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3D finite-difference dynamic-rupture modeling along nonplanar faults

Victor M. Cruz-Atienza', Jean Virieux?, and Hideo Aochi®

ABSTRACT

Proper understanding of seismic emissions associated with the
growth of complexly shaped microearthquake networks and
larger-scale nonplanar fault ruptures, both in arbitrarily hetero-
geneous media, requires accurate modeling of the underlying dy-
namic processes. We present a new 3D dynamic-rupture, finite-
difference model called the finite-difference, fault-element
(FDFE) method; it simulates the dynamic rupture of nonplanar
faults subjected to regional loads in complex media. FDFE is
based on a 3D methodology for applying dynamic-rupture
boundary conditions along the fault surface. The fault is dis-
cretized by a set of parallelepiped fault elements in which specif-
ic boundary conditions are applied. These conditions are applied
to the stress tensor, once transformed into a local fault reference

frame. Numerically determined weight functions multiplying
particle velocities around each element allow accurate estimates
of fault kinematic parameters (i.e., slip and slip rate) independent
of faulting mechanism. Assuming a Coulomb-like slip-weaken-
ing friction law, a parametric study suggests that the FDFE meth-
od converges toward a unique solution, provided that the cohe-
sive zone behind the rupture front is well resolved (i.e., four or
more elements inside this zone). Solutions are free of relevant
numerical artifacts for grid sizes smaller than approximately
70 m. Results yielded by the FDFE approach are in good quanti-
tative agreement with those obtained by a semianalytical bound-
ary integral method along planar and nonplanar parabola-shaped
faults. The FDFE method thus provides quantitative, accurate re-
sults for spontaneous-rupture simulations on intricate fault
geometries.

INTRODUCTION

The permeability of oil reservoirs represents one of the most
prominent characterization parameters for hydrocarbon production.
This parameter evolves with time during oil extraction as a result of
microearthquake activity and rock compaction induced by hydraulic
stress changes (Royer and Voillemont, 2005). The variation of per-
meability may induce fluid migration and extraction mitigation. A
seismicity-based methodology allowing global reservoir character-
ization may help track fluid migration and adapt exploitation strate-
gies (Shapiro et al., 2002; Shapiro et al., 2005). The dynamic growth
of complexly shaped fracture networks is thus a fundamental issue
that should be understood. In the last few years, efforts have been
made to develop new 3D numerical methods when considering non-
planar rupture propagation. Important implications in the fracture
energy balance have been identified when the rupture front abruptly
changes its direction of propagation (Adda-Bedia and Madariaga,

2005; Madariaga and Ampuero, 2005; Vilotte et al., 2005). Conse-
quently, the absence of realistic fault geometries when modeling real
data may result in misleading conclusions, especially when inter-
preting seismic emissions.

Fault interaction and branching may be enhanced by specific re-
gional loads (Aochi et al., 2002; Oglesby et al., 2003; Ando et al.,
2004; Aochi et al., 2005). In these cases, rupture propagation is gov-
erned mainly by the friction parameters, the rupture velocity, and the
orientation of fault branches, which entirely determine the two com-
peting forces: the fault strength and the shear stresses ahead of the
rupture front (Kame et al., 2003; Cruz-Atienza et al., 2004; Aochi et
al., 2005). The dynamic fault-normal stress changes translated into
strength fluctuations are often negligible in realistic nonplanar rup-
ture conditions if they occur far from the free surface (Aochi et al.,
2000a; Aochi and Fukuyama, 2002). Almost all of these results have
been obtained with boundary integral methods (BIE), which are
highly adapted and accurate approaches for solving geometrically
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complex problems. However, most of them may become rapidly ex-
pensive because the spatiotemporal convolution involved in the in-
tegral equations often requires a total calculation time proportional
to the square of the number of grid elements multiplied by the num-
ber of time steps. Moreover, they use analytical Green functions,
which directly depend on properties of the propagation medium; so
only homogeneous full spaces can be considered. In other words,
feedback interactions between the source and its environment are
strongly constrained to simple, often unrealistic conditions.

On the other hand, standard and spectral finite-element methods
(e.g., Oglesby, 1999; Aagaard, 2000; Ampuero and Vilotte, 2002;
Vilotte et al., 2005; Ely et al., 2006), which handle arbitrarily hetero-
geneous media as finite-difference methods do, are generally com-
putationally intensive. This limitation has prevented scientists from
exploring systematically different mechanical models in large-scale
earthquake simulations to perform statistical analysis of results. A
promising, fast, and accurate 2D dynamic-rupture, finite-volume
technique is proposed by Benjemaa et al. (2007). This technique
handles unstructured mesh refinement around nonplanar free surfac-
es and faults embedded in arbitrarily heterogeneous materials. Nev-
ertheless, until the 3D extension exists, it cannot be used to analyze
seismic data.

For many years, finite-difference methods have been used for
modeling earthquake rupture dynamics on planar faults (Andrews,
1976b; Madariaga, 1976; Mikumo and Miyatake, 1978; Day, 1982;
Virieux and Madariaga, 1982; Olsen et al., 1997; Madariaga et al.,
1998). Nonuniform grid spacing has allowed Mikumo and Miyatake
(1993) to study rupture processes of real earthquakes on planar dip-
ping faults. A similar technique is proposed by Zhang et al. (2006)
using the standard staggered grid (Madariaga, 1976; Virieux, 1986).
A few years ago, Cruz-Atienza et al. (2002) introduced a finite-dif-
ference approach capable of modeling the dynamic rupture of arbi-
trary nonplanar faults (for details, see Cruz-Atienza and Virieux,
2004). Preliminary results in three dimensions with this model were
first obtained for the 1992 Landers (Mw = 7.3) earthquake, consid-
ering its real geometry (Cruz-Atienza et al., 2004).

However, recent validation efforts conducted for the dynamic-
rupture problem have revealed that several well-established numeri-
cal models have important accuracy problems (Harris and Archu-
leta, 2004), especially those finite-difference approaches describing
the source with a thick-fault numerical discretization (Dalguer and
Day, 2006). Most of the methods mentioned above belong to this
family of approaches. Particular attention should then be paid when
using them and, even more, when introducing new methodologies
inspired by the thick-fault strategy. Validation of these methods
should necessarily include comparisons with completely indepen-
dent methods, such as semianalytical boundary integrals or spectral-
element approaches.

In this paper, we introduce, analyze, and validate, in three dimen-
sions, the finite-difference methodology proposed by Cruz-Atienza
and Virieux (2004) in two dimensions. Thus, our approach allows
the dynamic-rupture simulation of 3D nonplanar faults embedded in
arbitrarily heterogeneous media and governed by slip-dependent
friction laws.

We first state the elastodynamic equations for the dynamic-rup-
ture problem and the way rupture boundary conditions are applied in
our 3D finite-difference technique. After a convergence analysis in
terms of the cohesive-zone resolution, we validate the methodology
by comparing results for spontaneous slip-weakening ruptures along
planar and nonplanar (curvilinear) faults against those obtained with
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an independent BIE approach (Aochi et al., 2000b). This compari-
son shows that our finite-difference rupture model, based on a thick-
fault source description, is accurate enough to perform these com-
plex simulations. Moreover, it confirms that finite-difference (FD)
techniques still represent a viable and reliable way to model earth-
quake dynamics along nonplanar complexly shaped fault networks
in three dimensions.

NUMERICAL MODEL

The numerical approach introduced in this section is basically an
extension to three dimensions of the finite-difference fault-element
(FDFE) model proposed by Cruz-Atienza and Virieux (2004) in two
dimensions. In that work, Cruz-Atienza and Virieux show that finite-
difference approaches in a regular grid are able to model the dynamic
rupture of faults having nonplanar (curvilinear) geometries. A key
element of that approach is the way rupture-boundary conditions are
implemented. The two-dimensional analysis shows that the scaling
between grid size and number of grid nodes within a source controls
the accuracy of the method and makes it possible to discretize the
same source in many equivalent ways by reducing the spatial grid
step and increasing the number of stress grid points involved in
boundary conditions.

