviation bars for both the elastic (blue solid lines) and 
viscoelastic (red solid lines) simulations at two representative sites, P1 and P2, and different frequencies. In the 
unrealistic elastic simulations and shallow basin regions (i.e., <​250 m deep; e.g. at site P1), the energy at 0.5 Hz 
decays very rapidly with depth (see Figure A6a) and, consequently, the corresponding eigenfunctions fit the 
expected shape for the fundamental mode (dashed blue line in Fig. 6a). In contrast, in the realistic viscoelastic 
simulations the energy efficiently travels in depth so that the eigenfunctions fit the theoretical shape for the first 
and second overtones (dashed red and green lines). Something similar happens in the deep basin at 0.3 Hz (e.g., 
at site P2), where the elastic and viscoelastic eigenfunctions follow the expected shapes for the fundamental and 
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first overtone, respectively (dashed lines in Fig. 6c and Figure A6b). Although it is difficult to identify propagating 
pulses in the seismic profiles at 0.3 Hz (Figure A7), eigenfunctions at shallow regions reveal that ground motion 
is dominated by the first and/or second overtones in both the elastic and viscoelastic cases (Figure A9d). In 
deeper locations and 0.5 Hz, while the viscoelastic simulations are clearly dominated by the first and/or second 
overtones, variability of the elastic eigenfunctions reveals a contested dominance between the fundamental and 
higher modes (Figure A9b). In conclusion, ground motion between 0.3 and 0.5 Hz in the viscoelastic model are 
dominated, across the whole basin, by surface-waves overtones as data from real boreholes suggest29 (black circles 
in Fig. 6a,c). The strong attenuation in the top clay layers is responsible for this propagation regime by dissipating 
the fundamental mode (Figure A6). RMS differences of the elastic and viscoelastic averaged eigenfunctions in 
the whole borehole network are shown in Figures A9a and A9c, where the shallow and deep regions of the basin 
are clearly distinguished by yellow colors. In those regions and frequencies, the attenuation plays a major role 
promoting the overtones dominance.

Implications for the duration of ground motion
Since the attenuation decreases with depth, seismic energy in the deep basin carried by overtones can propagate 
long distances. Basin-transduced surface waves and generation of wave trains at the basin edges, in addition to the 
wavefield dispersion and diffraction across the 3D structure, should then elongate the duration of ground motion. 
The top panels of Figs 5 and A7 show durations of the strong shaking phase for Rayleigh waves along the seismic 
profile for source S6. In the realistic viscoelastic model, durations grow as the basin becomes deeper, reaching 
values of 170–280% and 290–500% of the incoming field duration at 0.5 and 0.3 Hz, respectively. A similar sit-
uation is found for Love waves (transverse component) as shown in Figure A8, where relative durations vary as 
160–280% at 0.5 Hz and 200–500% at 0.3 Hz along almost the whole array. Results for Love waves where obtained 
applying a 1.5 km depth double-couple strike-slip point source at location S6. In shallow regions (i.e. <​300 m 
deep), peak ground accelerations (PGAs) are the largest, although significant amplification also occurs far from 
the source, between 22 and 28 km of the array for Rayleigh waves. As expected, amplification of single wave pack-
ages in the shallow basin region shortens the strong shaking duration. This is clear in both figures from the anti-
correlation of PGA and durations along the profile. Horizontal spectral amplifications (geometric mean of both 
horizontal components) at 0.5 Hz with respect to the CUIG site averaged for all sources reach values larger than 
10 along two ring-like regions encompassed by the 2 s dominant-period contour (Fig. 6b). These estimates are 
in qualitative agreement with empirical values of spectral accelerations at the same frequency37 and suggest that 
regions with largest amplification may be explained by the geometry of the deep basin. Significantly larger ampli-
fications (up to 25) are found at the lake-bed representative site P3 (Fig. 6b) around ~1.8 and ~3.2 s (Figure A10),  
which are two periods with similar amplification levels (with respect to CUIG) for subduction earthquakes at 
near by locations2. These results give confidence in our model predictions in terms of amplification patterns in 
the valley.

