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S U M M A R Y
Two-dimensional (2-D) modelling of dynamic seismic rupture is performed using a recent
staggered-grid finite-difference formulation. Rupture boundary conditions are applied only
inside the crack, without assuming any symmetry with respect to the rupture surface. By a
simple rotation of the stress tensor, the local orientation of the crack is taken into consideration
at each stress point. The grid size is controlled by the source discretization. The greater the
number of grid nodes discretizing the finite source, the lower the grid size could be. Below the
lower bound value associated with a given discretization, numerical artefacts are not negligible
with respect to the spatial frequency content of the dynamic solution. Solutions converge for
both point and finite sources by densifying the number of stress points in the source. Numerical
scaling of boundary conditions is an important element of this convergence and allows the
removal of high-frequency spurious effects of dynamic rupture conditions. For the self-similar
crack, a comparison with Kostrov’s analytical solution shows that accurate stress singularities
are obtained for various crack orientations with respect to the numerical grid. For spontaneous
rupture modelling assuming a slip-weakening constitutive law, similar solutions are found for
both rupture kinematics and excited wavefield in planar faults with any orientation. Finally,
based on these results, rupture propagation over an arbitrary non-planar fault is justified and
then performed in the presence of heterogeneous medium.

Key words: boundary conditions, dynamic rupture, finite-difference modelling, non-planar
faults, seismic rupture, seismic source modelling.

1 I N T RO D U C T I O N

Dynamic modelling of seismic rupture has been performed apply-
ing different numerical tools such as finite-difference (FD) meth-
ods (Madariaga 1976), finite-element (FE) methods (Day 1977)
and boundary integral equation (BIE) methods (Das & Aki 1977;
Andrews 1985). The last approach seems the most appropriate for
solving the boundary problem of seismic source dynamics because
integral equations discretize only boundary structures. The stress
field must be specified on a given discretized surface at time t. Nev-
ertheless, the analytical construction of Green’s functions is required
representing an important limitation of these methods: it is not pos-
sible to embed the dynamic source in a heterogeneous medium. In
spite of this limitation, the BIE methodology has been successfully
used to simulate non-planar seismic sources, showing how impor-
tant it is for rupture history to consider realistic source geometries
(Aochi & Fukuyama 2002). Moreover, application of FE methods
has shown that rupture dynamics is largely influenced in dipping
faults by the interaction with the free surface and by the two-way in-
teraction between non-parallel fault segments (Oglesby et al. 2000,
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2003). Thus, complex source geometry seems to be determinant
in rupture evolution. On the other hand, simulations with FD ap-
proaches have revealed that heterogeneous surrounding media can
also strongly affect the source dynamics. For instance, the presence
of low-velocity zones acts directly on both rupture front velocity
and fault slip (Mikumo et al. 1987; Harris & Day 1997). If rupture
governed by Coulomb friction propagates within a compliant fault
zone, the strength and shape of the slip pulse will strongly depend
on the elastic properties and geometry of such a zone (Ben-Zion
& Huang 2002). Furthermore, observational evidence of ground
motion in some remarkable cases can only be explained if realistic
heterogeneous structures are taken into account during simulations
(e.g. Olsen 2000; Shapiro et al. 2000). However, until now only pla-
nar source boundary conditions have been applied in FD methods to
keep numerical errors under control. This constraint has precluded
such approaches from considering different fault geometries. Is it
possible to implement intricate source geometries in a FD approach?
If so, we contribute toward finding more realistic simulations by con-
sidering arbitrary heterogeneous media, composite friction laws and
complex source geometries.

We present a new approach to the modelling of dynamic fault-
ing with any pre-established source geometry based in a FD
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formulation. We consider a new spatial stencil proposed by Saenger
et al. (2000). Stress boundary conditions with numerical scaling fea-
tures represent the source inside the numerical grid. This is our orig-
inal contribution. Accurate estimations of elastic fields are observed
near the crack tip. We first introduce the elastodynamic equations
for in-plane cracks in two dimensions, as well as the FD technique
we use. Afterwards, boundary conditions are discussed in a separate
section. We show how rupture simulations of planar sources allow
us to validate and estimate the accuracy of seismic source and wave
modelling. Finally, we discuss the case of a simple scenario that in-
cludes a non-planar source traversing a single heterogeneity in the
elastic medium, mainly to illustrate our new approach.

2 E L A S T O DY N A M I C E Q UAT I O N S
F O R A N A R B I T R A RY C R A C K

Let us consider the following two-dimensional (2-D) velocity–stress
formulation of elastodynamic equations:
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for modelling P-SV wave propagation (Virieux 1986). We assume
a 2-D medium with Cartesian coordinate axes x and z pointing to
the right and down respectively. The medium is linearly elastic and
isotropic: it is fully described by λ and µ, the Lamé coefficients, and
ρ, the density. The particle velocity vector is denoted by (vx, vz),
while the second-order stress tensor is denoted by (τ xx, τ zz , τ xz). The
velocity–stress system (1) can be discretized by using a staggered
grid in order to calculate spatial derivatives half-way between two
gridpoints. Madariaga (1976) has proposed an elementary structure
for such a grid (Fig. 1a) that has become a standard procedure in elas-
tic wave propagation. The stencil structure is uniquely determined by
the definition of the spatial differential operators. Authors have de-
veloped various schemes following the same staggered-grid strategy
in order to improve the accuracy of numerical simulations in elastic
wave propagation (see Virieux 1986; Levander 1988, among oth-
ers). Furthermore, many people have successfully used this numer-
ical approach for modelling dynamic propagation of planar cracks
(e.g. Virieux & Madariaga 1982; Olsen et al. 1997; Madariaga et al.
1998; Peyrat et al. 2001). However, the stencil associated with this
formulation has one major disadvantage: neither normal and tan-
gential stresses nor the two velocity components are defined in the
same grid node (Fig. 1a). This limitation has prevented authors from
applying boundary conditions to an arbitrary oriented crack. In order
to avoid this problem, the stencil should be conceived in a different
way. We define the partial differential operators Dx, along coordinate
x, and Dz, along coordinate z, as follows:
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Figure 1. Staggered-grid numerical stencils for (a) the standard finite-
difference approach (Madariaga 1976), and for (b) the new finite-difference
approach (Saenger et al. 2000) used in this work. h is the grid size, (τ xx, τ zz,
τ xz) is the second-order stress tensor, (vx, v z) is the particle velocity vector,
λ and µ are the Lamé coefficients, and ρ is the density.