When modeling huge 3D rupture scenarios, computational re-
sources prevent the use of extremely fine meshes; however, fracture
discretizations with moderate numbers of stress grid points are suit-
able for obtaining accurate enough results. As we shall see, other pa-
rameters also play an important role, especially in the numerical
convergence of the method. Before introducing the dynamic-rupture
model, let us first state the equations for this problem and the way
they are approximated numerically.

Consider a linearly elastic 3D homogeneous and isotropic medi-
um, fully described by the Lamé coefficients A and u and the density
p. Following Madariaga (1976), in the absence of body forces, the
elastodynamic equations governing the P- and S-wave propagation
in such a medium may be expressed in terms of the velocity vector v,
and the stress tensor 7;; as

ov;
oG =T (1

i
P AV Sij + (Vi + V5. (1b)

System 1 contains nine partial differential equations that may be
discretized in a partly staggered finite-difference grid where veloci-
ties and stresses are known in two separated, regular lattices
(Saenger et al., 2000) as shown in Figure 1. The spatial differential
operators of system 1 are deduced by Cruz-Atienza (2006) following
Saenger et al. (2000). Numerical finite-difference stencils for first
derivatives along the three Cartesian directions are given in Appen-
dix A. Note that the current leapfrog partly staggered approach re-
tains the efficiency of the standard finite-difference staggered grid:
One must estimate stress derivatives at velocity grid points, and con-
versely, velocity derivatives at stress locations. Figure 1 shows the
stencil of the second-order spatial operators applied to the velocity
field (black spheres) to compute a stress-point value (gray cube). In
the present work, we apply both second- and fourth-order accurate
operators in the space increment (Cruz-Atienza and Virieux, 2004).
For the sake of computational efficiency, time derivatives are always
performed with a second-order-accurate leapfrog integration.
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Two main advantages of the partly staggered finite-difference ap-
proach with respect to the standard staggered grid (Madariaga, 1976;
Virieux, 1986) should be pointed out: (1) the stress and the velocity
fields are defined in different nodes, each field having all of its com-
ponents at the same node, and (2) the stability condition is less re-
strictive. As we shall see, the first advantage leads us to one funda-
mental aspect of the proposed finite-difference approach because it
allows the stress-tensor transformation needed for the application of
rupture boundary conditions of an arbitrary nonplanar-oriented
crack. Concerning the second one, the von Neumann stability analy-
sis shows that the magic time step given by At = h/V,,,,, where h and
At are, respectively, the spatial and time steps and V,,,, is the maxi-
mum P-wave speed in the model, satisfies the stability condition if
second-order spatial operators are applied (Saenger et al., 2000). In
contrast with the standard staggered grid, the stability condition does
not depend on the problem dimension. Moreover, if using fourth-or-
der spatial operators in their stability limit, the time step on the partly
staggered grid is 1.7 times higher than that of the standard grid. This
translates into 40% fewer iterations to achieve the same simulation
problem. Of course, these are theoretical values computed for planar
waves propagating in homogeneous unbounded spaces.

Imposing dynamic rupture-boundary conditions always makes
the stability criteria more restrictive. Values for the Courant number
VinaAt/h up to 0.66 yield stable solutions when simulating the spon-
taneous rupture in the partly staggered grid with our numerical ap-
proach. This limit is at least 1.5 times greater than those reported in
previous finite-difference rupture models (e.g., Virieux and Madar-
iaga, 1982; Madariaga et al., 1998). Even if higher-order schemes
are expected to verify more restrictive stability conditions than those
of low order, this Courant value is valid for the fourth-order spatial
operators we use throughout this study.

‘ (vi, p)

E (%5, A, 1)

Figure 1. Three-dimensional second-order, finite-difference stencil
used for computing spatial derivatives of the velocity field v; in a
stress tensor T;; location along the three Cartesian directions. An
analogous stencil is used for computing stress derivatives in velocity
locations. Second-order finite differences involved in this stencil
(Appendix A) are calculated along the four Cartesian axis bisectors
(d;). The quantity 4 is the spatial grid step, whereas the medium
properties are given by the Lamé coefficients A and x and the density
p. All velocity and stress components are known at one single node.
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To simulate an unbounded space without loss of accuracy, we
have implemented the perfectly matched layer (PML) absorbing
boundary conditions in every external boundary of the 3D computa-
tional domain (Berenger, 1994; Collino and Tsogka, 2001; Marcink-
ovich and Olsen, 2003). Numerical tests in heterogeneous media
show an effective energy absorption greater than 99% (Cruz-
Atienza, 2006). Before analyzing the numerical properties of the
rupture model, let us first introduce the way a source is discretized
and how rupture-boundary conditions are applied along an arbitrari-
ly shaped 3D surface.

Source discretization

Following the 2D strategy introduced by Cruz-Atienza and
Virieux (2004), a given finite-rupture surface is represented numeri-
cally by a set of neighboring fault elements placed alongside this sur-
face. (In the 2D model, the fault elements are called numerical cells.)
A source fault element is a well-structured set of stress grid points
that acts as an elementary source unity. This means that local bound-
ary conditions are applied on each element, depending on the orien-
tation of the local fault-normal vector.

A fault element describes a 45° rotated parallelepiped such as the
one shown in Figure 2 (gray cubes). We found this specific element
structure, with 65 stress grid points, achieved the best results for grid
sizes ranging from 20 to 70 m (Cruz-Atienza, 2006). As we con-
clude in the Resolution and Convergence section, high-order ele-
ments (i.e., elements with a large number of stress grid points) in rel-
atively coarse meshes affect rupture solutions because of the long
distances separating their central points. The number of stress grid
points along the diagonals parallel to the x- and y-axes is the same as
the stress grid layers perpendicular to the z-axis. In this case, the ele-
ment rotation is with respect to the z-axis. However, for symmetry
reasons, it may be with respect to any of the three Cartesian axes.

Note also that this element configuration results in only two of its
faces (i.e., the upper and bottom faces in Figure 2b) being parallel to
one of the Cartesian planes. Consequently, the way to discretize non-
planar fault surfaces is by forcing the source geometry to have a
translation-invariant direction parallel to the rotation axis of the fault
elements. In our example, such a translation-invariant direction is

b)

. Velocity nodes

E Stress nodes

Figure 2. (a) Upper view of one fault element. In this example, the
translation-invariant axis is parallel to the z Cartesian axis. The angle
0 gives the fault-plane orientation with respect to that axis (see also
Figure 3). The angle y determines the spacial sector (gray region)
around the fault-normal direction (dotted line) used to compute the
slip and slip-rate functions (see section on Rupture Kinematics). (b)
Three-dimensional perspective view of one individual fault ele-
ment.
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the z-axis. The discretization of a finite source may then be per-
formed in two stages. First, the nonplanar source geometry is
mapped over the x-y Cartesian plane by a succession of fault ele-
ments placed beside each other in a way similar to the 2D model.
Second, the discretized 2D geometry is then extended along the
translation-invariant direction (i.e., the z-axis) by superimposing
fault elements over their horizontal faces without shearing any stress
grid point.

As discussed by Cruz-Atienza (2006), many different fault-ele-
ment structures may be considered. However, the structure present-
ed in this section (Figure 2) offers the best compromise between
stress-field resolution ahead of the rupture front and geometric flexi-
bility to discretize nonplanar faults.