Average durations of horizontal strong shaking in regions with large amplification are relatively small for the 
reason explained above (Fig. 6d). However, durations in most regions of the basin exceed 40 s as observed in 
the lake-bed stations for the M3.4 earthquake (Fig. 2). Although much smaller in amplitude, ground motions at 
hard-rock are also long due to the scatter effect of the basin in the opposite side of the source. This is clearly seen 
in Figure A11, where ground motion duration inside and outside the basin is the same within the shadow-like 
region, proving that seismic energy recorded at hard-rock sites does not necessarily correspond to the incom-
ing wavefield of the basin, as suggested by several authors5,8,16. Our simulations show that duration of ground 
motion is remarkably lengthened at frequencies with the largest amplification in the lake-bed (i.e., between ~0.2 
and ~0.7 s) (Figs 5, A7 and A8). Long shaking duration at these frequencies may cause large structural damage 
in Mexico City due to the accumulation of yielding cycles that lengthen the natural vibration periods of the 
structures. Such mechanism makes these periods to approach those of the soil promoting structural failure, as 
observed during the devastating 1985 earthquake where more than three hundred 9–12 story, relatively small 
buildings collapsed38,39.

In conclusion, our results demonstrate that waves overtones dominate the ground motion in the lake-bed zone 
of the Valley of Mexico and that this propagation regime strongly contributes to the elongation of intense shaking 
(i.e., duration of both Rayleigh and Loves waves longer than 170% and 290% of the incoming field duration at 
0.5 and 0.3 Hz, respectively) at frequencies where the largest amplification is observed. The bedrock fundamen-
tal mode is transduced into the basin and converted into overtones (first and second modes) that dominate the 
ground motion. The structure of the deep basin is responsible for this mechanism, proving that local basin con-
ditions remarkably increase the duration of strong motion in the lake-bed despite the highly dissipative surficial 
sediments. Our results imply that duration of the incoming wavefield from subduction earthquakes should be 
significantly shorter than the observed duration in the lake-bed zone. This conclusion contradicts what has been 
previously stated from observational and theoretical studies considering the ground motion at hard-rock sites as 
the basin incoming wavefield. The contradiction can be explained if the seismic coda at those sites is dominated 
by multiple-scattered local waves generated at the basin, as suggested by our simulations.
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In this section we introduce the mathematical and computational models used to simulate the wave propagation in

the Valley of Mexico. First, we introduce the model for a viscoelastic rheology and how we couple the corresponding

constitutive relationship with the equation of motion to get the hyperbolic system describing the viscoelastic wave

propagation. Then, we introduce the system discretization following a discontinuous Galerkin strategy, and present

the computational model verification and convergence analysis based on different international benchmark problems.

We also include all tables and supplementary figures referred in the main text of the manuscript.

1 Viscoelastic model for waves propagation

The stress-strain constitutive relationship in an isotropic viscoelastic medium can be defined as

σij(t) = δijδkl

∫ t

−∞
λ(t− τ)∂tεkl(τ)dτ

+(δikδjl + δilδjk)

∫ t

−∞
µ(t− τ)∂tεkl(τ)dτ, (1)

where σij(t) is the stress tensor, λ(t) and µ(t) are the Lamé relaxation functions and εkl(t) is the strain tensor.

To avoid the unaffordable computation of the time convolutions in equation (1), for each Lamé relaxation function

we will model the viscoelastic rheology as a Generalized Maxwell Body (GMB-EK) with n Maxwell Bodies (MB) and

1 Hooke Body (HB) connected in parallel4. In the frequency domain, the relaxation functions can be written as

λ(ω) = λU

(
1−

n∑
l=1

Y λl
ωl

ωl + iω

)
(2)

µ(ω) = µU

(
1−

n∑
l=1

Y µl
ωl

ωl + iω

)
, (3)

where λU and µU are the unrelaxed Lamé parameters that correspond to the instantaneous elastic response of the

viscoelastic material, Y λl and Y µl are the anelastic coefficients and ωl are the relaxation frequencies for the lth

MB. The anelastic coefficients, Y λl and Y µl , gather some physical properties of the propagation medium11 and its

computation will be explain in Section 1.1.