which correspond to the same stencil as the one introduced by
Saenger et al. (2000) (see Appendix A). The associated staggered
grid is unique (Fig. 1b) and defines the stress components at a sin-
gle grid node. Similarly, velocity components are defined at a single
node shifted half-way in both x and z directions. In the present
work we have applied operators accurate to fourth-order in space
increments (Appendix A) and to second-order in time increments
as the best compromise between accuracy of wavefields and mem-
ory requirement to solve the system (1). We emphasize that this
new finite-difference approach retains the accuracy of the staggered
grid: one must estimate stress derivatives at velocity gridpoints and,
conversely, velocity derivatives at stress locations. On the whole,
the three main advantages of the new approach with respect to the
standard one are: the reduction of numerical-grid dispersion along
preferred directions, a less restrictive numerical stability criterion
(Saenger et al. 2000), and definition of the stress and velocity fields
separately in only two staggered grids. Thanks to this particular
wavefield discretization, we are able to apply boundary conditions
for any crack orientation in specific nodes. The way we impose such
boundary conditions will be described in the next section. In order
to simulate an unbounded space, we have implemented the standard
perfectly matched layer (PML) absorbing boundary conditions in
the external edges of the computational domain (Berenger 1994;
Hastings et al. 1996).

3 C R A C K B O U N DA RY C O N D I T I O N S

Considering planar crack geometries may reduce the computational
effort by a factor of 2 when the problem is symmetric. This is the
case when modelling a half-space bounded by the plane contain-
ing the crack (e.g. Madariaga 1976; Das & Aki 1977). This fact
has led authors to introduce Cauchy mixed boundary conditions
that guarantee such symmetry: depending on the fracture mode,
some stress components are dropped inside the crack on the crack
plane, while certain velocity components are equal to zero outside
the crack on the crack plane. Because we should take into consid-
eration complex crack geometries, we should not take advantage
of such a symmetry even for the case of planar cracks. Therefore,
we only impose stress boundary conditions inside the crack, and
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deduce wavefields anywhere else by solving the partial differential
eq. (1). We have verified that velocities outside a horizontal crack,
on the crack plane, are automatically equal to zero in a homogeneous
medium, thanks to the symmetry of the spatial finite-difference sten-
cil. Authors such as Olsen et al. (1997) and Madariaga et al. (1998)
have used fourth-order spatial operators for mixed boundary con-
ditions within a fault zone discretized by two planes of gridpoints.
As a consequence, they improved precision of wavefields (espe-
cially the high-frequency content) near the crack tip compared with
previous results (Madariaga 1976; Virieux & Madariaga 1982). An
alternative methodology for mixed boundary conditions has also
been proposed by Nielsen & Olsen (1998) reducing spurious oscil-
lations by spatially matching the friction and the slip on the same
grid nodes. In the present work, because stress components are de-
fined at the same gridpoints, we proceed in the following way for
setting local boundary conditions.

Let us consider a local Cartesian reference frame, x′ − z′, that
matches the crack orientation at a given stress gridpoint of the new
staggered grid (Fig. 2). The crack orientation angle with respect
to the absolute Cartesian coordinate system, x − z, is denoted by
θ . Thus, applying a second-order invariant transformation, we may
express the stress tensor in the new rotated frame of reference x′ −
z′, in terms of the non-rotated stress components σ ij, as follows:

σmn = σi jβmiβnj (3)

where β kl are the director cosines of the rotation matrix associated
with the rotation of axes. The components σ x′z′ and σ z′z′ in eq. (3),
from now on respectively denoted by τ and σ , correspond to the
tangential and normal stresses to the crack point (see Fig. 2). For
in-plane conditions, one has to specify the shear stress τ , which in
general is assumed to drop down to its dynamic friction level as a
function of the normal stress σ and the friction coefficient. Once
the shear stress is imposed at a given crack point, we transform the
stress tensor σ mn back to the original coordinate system, x − z, by
applying the following inverse transformation:

σi j = σmnβimβ jn

where β lk are the director cosines of the transposed matrices used in
eq. (3). Finally, we perform a new time extrapolation of the velocity
field by the finite-difference explicit second-order extrapolation in

σ τ

θ

z
z’

x

x’

dS

Figure 2. Shear (τ ) and normal (σ ) stresses acting on a crack surface (dS)
tilted at an angle θ with respect to the Cartesian frame of reference x − z.
The reference frame x′ − z′ always matches the crack orientation.

time. The above procedure shows the general way we apply the crack
boundary conditions in a single stress gridpoint inside the crack. For
a numerical analysis of this new strategy for setting local boundary
conditions, we shall first consider a crack described by a single point
source before handling more complex crack geometries.

4 P O I N T - S O U RC E A N A LY S I S

The numerical scaling between the grid spatial size and the phys-
ical dimension of a given seismic source allows one to discretize
such a source by a different number of stress gridpoints. This is
done by adapting the grid size accordingly. As the number of points
describing the source increases, we might expect the accuracy of
the solution to increase. The velocity grid is still shifted by half the
grid step on both Cartesian directions. The slip at a point source
can be estimated from the particle displacement values around the
point source. Since the slip enters in the rupture failure criterion,
an accurate scheme is required. Let us focus our attention on the
discretization of a point source before analysing the slip estimation
at such a point source.

4.1 Point-source discretization

Let us first consider a point source which emits the same wavefield
for any fault orientation. Numerically, several configurations of clus-
ters of stress-grid nodes will satisfy such invariance with respect to
the fault orientation. For instance, the simplest configuration is the
one-point numerical cell which will not be considered because it
provides inaccurate results. The next one is the four-point numeri-
cal cell. It consists of four stress-grid points describing one square
(black points, Fig. 3a). Similarly, all other cells, nine-point (black
points, Fig. 3b), 16-point, 25-point and so on, will also provide the
same wavefield for any source orientation. Inside a numerical cell, as
an independent unit, the same boundary condition is applied to each
stress-grid point. The boundary condition is applied as described in
the previous section. Therefore, an oriented seismic point source is
represented by one numerical cell, and we expect a better azimuthal
behaviour as the number of stress gridpoints increases.