Rupture-boundary conditions

Because our rupture model should handle nonplanar faults in arbi-
trarily heterogeneous media, we do not solve for the Cauchy-mixed
boundary-value problem associated with planar faults in a homoge-
neous space (e.g., Madariaga, 1976; Das and Aki, 1977; Virieux and
Madariaga, 1982). On the contrary, we solve for a simpler boundary-
value problem in which only the stress drop associated with the ma-
terial dislocation is considered as a boundary condition. We assume
no opening in the rupture process, so the associated stress drop al-
ways takes place in the tangential fault direction describing either
fracture modes IT or III (i.e., in-plane and antiplane modes, respec-
tively). In our rupture model, every fault element acts as an indepen-
dent unit, inside which the same boundary condition is applied. This
means that, depending on the local fault orientation in a given ele-
ment, the same shear-stress drop A7 is imposed on the entire set of
stress grid points contained in that element (cubes in Figure 2b).

Following the procedure introduced in the 2D formulation, let us
consider a local Cartesian reference frame x'y’z’ that matches the
fault orientation in a given fault element. As we can see in Figure 3, if
one of the local axes points toward the fault-strike direction (e.g., the
x'-axis), the local reference frame is determined uniquely by the
fault-normal vector. To apply the boundary conditions, we transform
the stress tensor T from the original Cartesian system xyz to the fault
local one by mean of two successive rotations along the Euler angles
fand ¢:

Fault plane

Figure 3. Local reference frame x’y’z’ matching the fault orientation
in a give source fault element. Quantity o is the fault-normal stress,
and Vs the orientation angle of the fault shear stress 7 over the fault
surface measured from the x’ axis.
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7 = A’TK, (2)

where the 3 X 3 orthogonal matrix A is defined by the product of two
rotation matrices that depend on the fault dip and fault strike (i.e., an-
gles ¢ and @ in Figure 3). The symbol A represents the transposed
matrix of A. The normal and shear fault tractions illustrated in Figure
3 are then respectively, given, by two expressions:

o=7 and T=\7.7+ T;Zz. (3)

e XZ

Once the stress-boundary conditions are applied in the local sys-
tem, the stress tensor is transformed back into the global one via the
following equation,

T= KT'A, (4)

to perform the time integration of system 1la. This procedure shows
the general way we apply boundary conditions along an arbitrarily
oriented fault element for every time step.

FAULT MECHANICS

Neglecting inelastic damage within the fault zone is usually the
first simplification done when modeling rupture dynamics. In other
words, one supposes a linearly elastic response of the entire medium
except over the infinitely thin, sliding surface in which deformations
and stresses are related through a constitutive friction law. In this
case, off-fault inelastic processes are supposed to be integrated into
the friction law, which involves both fault kinematics and fault trac-
tions when failure happens. As a consequence, the reliability of the
rupture model mainly depends on the accurate estimate of these two
interdependent fields.

Rupture kinematics

To estimate slip and slip rate in the 3D geometry, we follow the
same strategy introduced by Cruz-Atienza and Virieux (2004) in the
2D geometry. In our 3D configuration, the fault surface always pre-
sents a translation-invariant direction that is parallel to one Cartesian
axis (e.g., the z-axis in Figure 2b). The procedure for evaluating the
fault-kinematic parameters should then be performed according to
the local fault element’s orientation. We always suppose one of the
two local reference axes (i.e., x" or y’) to be parallel to such an invari-
ant direction.

Let the magnitude of the slip vector s be the tangential displace-
ment discontinuity on the fault surface described by the positive
(D*) and the negative (D) fault blocks, as assumed in the following
equation:

s(t, @) = D*(t,d) — D (1, D), (5)

where the time is denoted by ¢ and the constitutive friction law is de-
noted by the local set of parameters @. As shown in Figure 2a, the
discrete fault plane passes through the center of the fault element.
Thus, velocity grid points i around the cell (black spheres) belong ei-
ther to the positive or the negative fault block.

To compute the positive fault block displacement D*, we average
the fault-parallel particle displacements u; by integrating the n parti-
cle velocities that lie within a small sector (gray zone) around the
fault-normal plane (dotted line). This procedure is expressed in the
following formula:



3D nonplanar dynamic-rupture model

n

D*(t,¥) = 12 ui (1,6,9) - Hi(6,%), (6)

ni-y

where the weight functions H; are introduced in the 2D case (Cruz-
Atienza and Virieux, 2004) and numerically recomputed for the 3D
geometry. Basically, they are normalized functions that make the
fault-block-displacement estimate numerically independent of a
faulting mechanism. They are computed once for a given finite-dif-
ference stencil and then stored for future rupture simulations with an
arbitrary fault geometry and a propagating medium. The only differ-
ence with respect to the 2D approach is that, in three dimensions,
these functions also depend on W, the direction in which the shear
stress acts over the fault plane (Figure 3).

For symmetry reasons with respect to the fault-normal axis z’, the
weight functions may be defined as the following linear combina-
tion:

H(6, %) = |cos W] - H,(6,0°) + |sin | - H,(6,90°).

In other words, the functions H,( 6, ¥) are obtained from those com-
puted for two specific angles, ¥ = 0° and ¥ = 90°. This procedure
makes the fault-block displacement (equation 6) independent of the
source-rupture mechanism.

As discussed by Cruz-Atienza and Virieux (2004), considering
the velocity grid points as lying within the element sector mentioned
above (gray zone, Figure 2a) avoids undesirable effects from inter-
element destructive interferences. In the specific element structure,
we have selected the angle y (Figure 2), which defines such aregion,
is equal to 56°. This value means that at least four but no more than
eight velocity grid points lie in that sector per fault block, irrespec-
tive of the fault orientation with respect to the translation-invariant
axis. For instance, in Figure 2b, we have n = 4 (see equation 6).
Once the negative fault-block displacement D~ is computed in a sim-
ilar way, we can estimate the fault-element slip function by inputting
these values into equation 5. The slip-rate function in a given fault-
element is determined in exactly the same way but without integrat-
ing the velocity field in the velocity grid nodes.

When simulating the rupture of the same extended planar fault for
different dipping angles (i.e., the angle with respect to the transla-
tion-invariant axis — for instance, #if ¢ = 0; see Figure 3), a small
dependence of the average slip and slip-rate functions on that angle
remains. For symmetry reasons of the numerical stencil, it is period-
ic every 90°. This finite-fault-orientation anisotropy is also found in
the 2D case and is corrected by introducing a numerically deter-
mined normalized factor that depends on # and multiplies both slip
and slip-rate functions. In the 3D case, this factor is given by f(6)
=A6¢ +BF + CO+ D, where A=0.00004, B=-0.003, C
= 0.06, and D = 1.0; the factor yields the slip and slip-rate functions
no longer dependent on fault orientation. In this definition, the angle
0 always should be measured from the nearest Cartesian axis to the
fault plane.

Figure 4 shows slip and slip-rate functions computed in one fault
element displayed in Figure 2 for different fault orientations. These
simulations were performed considering a simple linear time-weak-
ening friction (Andrews, 2004) with a characteristic weakening time
equal to 0.4 s. Shear tractions drop down linearly from the initial
stress level 7( = 30 bar to the dynamic level 7, = 0 bar in exactly
that specific time. Because the translation-invariant direction is par-
allel to the z-axis in this example, following Figure 3 we consider the
angle 6 = 90° in our further simulations.
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The left column shows slip and slip-rate functions computed for
six different fault-orientation angles, ¢ = 0°, 9°, 18°, 27°, 36°, 45°
and for a shear-stress drop A7 perpendicular to the translation-in-
variant direction (¥ = 0°). The right column shows similar results
but for A7 parallel to the translation-invariant direction (¥ = 90°).
Nearly no dependence on the fault orientation ¢ is observed, where-
as results are slightly dependent on the stress-drop orientation angle
W, with an overestimation of amplitudes smaller than 10% for ¥
=90°.

Failure criterion

Rupture propagation is a thermodynamic system in equilibrium.
In other words, it is a system in which the balance between the ener-
gy-release rate and fracture energy is conserved. That is what Grif-
fith’s (1920) criterion states. However, because no real material may
resist infinite stress concentrations, an alternative way to determine
if rupture keeps going is by looking at the stress field around the rup-
ture front and comparing it with the current fault strength. In our
FDFE approach, we adopt the latter strategy as a failure criterion.