We use the inverse Fourier transformation to express the Lamé relaxation functions (equations (2) and (3)) in the
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time domain, so that convolutions in equation (1) may be written as:

∫ t

−∞
λ(t− τ)∂tεkl(τ)dτ = λU εkl − λU

n∑
m=1

Y λmζ
kl
m(t) (4)

∫ t

−∞
µ(t− τ)∂tεkl(τ)dτ = µU εkl − µU

n∑
m=1

Y µmζ
kl
m(t), (5)

where we define the anelastic functions as

ζklm(t) = ωm

∫ t

−∞
εkl(τ) exp−ωm(t−τ) dτ m = 1, · · · , n k, l ∈ {1, 2, 3}, (6)

and, because of the exponential term in equation (6), the time evolution of the anelastic functions can be associated

with their own ODE8:

∂tζ
kl
m(t) + ωmζ

kl
m(t) = ωmεkl(t) m = 1, · · · , n k, l ∈ {1, 2, 3}. (7)

By substituting equations (4) and (5) into equation (1) our constitutive relationship becomes

σij(t) = δijδklλU εkl(t) + (δikδjl + δilδjk)µU εkl(t)

−
n∑

m=1

(δijδklλUY
λ
mζ

kl
m(t) + (δikδjl + δilδjk)µUY

µ
mζ

kl
m(t)). (8)

To avoid having the physical properties involved in the fluxes computation1 (see Section 2), we define the stress vector

as ~σ = (ω, ω′, ω′′, σxy, σxz, σyz)
t with ω = 1

3 (σxx+σyy+σzz), ω
′ = 1

3 (2σxx−σyy−σzz) and ω′′ = 1
3 (−σxx+2σyy−σzz).

This change of variable allows to express equation (8) in the following matrix form as

Λ~σ =
∑

θ∈{x,y,z}

∂θNθ~u−
n∑
l=1

Al~ζl (9)

where ~u = (ux, uy, uz)
t is the displacement vector and ~ζl = (ζxxl , ζyyl , ζzzl , ζ

xy
l , ζxzl , ζyzl )t is the anelastic function

vector for the lth MB. Matrix Λ = diag[3/(3λU + 2µU ), (3/2µU ), 3/(2µU ), 1/µU , 1/µU , 1/µU ], which gathers the

physical properties of the medium, is given by the unrelaxed Lamé parameters, λU and µU , and Nθ are constant real

matrices defined as

Nx =

 1 2 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


T

Ny =

 0 0 0 1 0 0

1 −1 2 0 0 0

0 0 0 0 0 1


T

Nz =

 0 0 0 0 1 0

0 0 0 0 0 1

1 −1 −1 0 0 0


T

.

Matrix A, associated with the anelastic term of equation (8), is given by

Al =



A1
l A1

l A1
l 0 0 0

2A2
l −A2

l −A2
l 0 0 0

−A2
l 2A2

l −A2
l 0 0 0

0 0 0 2A2
l 0 0

0 0 0 0 2A2
l 0

0 0 0 0 0 2A2
l


, (10)

where A1
l =

3λUY
λ
l +2µUY

µ
l

3λU+2µU
and A2

l = Y µl .
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To obtain the first part of the hyperbolic system of partial differential equations governing the propagation of

viscoelastic waves, we just applied the time derivative to equation (9):

Λ∂t~σ =
∑

θ∈{x,y,z}

∂θNθ~v −
n∑
l=1

Al~ξl, (11)

where ~v = ∂t~u = (vx, vy, vz)
t is the velocity vector, and ~ξl = ∂t~ζl = (ξxxl , ξyyl , ξzzl , ξ

xy
l , ξxzl , ξyzl )t, is the time derivative

of the anelastic functions vector ~ζl that for simplicity, we will still call the anelastic function vector. Then the ODE

associated with ~ξl is given by

∂t~ξl + ωl~ξl = ωl
∑

θ∈{x,y,z}

∂θOθ~v, (12)

where

Ox =

 1 0 0 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0


T

Oy =

 0 0 0 0.5 0 0

0 1 0 0 0 0

0 0 0 0 0 0.5


T

Oz =

 0 0 0 0 0.5 0

0 0 0 0 0 0.5

0 0 1 0 0 0


T

. (13)

To complete the hyperbolic system and keep track of the time-varying velocity field, we incorporate the equation of

motion. This equation can be written in matrix form1 as

ρ∂t~v =
∑

θ∈{x,y,z}

∂θMθ~σ + ~f, (14)

where ρ is the medium density, ~f is the external force vector and Mθ are constant real matrices defined as

Mx =

 1 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 My =

 0 0 0 1 0 0

1 0 1 0 0 0

0 0 0 0 0 1

 Mz =

 0 0 0 0 1 0

0 0 0 0 0 1

1 −1 −1 0 0 0

 .