In order to verify the azimuthal invariance of our point-source
discretization model, we compare velocity seismograms around
one four-point numerical cell for six different fault inclination an-
gles. Results (Fig. 4) show that the point-source model satisfies
the wavefield expectation: no significant variations were found for

µλτττ xzzzxx

ρvv zx

a b

h = h1.5 94 h9

Figure 3. Two equivalent numerical cells: (a) four- and (b) nine-point cells
with equal spatial support S (shaded areas). They obey the scaling relation
hn

√
n = √

S, where hn is the grid size associated with a given numerical
cell containing n stress gridpoints.
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Figure 4. Velocity seismograms (time window 2.4 s) around one point source (white square) for six different fault inclination angles θ computed in seven
equidistant positions (black points) with respect to the source. To allow comparison, velocity components were rotated for every θ into the tangential vx′ and
normal v z′ directions to the fault plane, and superimposed (white panels).

different fault orientations. Seismograms were computed in the
same seven observational positions (black points) with respect to
the point-source (white square) orientation θ . Thanks to the new
stencil which regroups the two velocity components in the same
grid nodes (Fig. 1b), the velocity field was rotated at each obser-
vational point into the parallel (vx′ ) and normal (v z′ ) directions to
the fault plane. To keep the high-frequency content of the wavefield
under control, we implemented a linear time-weakening constitutive
relation. A time lag of 0.1 s was taken for the stress to drop from its
initial zero value down to the dynamic level of −30 bar.

Notice the good agreement between the six superimposed traces
in each one of the seven observational points of Fig. 4. Even the
double-couple radiation patterns of the P and S wave can be clearly
identified. If we analyse the signals in the two observational points
that are aligned with the fault plane, we see no ground motion in the
parallel component vx′ . In contrast, we find in the normal compo-
nent v z′ the near-field term deformation with no P-wave signature
followed by the energetic S-wave amplitude. Likewise, similar ob-
servations can be made at the middle point that lies perpendicular
to the fault plane.

A point source always has a finite support, especially in finite-
difference formulations when source discretization is performed as
shown in Fig. 3. Discretizing such a source by an increasing number
of nodes should lead to similar results if we respect its physical
support. This consideration is translated into the following scaling

rule for a 2D geometry:

hn

√
n =

√
S (4)

where the surface S is the physical support of the point source
(shaded areas, Fig. 3), and hn is the grid size related to a given numer-
ical cell containing n stress gridpoints. So, the same wavefield will
be excited by any numerical cell we place inside the surface S if the
same boundary condition is applied in every node. In other words,
whatever the number of stress gridpoints with equal stress drop
put inside S, the wavefield generated by this seismic source remains
identical. To illustrate the scaling relationship (4), we compared seis-
mograms generated with several equivalent numerical cells (Fig. 5).
This comparison was carried out for many different fault orienta-
tions obtaining basically the same results. However, we found that
the content of numerical noise varies with the fault angle, with the
maximum level around the middle direction between 0◦ and 45◦.
We point out that these two directions are privileged by the spatial
differential operators (see eq. 2 and Appendix A). Fig. 5 presents
results that correspond to a rather noisy case of a 20◦ tilted source
for four-, nine-, 16- and 25-point equivalent numerical cells with a
physical support S equal to 3600 m2. Similarly to the simulations of
Fig. 4, the same linear time-weakening constitutive law was used to
compute seismograms in the same seven observational points (black
circles). We observed a good agreement between signals. Both the
waveform and the true amplitude of all traces are quite similar to
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2000 m
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z'
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vx' vz'

25p

16p
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Figure 5. Velocity seismograms (time window 2.4 s) computed around a 20◦ tilted point source (white square) represented by: four-, nine-, 16- and 25-point
equivalent numerical cells.

each other. However, a strong reduction of numerical noise should
be noted when considering sources with more than four stress-grid
nodes. Exactly the same behaviour was found in the other six ob-
servational points not shown in this figure. In accordance with our
expectations regarding the numerical scaling, as the order of the
numerical cell increases the numerical noise decreases.

4.2 Slip and slip-rate estimation

The second point we address in order to completely describe our
point-source model is the slip and slip-rate estimation. The slip
function S on the fault plane is the relative displacement between
the positive (D+) and the negative (D−) fault blocks as assumed in
the following equation:

S(t, �) = D+(t, �) − D−(t, �) (5)

where the time is denoted by t and the constitutive law by the local
set of parameters �. We shall assume that the slip will keep the
same sign during the rupture process. The fault plane always passes
through the centre of the numerical cell (Fig. 6). Thus, velocity grid-
points i around the cell belong either to the positive (p nodes, white
squares) or the negative (q nodes, grey squares) fault block. The
particle displacement components ui parallel to the broken surface
at these points can be computed by a straightforward integration of
the projected velocity field. Hence, for a given set of constitutive
parameters �, we define the positive fault block displacement D+

as the average function of the p-weighted particle displacements,
ũi , associated with the p velocity gridpoints embedded within the
block:

D+(t) =
√∑p

i=1 ũ2
i (t)

p
(6)

where the weighted displacement functions are

ũi (t) = ui (t, θ )Hi (θ ). (7)

The weight functions Hi should be defined so that ũi do not de-
pend on θ . In other words, we look for a factor that yields the block
displacement D+ independent of fault orientation. The way the dis-
placements ui depends on θ can be easily understood as follows. For

θ

γ

Fault Plane
−
iu

+
iu

Figure 6. Sixteen-point numerical cell. Both stress (black points) and ve-
locity (squares) gridpoints are separated in two groups by the fault plane
(black diagonal line) tilted by an angle θ . The angle γ defines the angu-
lar sector (shaded areas) needed to compute the fault slip S (eq. 5) from
individual displacement components ui (see text).

any time t, the function ui in a given velocity gridpoint i will be at its
maximum if a perpendicular line to the fault plane passing through
the centre of the cell coincides with such a point. Conversely, ui will
be at its minimum (i.e. equal to zero) if the fault plane coincides
with the point. From this we assume that, for any time t, the max-
imum value of ui with respect to θ at a given point i (maxθ{ui})
corresponds to the reliable displacement value for the slip estimate.
Since in general no velocity gridpoint necessarily coincides with the
perpendicular line to the fault plane for a given fault orientation θ ,
the weight functions Hi must operate over the displacements ui to
yield the maximum values maxθ{ui} at every point i. As a result,
we could determine the positive block displacement D+ through
eq. (6) independently of θ .

At fixed fault orientation θ , the ratio between maxθ{ui} and ui

remains invariable for any time t in every velocity gridpoint i. Con-
sequently, we define the weight functions as follows:

Hi (θ ) = maxθ {ui (t, θ )}
ui (t, θ )

(8)
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and found they are time independent. These functions, input into
eq. (7), give the reliable displacement value for slip estimate
maxθ{ui} at every velocity gridpoint i. FunctionsHi are constructed
as a function of θ for a given numerical stencil and for a given kind of
numerical cell. Because these functions are normalized with respect
to the maximal displacement value, they do not depend on the elas-
tic properties of the medium inside which they were constructed. In
fact, they represent the radiation pattern of the displacement com-
ponent parallel to the fault plane seen from every point i around the
cell. That is the reason why they do not depend on time. So, once
they are computed, they could be stored for future use for boundaries
of any shape and propagating medium.