To determine the actual state of stress of a given fault element, we
monitor the fault tractions via equations 3 in the central point of the
element and within a small neighborhood given by the six stress grid
points lying at one spatial step from the central point. The algorithm
always takes the maximum stress values in these points as the ele-
ment state of stress. We consider these neighboring points because in
nonplanar discrete faults we never know exactly where the continu-
ous fault geometry passes. The hypothesis behind such an approach
is that tractions determined in this way represent their mean value
along the entire fault element (Das and Aki, 1977).

w=0° ¥ =90°
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Figure 4. Slip and slip-rate time functions computed in a point source
represented by one fault element (Figure 2b). Results were obtained
and superimposed in both columns for ¢ = 0° and different angles
0 =0°9°18°27°,36°,45° (see Figure 3). The left column corre-
sponds to a shear stress drop A7 parallel to the x'-axis (i.e., ¥ = 0°,
Figure 3) and the right column for a A7 perpendicular to the x'-axis
(i.e., ¥ =90°).
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Fault strength in our model is governed by a Coulomb-like slip-
weakening constitutive law (Ida, 1972; Palmer and Rice, 1973). It
can be expressed as

s s
T (o) =71+ (7, - TS)(l - g)H(l - E), (7)

c

where 7, = ou, and 7, = ou,. In these equations, the quantity o is
the fault-normal stress (equation 3), the fault-slip magnitude is de-
noted by s (equation 5), and the Heaviside step function is H(-). The
constitutive parameters of this linear relationship are the static fric-
tion coefficient u,, the dynamic friction coefficient w,, and the slip-
weakening critical distance J,. Equation 7 may be rewritten as

1) 0,

c c

r(o,5) = ()'|:/_Ld + (g — Md)<l - i)H(l - i)] (8)

to see that friction is equal to the normal-fault stress multiplied by a
factor that evolves with slip once rupture begins.

The Coulomb friction law states that rupture happens in a given
fault point (i.e., fault element) when the ratio between 7 and o (equa-
tions 3) at that point equals the current friction coefficient. This con-
dition is equivalent to saying that rupture happens when the fault-
shear traction reaches the fault strength, i.e., when 7 = 7. Every
time this condition occurs, a material dislocation develops because
of the progressive drop of fault strength implicit in equation 8. This
drop of strength is translated into the stress-boundary conditions de-
scribed earlier.

RESOLUTION AND CONVERGENCE

In this section, we explore the resolution and convergence of our
FDFE model under spontaneous rupture conditions. To achieve this,
we analyze the dependence of fault solutions on both the grid size
and the slip-weakening critical distance. We first introduce some
concepts based on fracture mechanics and then analyze numerical
results. However, we do not assess the accuracy of the method in this
section because independent reference solutions were not used.

Cohesive-zone analysis

Introduced by Barenblatt (1959), the concept of cohesive force
plays a fundamental role in the rupture process because it directly af-
fects the nature of the excited wavefield, especially in the neighbor-
hood of the rupture front where the highest frequencies are concen-
trated. When dependent on fault slip, these forces remove the stress
singularity and make the slip function derivable at the crack tip (Ida,
1972; Palmer and Rice, 1973; Andrews, 1976a). Their evolution as a
function of slip then controls the frequency content of the physical
solution as well as the width of the so-called cohesive zone A, be-
hind the rupture front. This zone is defined as the fault region inside
which the breakdown process takes place — the broken region
where the shear stress has not yet reached the dynamic friction level.
In the linear slip-weakening model we consider (equation 7), the
stress drop in every fault point happens along a critical slip distance
8., which then controls both A, and the way stresses concentrate
ahead the rupture front.

Our failure criterion assumes that the mean shear stress along a
fault element is approximately equal to the stress in the central re-
gion of the element. To achieve numerical convergence of the spon-
taneous rupture problem, element mean stress should not depend on
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element size, i.e., grid size. In other words, the stress at the center of
the element must be representative of the mean value along the
whole element (see Das and Aki, 1977). Removing the stress singu-
larity via the slip-weakening mechanism should promote the verifi-
cation of this condition as the critical distance &, increases. This ar-
gument holds because the stress gradient ahead of the rupture front
in such a nonsingular case becomes much smaller with increments in
8. As a consequence, the cohesive zone width A, represents a physi-
cal length in which the stress evolution must be well resolved during
rupture simulation.

Because 6, directly controls A, this constitutive parameter acts as
aregularization quantity that should also control numerical conver-
gence through a cohesive-zone resolution parameter that, following
Day et al. (2005), may be defined as

A,
N, = 5 9

This number represents the number of fault points (fault elements) of
length (2 inside the cohesive zone along the direction perpendicular
to the rupture front. Because the fault elements have five stress grid
points along the diagonals in our numerical simulations (Figure 2),
from now on we assume the relation {2 = 5h, where £ is the grid size.
Thus, we can expect a minimum necessary value of N, for getting re-
liable simulation results.

In accordance with this expectation, Day et al. (2005) identify N,
as a suitable convergence parameter for their finite-difference and
boundary-integral rupture models and determine a required average
value of N.=4.4 for both methods. The finite-difference model in-
troduced by Madariaga et al. (1998) yields stable and reproducible
results if N.=6.44; the recently introduced finite-volume approach
by Benjemaa et al. (2007) also gives accurate results for N.= 8. To
understand the properties and limitations of our rupture model, we
present a parametric study that explores the influence of the grid size
h and the slip-weakening critical distance 8. on both N, and some er-
ror metrics of fault solutions.

Because the critical distance &, is related directly to the rupture
energy budget (e.g., Day, 1982; Madariaga and Olsen, 2000), the
fairest way to carry out such a parametric study in which this consti-
tutive parameter varies would be to initiate every rupture case
from its critical initial patch. In other words, we assume the balance
between the available and the absorbed fracture energies at the ori-
gin time. If we suppose the relative upper-yield-point parameter
S =(r, - 19)/(7y — 7,) to be constant over the fault, then the criti-
cal patch radius is directly proportional to the distance J,. Given that
the other varying parameter is the grid size, computer memory limi-
tations constrain us to consider a relatively small fault, preventing
large variations of the nucleation-patch size.

The other possible way to keep the same energy-balance condi-
tion for different values of the distance &, is by keeping the nucle-
ation-patch size constant and then varying the value of S. Nonethe-
less, in that case, the governing relation is not linear, making S grow
asymptotically as the &, decreases. Unrealistically high values of
strength excess (7, — 7,) relative to the stress drop (7, — 7,) must
be then considered when &, approaches zero. So, we keep the same
nucleation patch size, the same yield stress 7, and the same dynamic
friction 7, whatever the value of J,. We only change the initial stress
7o such that S ranges linearly from 0.2 for 8™ to 1.0 for &"". These
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limiting values make rupture along the in-plane direction propagate
at subshear speeds for all &, values when rupture is simulated with
the coarsest finite-difference grid.

The problem geometry is shown in Figure 5. Rupture occurs along
a vertical right-lateral, strike-slip planar fault embedded into a lin-
early elastic 3D homogeneous, isotropic medium. The material
properties are shown in Table 1. The fault plane is completely sur-
rounded by strength barriers, preventing the rupture from propagat-
ing further. Both the initial fault-stress conditions and the constitu-
tive friction parameters are listed in Table 2 (label a). The shear pre-
stress field 7 is horizontal and parallel to the fault plane (i.e., paral-
lel to the x reference axis) at all points. Rupture initiation is identical
in all rupture simulations.