Thus, equations (11) and (14) constitute the hyperbolic system fully describing the viscoelastic wave propagation.

1.1 Computation of the anelastic coefficients

The computation of the anelastic coefficients, Y λl and Y µl , in equations (2) and (3) is done such that the quality

factors, Qϕ, for ϕ ∈ {λ, µ}, are approximated over a frequency range of interest. The inverse of the quality factor is

defined for each Lamé relaxation function (equations (2) and (3)) as

Q−1ϕ (ω) =
Imϕ(ω)

Reϕ(ω)
=

n∑
l=1

ωlω +Q−1(ω)ω2
l

ω2
l + ω2

Y ϕl ϕ ∈ {λ, ω}. (15)

To approximate a nearly constant Qϕ(ω) in a given frequency range, we set the relaxation frequencies ωl in the

frequency range of interest with a logarithmically equidistant spacing4. A constant Q has been proved to be a good

approximation for most geophysical applications9. Nonetheless, the following procedure can also be applied for any

frequency dependency of Q10. Once the relaxation frequencies are spread along the frequency range, we used a least

square method to determine the anelastic coefficients in equation (15) that better fit the function Qϕ(ω).

In practice, seismologists describe the rocks anelastic dissipation through the quality factors Qα and Qβ associated

with the P - and S- waves, respectively. After computing their corresponding coefficients Y αl and Y βl , we can compute

3



those related with the Lamé parameters using the transformations

Y λl =

(
1 +

2µ

λ

)
Y αl −

2µ

λ
Y βl and Y µl = Y βl . (16)

For our simulations, we have considered three MB (i.e., three relaxation frequencies) to approximate constant Qα and

Qβ in the frequency range [0.01 5.0] Hz, which is a reasonable choice for our modeling purposes. The more relaxation

frequencies we consider the better is the approximation of the given function Qϕ(ω). However, it is important to

notice that increasing the amount of relaxation frequencies implies a significant increment in the memory storage

requirements and computational time.

2 hp-Discontinuous Galerkin method

Before solving the hyperbolic system given by equations (11) and (14), we first need to decompose the physical

domain, Ω, into K elements, so that

Ω ' Ωh =

K∑
i=1

Di (17)

where each Di is a straight-sided tetrahedron whose union constitutes a geometrically conforming mesh .

We approximate the velocity and stress vectors in every tetrahedron, Di ∀i ∈ {1, . . . ,K}, using a nodal interpolation6

as

~̂vi(~x, t) =

di∑
j=1

~vij (~xj , t)ϕij (~x) (18)

~̂σi(~x, t) =

di∑
j=1

~σij (~xj , t)ϕij (~x), (19)

where ~x ∈ Di, t is the time and di is the number of nodes supporting the interpolation Lagrangian polynomial basis

functions, ϕij , associated to the j-node located at ~xj .

Using the nodal interpolations (18) and (19), we can apply a discontinuous Galerkin approach5 to equations (11)

and (14) and get

ρi(I3 ⊗Ki)
~v
n+ 1

2
i − ~vn−

1
2

i

∆t
= −

∑
θ∈{x,y,z}

(Mθ ⊗ Eiθ)~σni

+
1

2

∑
k∈Ni

[(Pik ⊗Fik)~σni + (Pik ⊗ Gik)~σnk ] (20)

(Λi ⊗Ki)
~σn+1
i − ~σni

∆t
= −

∑
θ∈{x,y,z}

(Nθ ⊗ Eiθ)~v
n+ 1

2
i −

n∑
l=1

(Ail ⊗Ki)~ξ
n+ 1

2
il

+
1

2

∑
k∈Ni

[
(Qik ⊗Fik)~v

n+ 1
2

i + (Qik ⊗ Gik)~v
n+ 1

2

k

]
(21)

where the matrices involved are: the mass matrix

(Ki)rj =

∫
Vi

ϕirϕijdV j, r ∈ [1, di],

4



the stiffness matrix

(Eiθ)rj =

∫
Vi

(∂θϕir )ϕijdV j, r ∈ [1, di] θ ∈ {x, y, z},

the flux matrices

(Fik)rj =

∫
Sik

ϕirϕijdS j, r ∈ [1, di]

(Gik)rj =

∫
Sik

ϕirϕkjdS r ∈ [1, di] j ∈ [1, dk].

and the auxiliary flux matrices

Pik =
∑

θ∈{x,y,z}

nikθMθ

Qik =
∑

θ∈{x,y,z}

nikθNθ,

where I3 is the 3x3 identity matrix, ⊗ represent the tensor product, and nikθ is the component along the θ axis of

the unit normal vector ~nik of the element face Sik which points from the i- to the k-element.