Because the particle displacement ui at a given velocity gridpoint
i tends to zero as the fault plane approaches it, if the fault plane
coincides with this point the quotient in eq. (8) becomes infinite.
Consequently, there exists an angular vicinity γ around the fault
plane (Fig. 6) in which the quotient cannot be accurately determined
because the particle displacement is too small. For that reason, to
compute the fault block displacement using eq. (6) we always ne-
glect the velocity gridpoints lying inside this vicinity (white areas,
Fig. 6). We have found suitable values for γ around 20◦ for point
sources. However, as we shall see in the next section, such an angu-
lar vicinity will depend on the order of numerical cells when they
interact dynamically with each other. In all cases, we also neglect
the four velocity gridpoints located at the corners of the cells. There,
the displacements are underestimated since they see both sides
of the cell.

To determine the negative fault block displacement D−, we per-
form the same procedure described in the equations above but con-
sidering the q velocity-grid nodes. Finally, one may deduce the slip
over the fault plane using eq. (5). The slip-rate is determined in ex-
actly the same way but without integrating the velocity field in the
p and q velocity-grid nodes. Note that normalized functions Hi are
valid also for the velocity field.

Fig. 7 shows the evolution of the slip function on one point source
for different fault orientations. For these simulations we choose a
16-point numerical cell like the one in Fig. 6. We considered the

0.5 s

S
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Figure 7. Slip functions (eq. 5) computed for the same point source with
10 different orientations. The source is represented by a 16-point numerical
cell (Fig. 6). The slip evaluation is independent of fault orientation.

same time-weakening constitutive relation we used before, con-
densed into �. The only variable parameter between simulations
is the point-source orientation. We see that slip functions are not
dependent on the source orientation. These results correspond to a
particular set of �. However, in order to verify that weight functions
Hi are also independent of the constitutive friction parameters, we
have performed many tests for different choices of � and found the
constitutive law to have no influence. Of course, we also verified
the general validity of our slip estimation procedure. It works in the
same way for any kind of numerical cell we consider.

The accurate estimations of the slip or the slip-rate over the fault
plane are key elements for friction behaviour. Rupture simulations
with complex friction laws, the slip-weakening one among others,
could now be implemented in our numerical model.

5 P L A N A R F I N I T E S O U RC E

A finite source may be thought of as a set of gridpoints which in-
teract dynamically with each other during rupture evolution. This
is by no means an addition of single point-source solutions. As a
matter of fact, such interaction is the critical issue in our rupture
model and we should study how discretization affects numerical so-
lutions. The validation of our finite-source model will allow us to
simulate the spontaneous rupture propagation of sources governed
by sophisticated constitutive relations in a rather accurate way.

5.1 Numerical accuracy

Numerically, a finite source will be a set of neighbouring cells
placed alongside each other without sharing any stress gridpoint
(see Fig. 8). In other terms, each stress gridpoint of the source be-
longs to a single numerical cell. The set of cells should mimic the
physical geometry of the fault (solid lines, Fig. 8). Fig. 8 shows how
the greater the number of nodes within each cell the smoother the
discrete fault geometry (dotted lines) is. Thus, the fault geometry
will be fairly well discretized as one increases the order of cells (e.g.
Figs 8c and d). The zigzag discrete shape associated with low-order
numerical cells (e.g. Figs 8a and b) has unwanted implications for
wavefield and fault slip estimation. Depending on the finite-source
orientation angle θ , solutions may degrade and hence differ from
each other. This is a consequence of destructive dynamic interac-
tions of cells. We apply local boundary conditions in each numerical
cell. This means that the individual point-source orientation θ i in a
given cell (see Fig. 8) is the tangent angle to the discrete fault ge-
ometry (dotted lines). Consequently, as the number of points within
the cells is higher, every θ i tends to θ thus the destructive interfer-
ences tend to disappear, i.e. the degradation of solutions. Generally
speaking, the higher the order of cells, the smaller the trace of source
discretization in numerical solutions.

A minimal grid size should be considered because of the inter-
action between boundary nodes. As the grid size is smaller, the
dynamic interaction between numerical cells is stronger. For this
reason, the smoothness of fault discretization becomes critical when
scaling down the mesh spacing. For a given order of cells, there exists
a minimal grid size beyond which the interference between cells is
destructive enough to perturb solutions. So, in order to solve high-
frequency content during rupture modelling by scaling down the
finite-difference space increment, we must consider high-order nu-
merical cells to discretize the fault. Fig. 9 illustrates the criterion for
numerical accuracy of the boundary conditions we have determined
for our finite-source model. This criterion has been determined
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dcba

θθi

Figure 8. Several discretizations of the same planar finite source (diagonal solid lines) for (a) four-, (b) nine-, (c) 16- and (d) 25-point numerical cells. Small
circles represent the stress nodes. An individual boundary condition is applied on each cell following the local fault orientation angle θ i which corresponds to
the tangent angle to the discrete source geometry (dotted lines).

n

hn

Figure 9. Accuracy criterion that relates the grid size, hn (in m), to the
number of stress gridpoints per numerical cell, n, in a given finite source.
The shaded area shows the domain inside which numerical solutions are
robust for any kind of source geometry. Surprisingly, in order to increase
numerical resolution it is not enough to reduce hn: we also need to adapt
the source boundary conditions adding stress gridpoints. Within the region
delimited by the dashed line and the shaded area, solutions may disagree up
to a factor of 2 as a function of fault inclination. No parabolic correction can
be applied there (see text).

experimentally by numerical investigation over a wide range of val-
ues for n and hn. The shaded area represents the numerical domain in
which our method yields accurate solutions. It means that, inside this
region, solutions are not degraded by destructive interference. Nev-
ertheless, despite the weighting procedure introduced in Section 4.2
we found that, in the case of finite sources, the averaged slip S (eq.
5) over the rupture surface exhibits a parabolic increase from the
reference inclination value at 0◦ up to a maximum overestimation of
170 per cent at 45◦. This angular modulation of the slip amplitude is
periodic every 90◦ and remains the same for any kind of numerical
cell we use to discretize the source within the shaded area of Fig. 9.
Numerical simulations have shown that neither the rupture evolution
nor the exited wavefield are affected by such slip variations when
rupture is governed by the slip-weakening friction law. However, we
may correct the slip function (eq. 5) for any orientation θ in order
to yield its value to the reference one for θ = 0◦ by a normalized
factor f (θ ) = Aθ 2 + Bθ + C , where A = 0.0002, B = −0.0168 and
C = 1.0. This factor was also determined numerically, and it yields
the slip and slip-rate functions no longer dependent on fault orien-

tation. The dashed line of Fig. 9 represents the numerical boundary
over which solutions are perturbed by a factor smaller than 2 with
respect to the horizontal reference case. In the region delimited by
such a line and the dashed region destructive interactions are impor-
tant enough to prevent a simple correction such as the one mentioned
before which is only valid inside the shaded area.