At time 7 = 0, the shear stress inside the nucleation patch over-
takes 7,, the static yield stress (equation 7), provoking an initial
stress drop equal to 7, — 7, in that region. In all cases, the relation
7o = 1.27,1s verified inside the nucleation patch at that moment. As
mentioned, the initial shear stress outside the nucleation patch is
chosen according to the current &, value. The slip-weakening-dis-
tance tested values are 8, = [0.1 m, 0.2 m, 0.4 m, 0.8 m, 1.2 m,

1.6 m]. Given the geometry of the fault elements describing the
source, it is impossible to discretize both the nucleation patch and the
fault plane with the problem being exact dimensions.

We then decide to match exactly the nucleation-patch dimensions
by taking the spatial grid steps h =[24.2 m, 46.9 m, 88.2 m,

157.9 m, 214.3 m]. This brings fault-size overestimations ranging
from 100 m for A, to 800 m for /. In the following, we always
take into account this geometric mismatch when estimating uncer-
tainties in the error of fault solutions. All numerical simulations were
performed by solving the 3D system 1 using second-order difference
operators in time and fourth-order operators in space (see Cruz-
Atienza, 2006).

From Ida (1972) results, Andrews (1976a, 2004) derives a theo-
retical expression for the cohesive-zone length. His analysis shows
that if the static-stress drop A7 = 7 — 7, and &, are constant over
the fault, the width A, of that zone suffers a contraction inversely
proportional to L, the rupture-propagation distance. Detailed ener-
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Figure 5. Resolution test problem geometry. The nucleation patch
(gray square) is centered in both the along-strike and along-dip fault
directions. Fault solutions at the four observation points P1, P2, P3,
and P4 (black points) are used to estimate the slip and slip-rate func-
tion errors.

SM129

gy-balance considerations lead Day et al. (2005) to show that this
contraction depends not only on L but also on rupture mode and rup-
ture velocity. Assuming a semi-infinite antiplane crack propagating
indefinitely, they deduce a theoretical expression for the cohesive-
zone width given by A, = (9/16)(wd./A7)?L~". From this approxi-
mation, we compute corresponding values of N, (equation 9) at the
fault point P1 (Figure 5) for every &,, {2, and A7 comprised in our-
parametric study (Figure 6a).

We do not expect these estimates to correspond with those from
our solutions because they assume purely antiplane fracture mode
and subshear steady propagation. However, these values may be
used as a qualitative reference to understand how a spontaneous rup-
ture behaves when varying both independent parameters /2 and J... As
we shall see, rupture propagation along the in-plane direction (i.e.,
x-axis direction) in most cases within the parametric domain is sub-
ject to the supershear transition. This induces extreme spatial varia-
tions of A, which expands with rupture propagation.

Figure 6 shows, in the middle and bottom panels, average values
of the resolution parameter N, computed with our FDFE rupture
model as a function of 4 and .. These values were computed along
two lines passing through the fault center, one parallel to the z-axis
(i.e., pure antiplane direction, Figure 6b) and the other parallel to the
x-axis (i.e., pure in-plane direction, Figure 6¢). To get an approxima-
tion of A, along the rupture front, we measure the distance from the
center of each fault element at its rupture time to the nearest one in
which the shear stress has already reached the dynamic friction lev-
el. We then estimate N, from equation 9.

At first glance, the numerical results appear to be in accordance
with general theoretical expectations, i.e., upper panel. Minimum
values of N, correspond to the domain region with smallest &, and
largest & values, where the cohesive zone is poorly resolved. Con-
versely, it is well resolved in the domain region with the highest &,

Table 1. Material properties of the 3D full space considered
in this work. Quantities v, and v, are, respectively, the P-
and S-wave velocities, and p is the density.

v, v, p
(m/s) (m/s) (kg/m3)
3464 6000 2670

Table 2. Initial stress conditions and constitutive friction
parameters from (a) the Resolution and Convergence section
and (b) the Model Validation section. Quantity 7, is the
initial fault shear stress, o is the initial fault-normal stress,
M is the static friction coefficient, u, is the dynamic friction
coefficient, and &, is the critical slip-weakening distance.

Model parameters Nucleation Outside nucleation

7o (a) 81.6 MPa (varying)

7o (b) 97.49 MPa 73.73 MPa

oy (a,b) 120 MPa 120 MPa

s (a,b) 0.677 0.677

Mq (a,b) 0.525 0.525

J. (b) 0.8 m 0.8 m

8. (a) (varying from 0.2-1.6 m)
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and smallest /. There, we find values of N, ranging from about 4 to
17 when considering both fracture modes together. The standard de-
viations of the mean N, estimates at the corner of this well-resolved
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Figure 6. Cohesive-zone-resolution parameter estimates (N,, equa-
tion 9) as a function of the spatial grid increment /2 and the slip-weak-
ening critical distance &,. (a) Theoretical values computed for a
semi-infinite subshear antiplane crack. Numerical average values
computed with the FDFE approach along the (b) antiplane and (c) in-
plane fault directions. Below the dashed lines, N. estimates are af-
fected substantially by numerical inaccuracies.
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domain region are + 2.7 and * 6.6, respectively, for the antiplane
and in-plane panels. These values reveal a variability of the cohesive
zone length A., with rupture propagation almost 2.5 times larger
along the in-plane rupture direction.

Even if they always vary with both parameters, the numer-
ical N, estimates (middle and bottom panels) over the range
h €[70 m, 200 m] are less sensitive to the slip-weakening distance
&, than the theoretical ones (upper panel). However, for /<70 m
and 6,=0.5 m, both the direction and magnitude of the N, gradient
vectors become similar in the three panels. In this domain region
where N,=4, the cohesive-zone sampling rate grows rapidly even
when simulating numerically the spontaneous rupture.

A rough estimate of A, from these figures and equation 9 shows
that a huge range of cohesive-zone sizes were explored in the para-
metric analysis (from approximately 121 to 2031 m, with variations
of one order of magnitude). Of course, not all of these estimates are
correct because numerical inaccuracies may lead to unphysical val-
ues. For instance, N, values associated with the smallest slip-weak-
ening distance for all grid sizes are not well resolved because A.,
during the whole rupture, has been smaller than the smallest (2
(121 m), making its estimate impossible. On the other hand, we
know that, by definition, N, cannot increase for a given physical
problem with increments in /. For this reason, after inspection of
Figure 6, we determined that all estimates of NV, within the domain
region below the dashed lines (i.e., for §,<<0.5 m) are unreliable be-
cause of inaccuracies in rupture simulation and in the procedure de-
termining N.,..

Fault-solutions analysis

We have computed relative errors of fault-solutions with respect
to the finest grid case (h = 24.2 m) for every &, and every & consid-
ered in the parametric study. Even if the minimization of these error
estimates will not reveal how far numerical solutions are from the
physical ones, at least they will improve our understanding of the
FDFE numerical convergence and lead us to examine the hypotheti-
cal relationship between this convergence and the cohesive-zone
resolution parameter N,. A quantitative comparison with an indepen-
dent semianalytical solution is then necessary.

Errors were computed for three different fault-solution parame-
ters: rupture times and final slip over the entire fault plane, and the
slip-rate time functions in four observational points (Figure 5). The
error function is the absolute root mean square (rms) for rupture
times and the relative rms for final slip and slip-rate time series. Be-
cause of the geometry of the source-fault elements and the stability
condition, solutions over the fault plane for different grid increments
may not be computed at the same points in space and time. To esti-
mate errors, we then performed both spatial and temporal interpola-
tions of all simulation results, supposing that the information con-
tained over the discrete surfaces corresponds exactly to the fault ge-
ometry. This implies a maximum geometric mismatch (near the fault
edges) from the spatial interpolation of about 2.5% of the total fault
length in the coarsest grid cases (7 = 214.3 m). Such a mismatch de-
creases with grid size and has a value of 0.3% in the finest grid (h
= 46.9 m). Because rupture times are approximately proportional to
the rupture propagation distance, we expect the same maximum per-
centages of uncertainty in the error estimate for the three observed
fault parameters.