The size of these matrices depends on the order of the polynomial basis used for the nodal interpolation. The flux

terms of the ith-tetrahedron are computed following a non-dissipative centered scheme with its Ni adjacent elements.

Besides, thanks to the change of variable previously introduced, the fluxes of equation (21) do not involve the physical

properties of the neighboring elements but only their velocity fields.

In our method, we have implemented P0, P1 and P2 (i.e. constant, linear and quadratic) approximation orders that

can be individually assigned to each tetrahedron Di depending on its characteristic size and medium properties (i.e.,

p-adaptivity). Staggered time integration is performed through a second-order explicit leap-frog scheme, which allows

the alternation of velocities and stresses during computation. The order of approximation used for time integration

matches the highest approximation order for the spatial interpolation (i.e. P2).

To solve the ODE’s governing the anelastic functions (12), we approximate these functions using a nodal interpolation

and the same Galerkin approach introduced before for equations (11) and (14), to get

(I6 ⊗Ki)
~ξ
n+ 1

2
il

− ~ξn−
1
2

il

∆t
= −ωl

(I6 ⊗Ki)~ξ
n− 1

2
il

+
∑

θ∈{x,y,z}

(Oθ ⊗ Eiθ)~v
n− 1

2
i


+ωl

1

2

∑
k∈Ni

[
(Rik ⊗Fik)~v

n− 1
2

i + (Rik ⊗ Gik)~v
n− 1

2

k

]
(22)

where Rik =
∑
θ∈{x,y,z} nikθOθ. It is important to notice that the discontinuous Galerkin approximation used for

the ODE’s allows us to honour the p-adaptivity of the scheme.

In order to achieve good accuracy for P2 elements, the unstructured model discretization must warranty 3 tetrahedra

per minimum wavelength5 (see Figure A5). On the other hand, the scheme stability is given by an heuristic criterion7

given by

∆t < min
i

(
1

2ki + 1
· 2ri
αi

)
(23)

where ri is the radius of the sphere inscribed in the element indexed by i, αi is the P−wave velocity in the element

and ki is the polynomial degree used in the element.
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Our Discontinuous Galerkin Finite Element Method (DG-FEM) (i.e., the GEODG3D code) thus has two main

features that make it a very flexible and powerful numerical tool. One is the h-adaptivity, which allows working with

unstructured tetrahedral meshes geometrically adapted to the physical properties of the medium and the free surface

topography, so that the accuracy criterion is satisfied locally (Figures 3a and A3b). The other is the p-adaptivity,

that allows choosing the most convenient order of approximation per tetrahedron to relax as much as possible the

stability condition (i.e., to maximize the integration time step). A nice example of p-adaptivity is given in Figure

A3a, where the elements right below the basin, which have a very little characteristic size and relatively high wave

speeds, are low approximation order (i.e., P1 or P0). This numerical approach was developed in recent years during

the PhD thesis of Tago (2012)12, where more methodological and numerical details are provided.

3 Model verification and convergence

To verify the correctness of the solutions yielded by the GEODG3D code, we solved two international benchmarks

problems. Solutions were compared with those from AXITRA2, a semi-analytical discrete wave number method.

The benchmarks correspond to the elastic and viscoelastic versions of the Layer Over an Homogeneous half-space

problems, LOH1 and LOH3, respectively3.

For the LOH3 benchmark, the viscoelastic moduli were exactly the same in both the AXITRA and GEODG3D

simulations. This choice allows quantifying approximation errors associated only to the implementation of the

attenuation model for a given number of relaxation mechanisms and thus for the same Q(ω) functions. In this

benchmark problem, the top layer is 1000 m thick and the physical properties of the whole model are given in Table

A3. We approximated the frequency-independent quality factors Qα and Qβ with three relaxation mechanisms.