As we mentioned in the last section, the angular vicinity γ (Fig. 6)
required to evaluate the fault slip depends on the order of cells when
they interact dynamically. So as to minimize undesired perturbations
in the slip function (eq. 5) due to the source discretization, we found
that the velocity-grid nodes (squares, Fig. 6) which should be taken
into account in eq. (6) are those located as far as possible from
the contact zones of the two neighbouring cells. In other words,
those points lying in the vicinity of the normal to the local fault
plane that crosses the centre of the cell (inside the shaded areas
of Fig. 6). Therefore, we have deduced a formula to determine γ

that optimizes the slip evaluation in finite sources taking account of
the aforementioned consideration. This formula is defined in terms
of n, the number of stress gridpoints per cell, and states that γ =
arctan(

√
n − 1). Geometrical considerations lead us to deduce this

equation that guarantees, for any kind of numerical cells, at least
one, and maximum two velocity nodes inside the shaded area of
each fault block.

The scaling relationship that ensures the equivalence between
different point sources (eq. 4) is still strictly valid for finite-source
modelling. However, finite sources present a length L that is usually
much greater than the numerical source thickness T . On that account
we should expect some threshold value for the aspect ratio beyond
which solutions for different source discretizations are similar (i.e.
different thicknesses or kinds of numerical cells). Numerical tests for
different combinations of L and T have confirmed this hypothesis,
revealing such a geometrical condition. It tells us that the fault aspect
ratio must be smaller than approximately 0.033. In other terms:

L >∼ 30.0hn

√
n (9)

where hn
√

n is equal to T and hn is the grid-space increment re-
lated to a given order of numerical cell containing n stress grid-
points. Eq. (9) represents an efficient criterion to guarantee the
low-frequency equivalence between different finite-source dis-
cretizations. One straightforward consequence of this condition is
that we are not obliged to consider a fine mesh in large-scale sim-
ulations to maintain the same numerical accuracy. This means that
a considerable coarse mesh would be enough to obtain similar low-
frequency results. Of course, if we are looking for high-resolution
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modelling, then we should reduce the spatial grid size hn, being
always aware of the accuracy criterion shown in Fig. 9.

5.2 Self-similar constant-velocity crack

Kostrov (1964) has constructed a closed-form solution for a self-
similar crack propagating at a constant velocity. This analytical ex-
ample may be used to validate numerical solutions. Yet dynamic
crack growth always exhibits numerical instabilities that are caused
by the discrete grid-step advance of the fracture edge. Previous
works have found inaccurate numerical solutions for the self-similar
case, especially when evaluating the shear stress concentration due
to the S wave travelling ahead of the rupture front (Virieux &
Madariaga 1982; Trifu & Radulian 1985). This problem mainly
arises from the application of low-order spatial differential op-
erators. More recent finite-difference investigations have reduced
this problem by increasing the spatial support of derivatives and
by improving the source boundary conditions (Madariaga et al.
1998). On the other hand, the spurious oscillations associated with
rupture growth can be controlled if dissipation terms are introduced
in the formulation of the problem (Knopoff & Ni 2001). These
kinds of artefacts indeed help us to clean up numerical solutions.
Nevertheless, they will not necessarily improve the accuracy of the
stress field determination (Kame & Yamashita 1999) for instance.
Thus, to validate our finite-source discretization model introduced
in the last section, we have performed self-similar crack simula-
tions without any kind of dissipation terms for different crack incli-
nation angles with respect to the finite-difference grid. Taking ac-
count of these artefacts may reduce our requirements, allowing faster
simulations.

The Kostrov solution corresponds to a planar source geometry. So,
in order to well discretize such geometry for any crack orientation
θ , we have used high-order numerical cells (100-point cells). As a
result, for every orientation θ , the discrete fault traces are smooth
enough to fairly represent the straight crack shape. The rupture is
bilaterally symmetric and propagates in a Poissonian medium at
0.5α, the P-wave velocity. The value of the shear stress τ drops
abruptly from the pre-stress level to some lower level, say τ f, the
dynamic frictional stress. All stresses were normalized by the stress
drop τ 0 − τ f, where τ 0 is the initial state of stress, so that all results
presented here are for a dimensionless stress drop equal to unity.

Figs 10(a) and (b) show, respectively, the slip and the shear stress
evaluation at four equidistant points placed along the crack plane for
six different inclination angles with respect to the horizontal Carte-
sian axis. Although oscillations could be observed, the overall esti-
mation is accurate and fits the analytical predictions quite well. We
have performed the same test discretizing the source with numerical
cells of smaller order, finding less accurate results. As we explained
in the last subsection, there is a geometrical factor behind this prob-
lem that determines the way the cells interact. Because the analytical
solution corresponds to a straight rupture surface, we must consider
high-order numerical cells (see Fig. 8) in order to reasonably mimic
this specific source geometry and hence to achieve high-resolution
simulations without unwanted cell interaction. On the whole, we
may conclude that numerical shear stress and slip computation for
any fault angle is accurate enough for dynamic rupture modelling
with slip or slip-rate dependent friction behaviour. Solutions do not
depend on fault orientation. Furthermore, we have checked that as
we increase the order of numerical cells not only are the elastic
fields better determined, but also the observed spurious oscillations
decrease.

5.3 Constitutive friction law

At the present time, many questions about earthquake mechanics
have been answered thanks to complex frictional models which have
emerged from laboratory experiments (see Scholz 1998, and refer-
ences therein). The main root of these quite predictable models lies
in the tectonic observation that earthquakes happen almost always
on pre-existing fault surfaces or at tectonic plate boundaries. This
means that both rupture initiation and propagation are frictional
rather than fracture phenomena. However, we have not yet studied
the aforesaid complex constitutive relations in our numerical mod-
elling. Instead, we have chosen the widely accepted slip-weakening
(SW) friction law (Ida 1972; Andrews 1976) for our first investi-
gation of rupture properties. The whole seismic cycle as a conse-
quence of a regular stick-slip frictional instability as well as rupture
pulse characterization, for instance, can be explored in future works
with our new approach if constitutive relations depending on slip
rate, time or state variables are taken into account (e.g. Ruina 1983;
Nielsen & Carlson 2000).