Time interpolation of the slip and slip-rate functions for different
discretizations has been taken as linear; spatial interpolation over the
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rupture surface has been carried out in aregular grid with a spatial in-
crement of 100 m. Interpolation values f;,, of fault-solutions fields u;
were computed as

u:
fint = 2 _l’

i=1n Qi j=1n

(o)

where @, = >, || . (10)
d;
In these equations, quantities a; are weighting factors that multiply
the n punctual fault-solutions lying inside spherical supports of radi-
us r centered at the interpolated values f;,, and d; are the distances
from f;, to each one of these punctual solutions. We always took m
= 0.5in this work and r = 1000 m in this parametric study. This val-
ue of ris the same for all grid sizes and corresponds to the minimum
necessary for having at least one fault element inside the spherical
interpolation support.

Figure 7 shows error-estimate results for the three selected fault
parameters as a function of the grid size & and the slip-weakening
critical distance &,. The rupture time of one fault point is defined as
the time at which the slip rate first exceeds 0.01 m/s at that point. Fi-
nal slip is measured over the entire fault at the end of each simulation
lasting 5 s. Slip-rate function errors correspond to the average rms of
the four observational fault points shown in Figure 5. Except for the
coarsest simulations (2= 150 m), almost no error dependence on &,
is found. The biggest rupture-time and slip-rate errors are found
around the bottom-right corner, (i.e., the parameter domain where N,
has the smallest values, Figure 6). The error in the three parameters
decreases mainly with the spatial grid step. The convergence rate for
rupture times diminishes as 7 — h,;,, evoking the power-law conver-
gence rate observed in the finite-difference split-node and BIE meth-
ods (Day et al., 2005). On the contrary, it remains more or less con-
stant for the other two parameters.

Comparing Figure 6b and ¢ with Figure 7, we find good correla-
tion between the cohesive-zone-resolution parameter N, and the er-
ror estimates for grid sizes 4= 70 m: The smaller the value of N, the
greater the error. However, we find a lack of correlation for finer
grids. This lack of correlation may reveal two different things: (1)
There exists an upper value of N, (~4) for which there is an over-
sampling of the cohesive zone, making N, have no further influence
in numerical convergence, or (2) the influence of N, on the FDFE
model convergence is always negligible with respect to other first-
order effects related to mesh refinements (e.g., reduction of numeri-
cal oscillations). This ambiguity may be a consequence of a lack in
precision of the error estimate as a result of the smoothing associated
with the spatial interpolation.

Several comparisons for the critical distance 8, = 0.8 m between
areference solution (i.e., a solution calculated with the smallest spa-
tial grid step & = 24.2 m) and those obtained on coarser grids are
presented in Figures 8 and 9. If we focus on the reference solution
(solid lines in both figures), we find that rupture-time contours start
developing the supershear transition lobes around 0.5 s after rupture
initiation in the along-strike direction (in-plane rupture mode). Dur-
ing rupture acceleration, we find a progressive increase in the resolu-
tion parameter N, that, near the fault edges, exceeds several times
those values found outside the transitional fault region (e.g., along
the antiplane direction). When comparing the slip-rate rms errors on
both the in-plane and antiplane directions (Table 3) and looking at
the resolution parameter over the entire fault (right column, Figure
8), we find a good correlation between the systematically higher N,
values along the in-plane direction and the smaller misfits of about
10% for all but one grid size in that direction.
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Rupture-time degradation with increments of the spatial grid step
are in accordance with the progressive drop in cohesive-zone resolu-
tion over the entire fault plane (Figure 8). Slip-rate numerical oscil-
lations induce local variations in rupture times that can be observed
for h=157.9 m as small spikes in the rupture-time contours. We also
can appreciate how rupture speed in the coarsest grid case remains
smaller than the shear-wave velocity because no transitional lobes
are exhibited. Rupture time rms errors for these examples are 0.04,
0.11,0.28, and 0.41s from top to bottom, respectively. The compari-
son of the slip and slip-rate functions in observational point P1
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Figure 7. Rupture times (all over the fault) and the slip and slip-rate
time function (in four fault points, Figure 5) rms errors computed
with respect to the finest grid solutions (4 = 24.2 m) as a function of
the slip-weakening critical distance &, and grid size h.
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(purely antiplane signals) is shown in Figure 9. Globally, solutions
are delayed and noisier with increments in the grid size. Good fits in
source parameters and both rupture modes are found for 2#=88.2 m
(see Table 3 for errors in slip-rate functions). Similar results were ob-
tained in the P4 in-plane mode position but are not shown. The rise
time in the antiplane direction is shorter (~2.5 s) than in the perpen-
dicular direction (~4 s) where the supershear transition takes place.
Relative rms errors for final slip over the entire fault range from
2.7% for h = 46.9 mto 11.2% for h = 214.3 m (see Figure 7). Error
in final slip for the coarsest grid represents a mismatch in moment
magnitude M, of about 2%.

MODEL VALIDATION

Consistency between solutions yielded by independent numerical
approaches is essential because it is the only way to have confidence
in these complex 3D spontaneous-rupture simulations for which no
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Figure 8. Rupture times for the reference case (solid contours) and
for coarser grid simulations (dashed contours) at 0.5-s intervals (5,
= 0.8 m). Right panels show values of N, for solutions presented
with dashed contours in the left panels.
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theoretical solutions are available. In the following, we present sev-
eral numerical exercises that validate our 3D numerical approach for
modeling the dynamic rupture along planar and nonplanar faults. We
present a quantitative comparison of our FDFE method with a BIE
method in terms of rupture times, slip-rate functions, and final-slip
rms errors. We use, as a reference, semianalytical solutions comput-
ed in the time domain with the BIE method of Aochi et al. (2000b).

Rupture happens along differently shaped strike-slip, left-lateral
faults embedded within the same linearly elastic homogeneous and
isotropic medium considered in the last section (Table 1). The rup-
ture surfaces follow the equation of a parabola in the x-y plane. The
only parameter that varies between the comparison cases is the ec-
centricity of the conical. The 3D geometry of the faults is then given
by arelation of the form

fx,y(0)],

In this equation, x, and y, correspond to the coordinates of the vertex
V of a parabola on the x-y plane with the focus at b (Figure 10). The

where y(x) = yo + Vda(x — xp).  (11)
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Figure 9. Slip and slip-rate functions computed in the purely anti-
plane observational point P1 (Figure 5) for different spatial grid
steps (dashed lines) compared with those of the reference case (solid
lines).
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coordinate z of all surfaces is translation invariant (Figure 11). The
distance between V and b, named a, controls the eccentricity of the
conical. As a decreases, the curvature of the rupture surface increas-
es. At the limit as a approaches infinity, the fault becomes planar. In
this manner, by changing a, we go from the simple planar case to-
ward a more curved fault. We choose four different geometries. Se-
lected values for @ go from % to 18, 10, and 5 km, as shown in Figure
10 for curves F1, F2,F3, and F4, respectively. All of these faults are
30 km long in the strike direction and 6 km deep (translation-invari-
ant direction). Figure 11 illustrates a 3D view of the surface, with a
=10 km.

The vertex V lies at the center of the surfaces, a location consid-
ered as the source origin. The nucleation patch is a square region
centered in the source origin with side lengths of 2 km (black patch,
Figure 11). For comparisons, we have taken four fault points placed
along a horizontal plane passing through V (white cubes). The first
observational point, P1, coincides with the source origin, and the
other three points (P2, P3, and P4) are separated from each other by
4 km as measured over the rupture surface. The external fault
boundaries are delimited by a strength barrier forbidding a rupture
from propagating beyond them.