Receivers are located in the free surface (z = 0) with positions relative to the epicenter (x→ North and y → East)

given in Table A4. A double-couple point source is located 2000 m below the free surface with all components of its

moment tensor equal to zero except Mxy = Myx, with moment value M0 = 1018 Nm. The Moment rate time history

is a Gaussian pulse given by
1

tr
√
π

exp
−(t− t0)2

t2r
, . (24)

where t is the time, tr = 0.05 s is the rise time and t0 = 0.25 s is the origin time. The source spectrum is almost

flat up to 10 Hz so all the frequencies below have almost the same amplitude. Solutions should be compared up to

5.0 Hz.

All solutions were computed using P2 elements in the physical domain, approximately ten P1 elements in the

Convolutional Perfectly Matched Layer (CPML)5 region and free surface boundary conditions on top of the model.

The characteristic size of the tetrahedra used for both the structured and the unstructured meshes was 100 m, as

suggested in the benchmarks descriptions3. This choice is convenient for our method since the number of elements

per minimum wavelength, nλ, is about three, which corresponds to the accuracy criterion for our method5 (see Figure

A5).

Figure A4 shows the comparison of the three velocity components in the farthest three receivers (i.e. located about

32 times the minimum wavelength from the epicenter) using an unstructured mesh. The time series were filtered

using a two-pass four-pole Butterworth filter in the frequency band [1− 5] Hz. The agreement between solutions is

excellent (i.e., error of about 1.2%).

We performed a convergence analysis of the GEODG3D method based on both the elastic (LOH1) and the viscoelastic

(LOH3) benchmarks considering structured and unstructured meshes. The Normalized Root Mean Square (NRMS)

6



function was used to quantify the error between our solutions and the AXITRA reference solutions. This function is

given by

NRMS(vDG−FEMθ , vAXITRAθ ) =

√
(
∑n
i=1(vDG−FEMθi

− vAXITRAθi
)2)/n

max(vAXITRAθ )−min(vAXITRAθ )
, (25)

where n is the length of the seismograms vectors and θ ∈ {x, y, z}. Components with no signals were excluded in

the NRMS computation. For the rest of receivers we computed the NRMS in the three velocity components and

averaged them to have a single misfit value.

Figure A5 presents NRMS values computed for the following four simulation cases: 1) the LOH1 benchmark with

structured mesh, 2) the LOH1 benchmark with unstructured mesh, 3) the LOH3 benchmark with structured mesh

and 4) the LOH3 benchmark with unstructured mesh. NRMS values are reported as a function of the number of

elements per minimum wavelength, nλ, associated with the cutoff frequency of 5 Hz. Linear regressions are also

plotted in the log-log scale. The resulting slopes give the convergence rates of the solutions with respect to nλ.

For the unstructured viscoelastic case (i.e., for conditions similar to our simulations in the Valley of Mexico) the

convergence rate is 2.98.

Four main conclusions detach from Figure A5: 1) viscoelastic solutions are systematically better than the elastic

ones no matter we use structured or unstructured meshes; 2) the convergence rate of both viscoelastic and elastic

solutions is virtually the same and depends on the kind of mesh we use; 3) the convergence rate is significantly higher

in unstructured meshes no matter we solve the elastic or viscoelastic equations (i.e. convergence rate about 1.8 times

higher); and 4) numerical errors are lower than 2% and 1.2% in structured and unstructured meshes, respectively,

provided that nλ >= 3 no matter we solve the elastic or viscoelastic equations.
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Table	A1	Velocity	structure	considered	in	this	study.	Green	shaded	layers	correspond	

to	 those	 inside	 the	 3D	 basin	 geometry	 shown	 in	 Figure	 1.	 Blue	 shaded	 layers	

correspond	to	the	1D	structure	where	the	basin	 is	embedded.	Thicknesses	 indicated	

with	stars	correspond	to	the	deepest	point	of	the	basin.	They	vary	depending	on	the	

basin	geometry.	

	
H	(km)	 Vp	(km/s)	 Vs	(km/s)	 Rho	(gr/cm3)	 Qp		 Qs	
0.03	 0.8	 0.05	 2.0	 30.0	 15.0	
0.02	 1.2	 0.1	 2.0	 60.0	 30.0	
0.25	 2.0	 0.4	 2.05	 80.0	 40.0	
0.25*	 2.5	 0.8	 2.05	 160.0	 80.0	
1.42*	 2.70	 1.56	 2.20	 312.0	 156.0	
2.34	 5.51	 3.18	 2.53	 636.0	 318.0	
10.97	 6.00	 3.46	 2.69	 692.0	 346.0	
27.62	 6.68	 3.86	 2.91	 772.0	 386.0	
∞ 8.31	 4.80	 3.43	 960.0	 480.0	

	

	

Table	 A2	 Numerical	 information	 of	 a	 typical	 viscoelastic	 simulation.	 The	 UNAM	

supercomputing	platform	Miztli	has	40	Gb	Infiniband	 interconextion	and	processors	

Intel	Xeon	E5-2670	with	frequency	of	2.6	to	3.3	GHz.	