The SW friction law we have tested depends on the initial shear
stress on the fault surface, τ 0, and the three constitutive parameters
cohesion strength, τ u, dynamic shear stress level, τ f and charac-
teristic weakening length, δ0 (Andrews 1976). Mathematically, the
way the shear stress τ depends on the slip S is expressed by the
following equation:

τ =
{
τu − (τu − τf)S/δ0 ; 0 ≤ S ≤ δ0

τf ; S > δ0.
(10)

We should point out that Coulomb-type friction laws could also be
easily integrated, for example, in a similar way as proposed by Aochi
et al. (2002) because normal (σ ) and shear (τ ) stresses are computed
at the same grid nodes (see Figs 1b and 2). The material strength
is finite. Hence, the shear stress concentration near the crack tip is
bounded to some prescribed yield value. In the friction model we
have chosen (eq. 10), such a value corresponds to the strength τ u.
Once the yield stress is reached at a given fault point, stress drop
begins with increasing slip.

According to eq. (10), in order to estimate the shear stress within
the cohesive zone we need the slip which, in turn, requires the shear
stress to be computed. So, to initiate the rupture in a given fault
point, we perform an iterative procedure for shear stress and slip
estimations: once the yield stress has been reached, we drop the
shear stress to the friction level τ f, we deduce the slip after one time
step by finite-difference integration, we obtain a new shear stress
via the friction law (eq. 10) to restart, one time step back, a new
slip computation. We stop iterating when a small enough variation
in slip is found. In this way we are able to know the next stress
state after rupture initiation to continue the stress drop according to
our linear constitutive law for successive time step extrapolations.
During rupture process, the same shear stress is applied equally at
each node of the concerned numerical cell following the procedure
described in Section 3.

Fig. 11 displays several phase diagrams for one point in the middle
of the source during spontaneous rupture propagation. The relation
between pairs of parameters allows one to check the accuracy of
the implementation of the constitutive law (Fig. 11a) and wavefield
estimate. The elastic properties of the homogeneous medium are
shown in Table 1. For this simulation we have chosen the following
constitutive values: τ u = 13 bar, τ f = −33 bar and δ0 = 0.4 m, with
an initial shear stress τ 0 = 0 bar. To initiate unilateral rupture, we
impose rupture in a nucleation zone 2 km long at one extremity of
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Figure 10. Comparison between analytical (Kostrov 1964, solid lines) and numerical (this work, circles) solutions for (a) fault slip and (b) shear stress at four
equidistant points of a self-similar crack propagating at 0.5α, the P-wave velocity. Each panel corresponds to a given crack inclination θ with respect to the
numerical finite-difference grid. Results should be the same for every θ , only slight oscillations are observed.

a 10 km fault governed by the same parameters except for the yield
stress, τ u, that is assumed equal to the initial stress, τ 0. For this
simulation we used 36-point numerical cells with a finite-difference
spatial increment h = 15 m which is accurate enough for a planar
fault parallel to a reference axis. Soon after rupture nucleation, the

rupture front velocity becomes super-shear because of the choice of
friction parameters. Das & Aki (1977) have defined the upper yield
point parameter S as the ratio between the stress excess (τ u − τ 0) and
the stress drop (τ 0 − τ f). Under plane-strain conditions, for values
of S less than 1.63, the crack starts growing with a sub-Rayleigh
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Figure 11. Numerical solutions at a fault point located in the middle of the spontaneous rupture zone governed by the linear slip-weakening friction law
(eq. 10) displayed in panel (a). See text for explanation.

Table 1. Velocity structure of the elastic medium used in Fig. 15. VP and
VS are, respectively, the S- and P-wave velocities, and ρ is the density.

VP (m s−1) VS (m s−1) ρ (kg m−3)

Medium 4000 2300 2500
Circular LVZ 2200 1300 1400

velocity, but as its length increases, the velocity changes to super-
shear and finally approaches the P-wave velocity. That happens in
our case given that S = 0.39. As it can be clearly seen in Fig. 11(d),
the observational point lies in a fault region for which the rupture
front has reached the super-shear regime. Indeed, the slip-rate peak
associated with the rupture initiation (around 3 s) arrives before the
slip-rate perturbation of the S wave (around 3.5 s) travelling behind
the rupture front. After the S wave, we found perturbations due to the
back-propagating P- and S-wave arrest pulses around 5 and 6 s after
initiation. Only small numerical oscillations are found. Figs 11(a)
and (b) show the shear stress evolution as a function of slip and slip-
rate, respectively. No slip is found before the arrival of the rupture
front. By contrast, we see a small increment in the slip-rate just
before the material yield stress is reached. This lack of precision
can be diminished by scaling down the grid size h. We recall that
no boundary condition is imposed in the velocity field outside the
crack (see Section 3). Finally, Fig. 11(c) shows the slip history at the
same fault point. Slope variations in the slip function around 3.5, 5
and 6 s correspond to the direct S wave and the two aforementioned
arrest pulses respectively. Likewise, we may estimate a rise-time of
about 3 s.

5.4 Spontaneous rupture propagation

An other way to show how our finite-source model does not depend
on fault orientation is to compare solutions for spontaneous sources
with different orientations. Similar to the example presented in the
above paragraph, the simulations performed for this section also
include spontaneous rupture growth governed by the SW constitu-
tive law we have described. In all simulations from now on we took
the initial stress state τ 0 = 0 bar and the constitutive parameters
over the rupture surface as τ u = 17 bar, τ f = −20 bar and δ0 =
0.2 m. Only the fault orientation angle θ varies. The elastic prop-
erties of the homogeneous medium are given in Table 1. We used
100-point numerical cells to discretize the sources in a finite dif-
ference mesh of 1200 × 1200 gridpoints with a spatial increment
h = 10 m. Fig. 12 shows velocity seismograms for six different fault
orientations computed in the same seven positions with respect to
the fault plane (black points). So as to allow comparison between
different orientations, seismograms were rotated into the parallel
(vx′ ) and normal (v z′ ) directions to the fault plane, and then superim-
posed within the white panels. We considered a final source length of
6 km with a nucleation zone of 1.5 km starting from the left fault
edge. We see a good agreement between seismograms for all fault
orientations. Because the rupture is governed by the SW constitutive
law this implies that the slip estimation during rupture evolution is
independent enough of θ to yield the same rupture histories for all
cases. Figs 13(a) and (b) show this fact: as a function of time and
fault position, our slip and slip-rate estimations on finite sources
are satisfactorily independent of fault orientation. As we men-
tioned before, this feature is important because the dynamic rupture
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Figure 12. Velocity seismograms (time window 7 s) computed at seven positions (black points) around one finite source (diagonal solid line) for six different
fault inclination angles θ (0◦, 9◦, 18◦, 27◦, 36◦ and 45◦). Velocity components are rotated for every θ into tangential (vx′ ) and normal (v z′ ) directions to the fault
plane, and superimposed (white panels). The spontaneous rupture is governed by the slip-weakening constitutive law (eq. 10). The inclination θ only induces
numerical noise.

evolution depends directly on the slip S. Any inaccuracy in its es-
timation may change the rupture history and hence the radiated
wavefield.