The initial normal stress is constant over the entire rupture sur-
face. Only the initial shear stress changes between the nucleation
patch and the spontaneous-rupture fault region. We have made these
unrealistic assumptions to avoid unnecessary complications that
would make the numerical comparison more difficult. Constant trac-
tions along a nonplanar surface may suppose an extremely heteroge-
neous surrounding stress field. Physical considerations should
evolve in future exercises by introducing, for instance, simply
shaped barriers and asperities. The only parameter that changes
among the four comparison cases is the geometric parameter a, i.e.,
the fault curvature.

The rupture process follows the same Coulomb-like slip-weaken-
ing friction law used earlier. Equation 8 shows that friction resis-
tance is equal to the product of the normal fault stress o and a factor
that evolves linearly with slip once rupture begins. During rupture,
normal fault stress is the result of the initial normal stress oy, and the
dynamic normal stress changes Ao (i.e., o = oy + Ao). Thus, simi-
larly to former BIE simulations (Aochi et al., 2000b), we suppose
that the slip-weakening friction law does not depend on dynamic
changes of normal stresses Ag. Both the static (7,) and the dynamic
(7,) fault strengths only depend on the initial static tractions during
the whole rupture process.

The initial fault-stress constant conditions and the constitutive
friction parameters are listed in Table 2b. The shear prestress field 7
is everywhere parallel to the x-y plane, producing a potential strike-

Table 3. Relative rms error of slip-rate functions for
different grid sizes & with respect to the reference solution
(i.e., h = 24.2 m). Values for the antiplane direction
correspond to the time series shown in Figure 9.

h Antiplane Inplane
(m) (%) (%)
46.9 159 8.9
88.2 38.7 24.8
157.9 62.9 50.2
2143 75.1 75.7
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slip left-lateral fault dislocation. From values given in Table 2 and
equation 8, we get 7, = 81.24 MPa and 7, = 63 MPa. These two
values along with the initial shear stress 7, outside the nucleation
patch, give an upper-yield-point parameter S = 0.7, which is smaller
than 1.63. As pointed out for the first time by Andrews (1976b), one
possible consequence of this condition is that rupture propagation
undergoes the supershear transition. However, given our choice of
the slip-weakening distance and the way rupture nucleates, rupture
should propagate a larger distance than the current fault length to
reach the energetic condition leading to such supershear bifurcation.
Attime t = 0, we proceed as for previous examples and make the
shear stress in the nucleation patch overtake the yield stress on that
zone, producing an instantaneous stress drop A7y = 7o — 7,. This
initial kick is equal to 0.27, in all cases. Once this initial stress drop
happens, rupture propagates spontaneously following the linear
slip-weakening Coulomb failure criterion discussed earlier.
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Figure 10. The x-y projection of the 3D nonplanar fault geometries
considered in the comparison exercise. These are parabolas given by
equation 11. The value V(xo, o) is the vertex of the conicals and b is
its focus; a, the distance between these two points, controls the ec-
centricity. The four selected geometries F1, F2, F3, and F4 are
all 30 km long and have, respectively, values of «, 18, 10, and 5 km
fora.

Nucleation zone

Figure 11. A 3D view of one nonplanar rupture surface used in the
comparison exercise. The square nucleation patch (black region) is
centered in both the along-strike and along-dip directions and has a
side length of 2 km. The four observation fault points (white cubes)
are separated by 4 km measured over the fault surface from its
center.
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The uniform BIE grid interval was fixed to As = 0.15 km, so fault
surfaces were discretized by 200 X 40 square elements in such a way
that those element boundaries parallel to the translation-invariant
fault axis are contained within the analytic 3D parabolic function. In
other words, the centers of the squares shift slightly from the contin-
uous-fault geometry. The corresponding time step was At
= 0.0125 s. Nonplanar fault discretization with our FDFE model is
not as simple as that because rupture surfaces are represented numer-
ically by parallelepiped fault elements in a regular volumetric grid.
Consequently, the distance between the center of these elements de-
pends on the orientation of the fault within the grid.
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Figure 12. Rupture front contours at 0.5-s intervals computed with
the FDFE method (dashed lines) and with the BIE method (solid
lines). Comparisons are along a planar fault (F1) and along three
parabolic surfaces F2, F3, and F4 (see Figure 10).

Table 4. Absolute (rupture times) and relative (slip rate and
final fault slip) rms errors of our FDFE method with respect
to the BIE reference solutions (dx = 250 m). Finite-difference
results were obtained with second order in time and fourth
order in space accuracy operators (2,4) in a discrete lattice
with spatial and time steps of & = 45.45 m and At¢ = 0.005 s,
respectively.

Rupture times Slip rate Final slip
Fault geometry (s) (%) (%)
Planar (F1) 0.03 32.7 23.1
Nonplanar (F2) 0.10 33.3 15.7
Nonplanar (F3) 0.05 30.4 19.9
Nonplanar (F4) 0.04 27.1 25.7
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As described earlier, source-fault elements are placed alongside
each other as closely as possible to the analytic source geometry
(Figure 11), so the number of fault element in the along-strike direc-
tion changes with fault curvature (i.e., with values of a). To dis-
cretize the nucleation patch with the exactly stated dimensions, we
took the spatial grid interval 2 = 45.45 m and a corresponding time
step Az = 0.005 s. Thus, the number of fault elements along the fault
strike ranges from 133 in the planar case (surface F1, Figure 10) to
175 in the most curved fault (surface F4). On the contrary, it remains
constant in the along-dip direction (translation-invariant axis) inde-
pendently of the quantity a and equal to 27. A simple calculation
shows us that the current fault dimensions in the planar case are
slightly different from those stated in our problem geometry (6
X 30 km). The greatest discrepancy, 1.5% of the corresponding fault
length, is found in the along-dip direction. Similar percentages are
found in the nonplanar geometries even in the along-strike direction.

As discussed previously, the geometry of the source-fault ele-
ments prevents the exact discretization of both the nucleation patch
and entire fault sizes. To make the comparison of fault solutions pos-
sible, we performed a spatial interpolation of results yielded by both
methods, supposing that all information contained along the discrete
surfaces corresponds exactly to the fault-problem geometry. Conse-
quently, estimations of rupture times and location of the observation
points have an uncertainty of the same order, of about 1.5%. The reg-
ular spatial-interpolation increment is 100 m with a spherical sup-
port r = 600 m (see equation 10).

The rupture-time contours computed with FDFE (dashed lines)
for the planar and nonplanar surfaces are shown in Figure 12 and are
compared with those yielded by the BIE approach (solid lines). Very
good agreement is observed in all rupture surfaces. In the planar case
(surface F'1), except for quite small differences at the very beginning
of the process, FDFE rupture propagation is almost identical to the
reference solutions. In the nonplanar cases (surfaces F2, F3, and
F4), even if rupture times are very close to the reference ones, it turns
out that FDFE rupture propagates faster with increments on the fault
curvature (i.e., as the orientation of the fault surface approaches 45°
with respect to the Cartesian reference frame). Despite this aniso-
tropic effect, the absolute rms error for all cases remains smaller than
orequal to 0.1 s (Table 4).

Figure 13 shows the slip-rate time series computed in four obser-
vation fault points (see Figure 11) with both the FDFE (dashed lines)
and BIE (solid lines) methods. Signals are not filtered. Low frequen-
cy spurious oscillations appear as a result of the stress-drop rates as-
sociated with the slip-weakening critical distance &, = 0.8 m. An
overestimation of the slip-rate functions with respect to the BIE ap-
proach is observed systematically and translated into relative rms er-
rors of about 30% in all rupture cases (Table 4). The corresponding
relative rms errors of the final slip along the entire fault surface range
between 15% and 25% (Table 4), which is negligible when consider-
ing the uncertainies on seismic moment determination via the wide-
ly used kinetic source inversions. BIE solutions with a coarser dis-
cretization (As = 0.25 km) were also computed, and no relevant dif-
ferences from those presented here were found (Cruz-Atienza,
2006). The discrepancy of slip-rate rms errors between the FDFE
and BIE methods for both BIE fault discretizations are smaller than
7% of total rms values, proving that the semianalytical reference so-
lutions used in this section basically have converged to the physical
ones.