	
Maximum	resolved	frequency	 1	Hz	
Size	of	the	simulation	domain	 93.3	x	79.7	x	50.3	km	
Length	of	the	CPML	layer	 8	km	
Number	of	mesh	elements	 12.25	million	
Elements	within	the	basin	 97.04	%	
P0	elements	 10.41	%	
P1	elements	 12.85	%	
P2	elements	 76.75	%	
Minimum	element	size	 0.49	m	
Maximum	element	size	 737	m	
Integration	time	step	 0.00036	s	
Number	of	time	steps	 514,995	
Number	of	parallel	processors	 512	
Computing	elapsed	time	 23.7	hr	

	 	



Table A3: Medium parameters of the LOH3 benchmark
α (m/s) β (m/s) ρ (kg/m3) Qα Qβ

layer 4000 2000 2600 120 40
halfspace 6000 3464 2700 180 80

Table A4: Receivers location of the LOH1 and LOH3 benchmarks
Receiver 1 2 3 4 5 6 7 8 9

x (m) 0 0 0 490 3919 7348 577 4612 8647
y (m) 693 5543 10392 490 3919 7348 384 3075 5764

9
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Figure	A1	(a)	Velocity	structure	used	in	the	numerical	model	(see	Table	A1).	Depth	of	

the	basin	basement	varies	in	space	according	to	the	basin	thickness	shown	in	Figure	1.	

Circles	show	the	homogenized	velocity	structure	used	for	the	model	discretization.	(b)	

Rayleigh	waves	dispersion	curves	for	the	vertical	component	of	the	fundamental	(R0,	

blue)	and	first	overtone	(R1,	red)	at	shallow	(250	m	thick;	dashed)	and	deep	(500	m	

thick;	solid)	basin	sites.	
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Figure	A2	Synthetic	velocity	seismograms	computed	at	nine	broadband	stations	 for	

the	 M3.4	 earthquake	 with	 4	 km	 depth	 (Figure	 1).	 The	 source	 is	 a	 vertical	 dip-slip	

dislocation	with	 strike	 to	 the	 north	 and	 source	 time	 function	 shown	 in	 the	 inset	 of	

Figure	4.	Records	are	aligned	with	the	P-wave	arrival.	Durations	of	the	strong	shaking	

phases	for	f	<	1	Hz	are	compared	with	real	observations	in	Figure	1b.	 	
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Figure	A3	(a)	Cross-section	of	the	discrete	model	along	the	dashed	line	of	Figure	6b.	

The	distribution	of	 the	elements	approximation	order	(i.e.,	p-adaptivity)	 is	 indicated	

with	 three	 different	 colors.	 Notice	 the	 concentration	 of	 low-order	 elements	 right	

below	the	interface	with	highest	impedance	contrasts	(i.e.,	below	the	shallower	basin	

regions	 close	 to	 its	 borders).	 (b)	 Same	 cross-section	 showing	 the	 tetrahedral	mesh	

refinement	within	the	basin	(h-adaptivity).		 	
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Figure	A4	Comparison	of	synthetic	seismograms	(bandpass	filtered	between	1	and	5	

Hz)	 computed	 with	 the	 Discontinuous	 Galerkin	 GEODG3D	 method	 (blue)	 and	 the	

Discrete	 Wave	 Number	 method	 (DWN,	 red)	 for	 the	 viscoelastic	 benchmark	 “Layer	