Looking closer, both figures show the same elapsed time in all
cases for the entire rupture. Moreover, as a consequence of the con-
stitutive parameter values, the non-dimensional parameter S is equal
to 0.85 (see Section 5.3) and then the rupture front exerts so-called
bifurcation (Andrews 1976): soon after rupture nucleation, the rup-
ture front velocity jumps from a subshear to a super-shear regime
at the same time for all orientation angles around 0.7 s after rupture
nucleation. Figs 14(a) and (b) compare the slip and the slip-rate
functions at the mid-point of the spontaneous rupture region for
the six fault orientations. We confirm the good estimation of the
kinematical parameters independently of θ . We can also identify
the S wave travelling behind the rupture front as mentioned before
(arrow, Fig. 14b). Furthermore we clearly see the P stopping phase
that abruptly changes the slip rate around 2.2 s after rupture initi-
ation (arrow, Fig. 14a) yielding a rise-time of about 2.3 s. Judging
from these results, we may say that given the choice of numerical

parameters we are using, oscillations are weak and do not affect the
rupture behaviour.

Simulations presented in this section make us confident that spon-
taneous rupture is adequately modelled when proper source dis-
cretization for boundary conditions is performed. This allows us to
consider non-planar finite sources as the most sophisticated scenario
we are looking for at the current stage of this work.

6 N O N - P L A N A R S O U RC E S I N
H E T E RO G E N E O U S M E D I A

Finite-difference approaches have the capability of propagating elas-
tic waves in arbitrary heterogeneous media by specifying the spatial
distribution of elastic properties in the medium. Authors who have
studied earthquake dynamics applying these techniques have found
how important it could be, in rupture evolution and radiated wave-
fields, to consider heterogeneous surrounding media (e.g. Harris &
Day 1997; Olsen et al. 1997; Ben-Zion & Huang 2002). For instance,
strong variations in slip and slip-rate over the fault surface, as well
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Figure 13. Slip and slip-rate solutions for the finite sources described in Fig. 12. (a) Slip evolution every 0.1 s as a function of fault position. Only reasonably
small variations in the slip function are seen depending on fault orientation. (b) Slip-rate as a function of time and fault position. Traces of source discretization
are visible as vertical sharp colons associated with numerical cells. However, quite similar results are obtained for all orientation angles θ . Rupture front
bifurcation happens soon after spontaneous rupture initiation in all cases.

as in the nature of rupture propagation, have been found. On the
other hand, numerical simulations have also shown how important
it is to propagate the wavefield through realistic media to explain
the observed ground motion in some remarkable cases (e.g. Shapiro
et al. 2000; Olsen 2000). As we shall see, we are able to introduce
this physical consideration during rupture simulations given that our
numerical model is based on finite differences.

For modelling finite sources we impose individual boundary con-
ditions at each numerical cell discretizing the fault surfaces. This
means that the local fault orientation θ i (Fig. 8) of every point source
depends on its relative position with respect to the immediate neigh-
bouring cells. So far, we have supposed the rupture surfaces to be
straight lines in order to simulate planar faults. Nevertheless, the dis-
cretization of any kind of geometry in finite-difference modelling
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Figure 14. Slip (a) and slip-rate (b) functions computed in the middle-
point of the spontaneous rupture region for simulations shown in Fig. 12.
The six functions associated with the six different fault orientations are
superimposed in both panels.

necessarily has a step or zigzag shape (e.g. dotted lines, Fig. 8)
making it difficult to simulate cracks along straight lines, especially
when these lines are not parallel to the reference axis. Therefore,
from the viewpoint of boundary conditions, discretization of straight
or curved lines reduces to the same numerical problem. On that ac-
count, the self-similar rupture validation, as well as the spontaneous
rupture analysis we have performed for planar sources, ultimately
validate our methodology for any kind of source geometry.

So, let us discretize a finite non-planar source following the strat-
egy presented previously, and analyse what happens if we nucleate
its spontaneous rupture.

6.1 A realistic example

We carried out the dynamic rupture simulation of an arbitrarily non-
planar fault crossing a circular low-velocity zone (LVZ). Rupture

propagation is governed by the SW constitutive relation (10). The
goal of this example is not to elucidate the dynamics of such a
problem but to illustrate the performance of our new approach under
these realistic conditions.

Fig. 15 shows a snapshot of the horizontal particle velocity vx 4
s after rupture nucleation. The solid black line represents the fault
trace which traverses the LVZ (circular dashed line). The elastic
properties of both media are shown in Table 1. The fault is 13.8 km
long, while the LVZ has a diameter of 4 km. The constitutive pa-
rameters along the entire fault are τ u = 15 bar, τ f = −33 bar and
δ0 = 0.05 m (see eq. 10). In order to initiate spontaneous rupture
propagation we impose rupture along a zone 1 km long located at
the left edge of the fault. In such a nucleation region, the initial shear
stress τ 0 = 0 is taken as the yield stress, τ u, to start rupture. We
used 100-point numerical cells to discretize the sources in a finite-
difference mesh of 1600 × 1600 grid points with a spatial increment
h = 10 m.

The unilateral rupture propagates rightwards on a super-shear
regime given that S = 0.45 (see Section 5.3). We can clearly ap-
preciate how the shape of the body-wave fronts follow the curved
source geometry (Fig. 15). Also as a consequence of such geometry,
there exists a focalization of body waves in the upper concave side
of the fault, where the particle velocities are considerably greater
than those observed on the other fault side (see the imbalance in the
grey scale with respect to the zero value). The strongest amplitudes
within the LVZ correspond to trapped waves generated during the
passage of the rupture front: an energetic back-propagating pulse re-
flected in the interface between two media, as well as guided waves
along the circular elastic boundary, among others. Fig. 16 shows
the corresponding kinematical solutions over the rupture surface.
The presence of the LVZ has strong implications. First, important
velocity changes are exerted by the rupture front depending on the
elastic properties of the medium. Second, strong slip (Fig. 16a) and
slip-rate (Fig. 16b) concentrations are obtained within the circular
low-velocity anomaly. Reflected P and S waves on the interface be-
tween two media are well observed (arrows), especially inside the
LVZ where the aforementioned back-propagating S wave dominates
the later particle motion (see Fig. 16b) provoking a belated sharp slip
increment (Fig. 16a). Numerical oscillations can also clearly be seen
due to the discrete stepwise advance of the rupture front across the
numerical cells (Figs 15 and 16b). However, as we have shown in the
last section, these oscillations do not perturb the rupture history.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this study we introduce a new finite-difference approach to model
the dynamic rupture propagation of faults with intricate geometries,
e.g. non-planar faults.