As a whole, the reference BIE solutions are reproduced well by
the FDFE approach. These results validate our rupture-boundary
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conditions as well as the adopted failure criterion. The slip-weaken-
ing spontaneous rupture problem along nonplanar (curvilinear) fault
surfaces has been solved successfully by a thick-fault, finite-difter-
ence method in a regular Cartesian grid.

DISCUSSION

The FDFE rupture model is implemented in a partially staggered
grid where both the velocity vector and the stress tensor are defined
by two independent grids shifted halfway between the spatial grid
step in the three Cartesian directions. It basically represents an ex-
tension of the 2D rupture model proposed by Cruz-Atienza and
Virieux (2004). The source is described numerically by a fault zone
with a finite width. The fault zone is composed of independent fault
elements in which a local set of boundary conditions is applied, de-
pending on the local fault orientation. For an accurate slip and slip-
rate estimate, weight functions have been constructed once and then
stored for future simulations. The use of these functions makes the
evaluation of the source kinematic parameters independent of fault
orientation with respect to the numerical grid reference frame.

The two-dimensional analysis performed by Cruz-Atienza and
Virieux (2004) has shown that numerical oscillations are controlled
by ascaling law relating the number of stress points per fault element
to the grid size. The greater the number of points, the smaller the spa-
tial grid step. However, when modeling huge 3D rupture scenarios,
computational power limitations prevent the use of extremely fine
meshes, so low-order fault elements (i.e., elements with few stress
grid points) should be preferred while achieving good accuracy for
rupture and wave propagation. The specific element structure we
have selected offers good compromise between its size in a feasible
3D mesh and the spontaneous-rupture resolution. If a nonregular
grid were implemented in the source region or if the message passing
interface (MPI) were used to parallelize the current sequential code,
a finer model sampling would be possible; so higher-order fault ele-
ments could be used to reduce numerical oscillations and then im-
prove the accuracy, as we have observed in 2D geometries.

Imposing dynamic-rupture boundary conditions always makes
the stability condition of numerical methods more restrictive. How-
ever, values for the Courant number up to v,,,,At/h = 0.66 yield sta-
ble solutions with both second- and fourth-order spatial operators
when simulating the spontaneous rupture in the partly staggered grid
(see Cruz-Atienza, 2006).

We have implemented a Coulomb-like slip-weakening friction
law. Both cohesive-zone resolution and fault-solutions error have
been investigated through a parametric study. Numerical N, esti-
mates for =70 m and 6,=0.5 m are in reasonable agreement with
theoretical values for a similar but simpler problem. In this paramet-
ric domain region, we always found N,=4. We have also found a
good correlation between N, and error estimates for grid sizes h
=70 m: the smaller the parameter N, the greater the error. However,
we find no more correlation for finer grids. This lack of correlation
may reveal either an oversampling of the cohesive zone from N, =4,
which makes this parameter have no further influence on numerical
convergence, or that convergence of the FDFE model is governed
mainly by other first-order effects associated with mesh refinement,
such as the reduction of numerical oscillations. Fault-error estimates
have been computed from interpolated solutions, so the ambiguity
associated with the lack of error sensitivity on 8, may be partly a con-
sequence of inaccurate error estimates.
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Comparisons of results obtained by the FDFE rupture model with
those obtained by the BIE approach were carried out for planar and
nonplanar fault geometries. These comparisons are not trivial. The
FDFE method presents a linear convergence rate (Figure 7), that is
lower than the power-law rates determined by Day et al. (2005) for
two independent and accurate approaches along planar faults: a fi-
nite-difference split-node (DFM) model and a frequency domain
BIE model. Comparisons presented in this paper as well as the analy-
sis of a well-established benchmark exercise (Harris and Archuleta,
2004) performed by Cruz-Atienza (2006) with the FDFE approach
show that values of grid size 7 =70 m provide reliable results for
different spontaneous-rupture problems, including nonplanar fault
geometries. The accuracy of FDFE modeling, which is formulated in
the partially staggered grid, is comparable to that of the stress-glut
method, which may be implemented in the standard staggered grid
for simulating simple planar problems (Dalguer and Day, 2006). Our
results show that thick-fault discrete models may provide accurate
results even along nonplanar rupture surfaces, provided that suitable
treatment of boundary conditions is performed.

Even if dynamic-rupture effects on fault-normal stresses were not
taken into account in validating our model, the FDFE method under
complex geometric conditions reproduces solutions obtained by an
independent semianalytical BIE method quite well (Aochi et al.,
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Figure 13. Slip-rate functions computed in four observation fault
points (see Figure 11) with the FDFE approach (dashed lines) and
with the BIE method (solid lines). Comparisons are along a planar
fault (F1) and along three parabolic surfaces F2, F3, and F4 (see
Figure 10). Signals are not filtered.
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2000b). We notice Aochi et al. (2002) show that rupture propagation
along nonplanar faults is mainly governed by the shear-stress field
ahead of the rupture front even when the Coulomb failure criterion is
considered. Dynamic variations of fault strength associated with
normal stress changes away from the free surface only cause second-
order effects.

CONCLUSION

We have introduced a numerical method based on finite differenc-
es in a partially staggered grid for modeling the dynamic rupture of
nonplanar faults in three dimensions. This FDFE approach has a spe-
cific way of handling boundaries in which a local set of rupture con-
ditions is applied, depending on both the local fault orientation and
the constitutive friction law.

The most important feature of the FDFE model is not its accuracy
ata given discretization level but the ability to go beyond simple and
often unrealistic planar fault geometries. This model has been de-
signed for solving the dynamic rupture problem of nonplanar faults
in arbitrarily heterogeneous media. For this reason, validating it in
conditions more complex than planar is fundamental. Results ob-
tained for spontaneous slip-weakening ruptures along parabolic
faults with a translation-invariant axis are in good agreement with
results obtained by a semianalytical BIE method.

The analysis of more realistic nonplanar fault simulations, consid-
ering heterogeneous stress fields and variations on the medium prop-
erties, are the next modeling target for the 3D FDFE approach,
which benefits partially staggered finite-different efficiency. This
numerical tool may be applied for studying the dynamic develop-
ment of complex microfracture networks in oil reservoirs subjected
to some regional load by analyzing the associated seismic emissions
recorded in both the earth’s surface and boreholes. It may be also
used to analze nonplanar fault interaction and for the dynamic mod-
eling of large-scale seismic events.
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APPENDIX A

A PARTIALLY STAGGERED SECOND-
ORDER OPERATOR

If second-order centered finite differences are used to approxi-
mate first-order spatial differentiations of a discrete field &, ;; along
the three Cartesian directions x, y, and z within the partially stag-
gered lattice shown in Figure 1 (Saenger etal., 2000), we get, respec-
tively, the following formula:

Cruz-Atienzaetal.

0P ~ i(‘I’ 2 jeizg2 = Picinjo1ni-1
+1/2,j41/2,kc+ —1/2,j-1/2,k-
ox 4p T e
+ @i jwini-12 = PLocipjin g
+ @i i = PLocipjsini-1n
+ D1 jipp-1n = ®i—1/2,j+1/2,k+1/2)’
(12a)
% ~ L((p i — . .
o ap Ll jeirger i 112,j-1/2,k=172
+ P jing-12 = Picinjinpsn
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0z 4p > T e
= Dip i1 + Piinjinpn
+ D1 jingrin = Piipjnini-12
= D1 jinp-tn + q)i—1/2,j+1/2,k+1/2)7
(12¢)

where £ is the grid size of the regular mesh. The discrete expressions
for the entire system 1 with second order in time and fourth order in
space accuracies are reported by Cruz-Atienza (2006).
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