Over	 a	 Halfspace	 3”	 (LOH3)	 of	 the	 Southern	 California	 Earthquake	 Center	 (SCEC)	

described	by	Day	et	al.	(2003).	Both	solutions	were	computed	with	exactly	the	same	

viscoelastic	 modulus	 for	 three	 relaxation	 mechanisms	 so	 the	 signals	 misfit	 only	

responds	 to	numerical	approximation	errors.	The	GEODG3D	solution	was	computed	

using	a	P2	unstructured	mesh	with	characteristic	size	of	100	m.	The	three	receivers	

are	located	at	distances	from	the	source	of	about	32	times	the	minimum	wavelength.	 	
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Figure	 A5	 Convergence	 analysis	 for	 GEODG3D	 elastic	 (red)	 and	 viscoelastic	 (blue)	

methods	considering	structured	(solid)	and	unstructured	(dashed)	meshes.	Problems	

used	 were	 the	 LOH1	 and	 LOH3	 (Day	 et	 al.,	 2003)	 taking	 the	 DWN	 solutions	 as	

references.	Viscoelastic	solutions	are	always	better	that	the	elastic.	Convergence	rate	

in	unstructured	meshes	(slope	of	2.98)	is	significantly	higher	than	the	corresponding	

value	 for	structured	meshes	(slope	of	1.64).	This	 is	due	 to	 the	numerical	anisotropy	

induced	by	the	regularity	of	elements	in	the	structured	mesh.	 	
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Figure	A6	Synthetic	borehole	seismograms	at	sites	P1	and	P2	(see	Figure	A9)	for	two	

different	frequencies.	While	the	energy	of	the	fundamental	mode	(R0)	decays	rapidly	

with	 depth	 (red	 rectangles),	 that	 of	 the	 first	 and	 second	 overtones	 (R1	 and	 R2)	

persists	along	the	entire	depth	of	the	borehole.	Compare	the	amplitudes	of	the	wave	

packages	with	the	eigenfunctions	of	Figures	6a	and	6c.	
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Figure	A7	Same	as	Figure	5	but	for	f	=	0.3	Hz.		
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Figure	A8	Same	as	Figure	5	but	for	Love	waves	in	the	viscoelastic	model	at	(a)	f	=	0.5	

Hz	and	(b)	 f	=	0.3	Hz.	This	simulation	corresponds	 to	a	1.5	km	depth	double-couple	

strike-slip	point	source	at	location	S6.	 	
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Figure	A9	 (a)	and	(c)	RMS	differences	of	the	averaged	(for	the	eight	sources)	elastic	

and	 viscoelastic	 eigenfunctions	 computed	 in	 the	whole	 borehole	 network	 shown	 in	

Figure	1	for	two	different	frequencies.	White	contours	delineate	the	basin	geometry	at	

fixed	depths	in	meters.	Yellow	colors	depict	regions	where	attenuation	plays	a	major	

role	resulting	in	the	dominance	of	Rayleigh	waves	first	overtones.	(b)	and	(d)	Same	as	

Figure	6	but	for	frequencies	of	0.3	and	0.5	Hz	at	representative	sites	P1	and	P2.	Notice	

the	dominance	of	first	overtones	at	0.3	Hz	for	both	elastic	and	viscoelastic	models	in	

shallow	 basin	 regions	 (i.e.,	 at	 P1).	 This	 figure	 has	 been	 created	 using	 the	 Matlab	

software	Version	R2016a,	http://www.mathworks.com/.	 	



	 20	

	

	
Figure	A10	Average	horizontal	spectral	amplification	for	the	eight	sources	(solid	red	

line)	and	standard	deviations	(black	dotted	lines)	at	the	lake-bed	representative	site	

P3	(Figure	6)	with	respect	to	the	hard-rock	CUIG	site.	
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Figure	 A11	 (a)	Duration	of	 the	strong	shaking	phase	of	 the	Green’s	 function	due	 to	

source	S6	 (Figures	1	and	4)	averaged	 for	both	horizontal	 components	and	 f	<	1	Hz.	

Notice	 the	 long	 duration	 of	 ground	motions	 in	 both	 the	 sedimentary	 basin	 and	 the	

external	shadow	region.	(b)	Seismograms	computed	in	two	close	sites,	one	in	the	lake-

bed	 zone	 and	 the	 other	 at	 hard-rock	 within	 the	 seismic	 shadow.	 Red	 dashed	 lines	

indicate	 the	strong	shaking	phase	computed	 form	the	Arias	 intensity.	Although	very	

different	 in	 amplitude,	 durations	 of	 their	 strong	 phases	 are	 almost	 the	 same.	 This	

figure	 has	 been	 created	 using	 the	 Matlab	 software	 Version	 R2016a,	

http://www.mathworks.com/.	
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