A new definition of the crack boundary conditions represents the
main root of our approach. Thanks to the spatial stencil we use to
discretize the elastodynamic equations, all stress components are
known at the same grid nodes. By a simple rotation of the stress
tensor, we impose the shear stress drop following the local crack
orientation. For accurate slip estimation, we construct weight func-
tions before performing simulations. These functions make the slip
estimation independent of source orientation with respect to the nu-
merical grid.

The numerical scaling that exists between the grid size, hn, and
the physical extent of the source, S, ensures an infinity of different
discrete representations for the same seismic source. The source
discretization may be adapted according to the scale of the problem
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Figure 15. Snapshot of the horizontal particle velocity vx 4 s after rupture nucleation. The non-planar fault (black curved line) crosses a circular low velocity
zone (LVZ, dotted line, see Table 1). Spontaneous rupture governed by the slip-weakening friction law (eq. 10) propagates rightward in a super-shear regime.

Figure 16. (a) Slip and (b) slip-rate solutions for the simulation shown in Fig. 15 as functions of time and fault position. Straight lines indicate S- and P-wave
velocities within the LVZ (V S′ and V P′ ) and within the surrounding media (VS and VP) (see Table 1). Arrows point out reflected phases in the interface between
two media.

we need to solve. For instance, for the sake of computational effi-
ciency, large-scale numerical simulations may be performed with
a few internal source points. Nevertheless, numerical oscillations
depend on n, the number of stress gridpoints per cell. There exists
a strong reduction of noise when n is greater than or equal to nine.

High-frequency content in elastic fields near the crack tip is better
solved as we decrease the grid size. Similarly, numerical oscilla-
tions decrease. However, interaction between internal source points
is stronger and source discretization becomes critical. In order to

achieve accurate estimation of kinematic parameters over the rup-
ture surface and exited wavefield, the grid size, hn, related to a given
set of numerical cells with n stress gridpoints, must be greater than
a lower bound value. We found that the greater the n, the smaller
the hn can be. Applying the accuracy criterion we have determined,
suitable values for hn and n can be found in order to keep numerical
artefacts under control.

Finite sources usually have a fault length L much greater than the
numerical fault thickness T . Thus, the aspect ratio between these two
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quantities may play an important role in saving memory resources.
The overall features of numerical solution for several sources with
length L and different T will be the same if T in all cases is at least 30
times smaller than L. This means that static fault slip, mean wave-
form and the true amplitude of seismograms are all satisfactorily
similar. Because T = hn

√
n, a minimum number of numerical cells

is required to discretize a finite source without perturbing the afore-
said features of solution. In other words, a given finite source must
contain at least 30 numerical cells to guarantee the critical aspect
ratio. Of course, as we increase the number of cells, i.e. as we reduce
the grid size hn, high-frequency content will be better solved and
numerical oscillations tend to disappear.

Because finite-difference approaches are essentially grid meth-
ods, from the viewpoint of boundary conditions simulation of non-
planar faults is as difficult as simulation of planar faults at an angle
with the grid. Only numerical rules for the number of nodes we
need to model accurately are essential, and we have determined
these rules experimentally. Hence, the comparison with analytical
solutions for the self-similar case, as well as spontaneous rupture
analysis for planar sources, validate our numerical approach for any
kind of source geometry. Results we have obtained for an arbitrary
non-planar fault in a heterogeneous medium are in accordance with
expectations about the presence of low-velocity zones during the
dynamic rupture of faults. Our methodology is robust even in hard
conditions.

In order to study the rupture dynamics of real earthquakes, three-
dimensional (3-D) numerical models are essential. We think the path
leading our rupture model to 3-D space is well highlighted by the
methodologies discussed in this paper. On the one hand, the 3-D
wave propagation kernel is possible (Saenger et al. 2000). On the
other hand, the essential element to describe a 3-D source would be
the numerical cell translated into a volumetric entity (i.e. a cube).
The strategy to evaluate the slip or the slip-rate in 3-D sources should
be carefully determined on the basis of the numerical properties of
such an elementary cubic cell.

In conclusion, this study introduces a new finite-difference ap-
proach to model the dynamic rupture propagation of faults with any
pre-established geometry. We have assumed a linear slip-weakening
friction law. However, the implementation of Coulomb-type or slip-
rate dependent constitutive relations is possible. Thus, our numerical
model contributes to the investigation of more realistic scenarios us-
ing finite differences by considering arbitrary heterogeneous media,
composite friction laws and complex source geometries.

A C K N O W L E D G M E N T S

We are indebted to S. Operto for providing us the original finite-
difference code and for outstanding suggestions during the work.
We thank S. Peyrat for fruitful discussions and C. Hooper for the
improvement of the manuscript. This study was performed under
the auspices of the ‘Consejo Nacional de Ciencia y Tecnologı́a’
(CONACyT), the scientific group ‘Prosis3D’ about ‘propagation
sismique tridimensionnelle’ and the ACI ‘Prévention des Catastro-
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A P P E N D I X A

Saenger et al. (2000) have expressed the partial differential operators
Dx and Dz in terms of two other operators applied along the main axis
of a 45◦ rotated frame of reference. According to this new definition,
we have used the following fourth-order spatial differential operators
all through this study:

Dx ( fi j ) = 1

2h

[
a0

(
fi+1/2, j+1/2 − fi−1/2, j−1/2

+ fi+1/2, j−1/2 − fi−1/2, j+1/2

)
− a1

(
fi+3/2, j+3/2 − fi−3/2, j−3/2

+ fi+3/2, j−3/2 − fi−3/2, j+3/2

)]
Dz( fi j ) = 1

2h

[
a0

(
fi+1/2, j+1/2 − fi−1/2, j−1/2

− fi+1/2, j−1/2 + fi−1/2, j+1/2

)
− a1

(
fi+3/2, j+3/2 − fi−3/2, j−3/2

− fi+3/2, j−3/2 + fi−3/2, j+3/2

)]
where a0 = 9/8, a1 = 1/24 and h is the finite-difference spatial
increment.
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