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S U M M A R Y 

The Guerrero seismic gap in the Mexican subduction zone exhibits a slip behaviour distinct 
from that of adjacent segments, which typically experience large earthquakes. With the acqui- 
sition of offshore seismic data in this region and the discovery of shallow tectonic tremors, 
the study of slow earthquakes has gradually increased. This study presents the detection of 
tectonic tremors and low frequency earthquakes (LFEs) in the Guerrero seismic gap using a 
combination of a modified envelope cross-correlation method and a matched filter applied to 

ocean bottom seismometer data for a continuous two-year observational period. The modified 

envelope cross-correlation method was used to detect and locate tremors, and the matched filter 
technique enabled the detection of LFEs. These methods allowed for better constraints on the 
depths of the detected e vents, of fering ne w insights into tremors and LFE acti vity of fshore the 
Guerrero seismic gap. Our results show that the spatial distribution of these phenomena, along 

with seismicity, residual gravity anomalies and seafloor topography, suggests that a section of 
the shallow plate interface within the gap has experienced stable slip. This study builds on 

pre vious work b y enhancing the detection and location accuracy of these slow earthquakes, 
contributing to a more comprehensive understanding of subduction dynamics in the region. 

Ke y words: Earthquak e source observations; Episodic tremor and slip; Seismicity and tec- 
tonics; Subduction zone processes. 
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 I N T RO D U C T I O N  

low earthquakes, including slow slip events (SSEs), low-frequency
arthquakes (LFEs) and tectonic tremors, are now well-recognized
henomena in subduction zones, significantly enhancing our un-
erstanding of fault slip behaviour (Obara & Kato 2016 ). These
low earthquakes provided crucial insights into the mechanics of
ubduction zones, such as Japan (Obara & Ito 2005 ; Asano et al.
008 ; Ando et al. 2012 ; Matsuzawa et al . 2015 ; Arai et al. 2016 ;
akamura 2017 ; Obara 2020 ; Takemura et al. 2023 ), Cascadia

Wech 2021 ; Gombert & Hawthorne 2023 ), Costa Rica (Brown
t al. 2009 ; Baba et al. 2021 ) and Mexico (Kostoglodov et al. 2010 ;
usker et al. 2012 ; Frank et al. 2013 ; Cruz-Atienza et al. 2015 ;
illafuer te & Cr uz-Atienza 2017 ; Cr uz-Atienza et al. 2018 ). Par-

icularl y, they re vealed the mechanisms of fault slip behaviour and
tress accumulation-release processes along the plate interface. In
C © The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ome cases, shallow slow earthquakes have been reported to trig-
er both moderate and large earthquakes, as observed in the Japan
rench before the Tohoku-Oki earthquake (Kato et al . 2012 ; Ito et
l . 2013 , 2015 ; Uchida et al . 2016 ). 

LFEs are typically characterized by their short-duration, impul-
ive nature with low frequency content, while tremors are prolonged
ignals with low amplitude and emergent characteristics. Tectonic
remors have proven to be an invaluable tool for identifying and

onitoring SSEs and their evolution (Rogers & Dragert 2003 ; Hi-
ose & Obara 2005 ; Bartlow et al. 2011 ; Villafuerte & Cruz-Atienza
017 ; Itoh et al. 2022 ). LFEs and tectonic tremors are key compo-
ents of subduction zones, of fering v aluable information on fault
echanics and earthquake dynamics. In many regions, LFEs are

sed to pinpoint the locations of tremors, and their occurrence is
ften linked to episodic slip along the plate interface. Ho wever , the
elationship between LFEs and tremors can be complex, as they
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
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do not al wa ys ov erlap in space or time. This comple xity is particu- 
larly pronounced in regions, such as Mexico, where the connection 
between these phenomena remains an area of active investigation. 

In the Mexican subduction zone, SSEs have been extensi vel y 
documented, but their relationship with LFEs and tremors is still 
not fully understood. While tremors typically accompany SSEs and 
share similar locations (Beroza & Ide 2011 ), not all slow slips 
coincide spatially and temporally with tremors in Cascadia (Wech & 

Bartlow 2014 ). This complexity is especially evident in the Mexican 
subduction zone (Husker et al. 2012 ; Frank et al. 2014 ; Villafuerte 
& Cruz-Atienza 2017 ; Cruz-Atienza et al. 2018 ; Husker et al. 2019 ; 
Plata-Martinez et al. 2021 ). Previous studies from Shikoku and the 
San Andreas Fault have demonstrated a close association between 
LFEs and tremors, with LFEs being more easily identifiable due to 
their distinct P - and S -wave onsets (Shelly et al. 2007 ; Frank et al. 
2013 ). Ho wever , such a connection has not been observed clearly in 
the offshore portion of the Guerrero gap, where tremors have been 
detected without corresponding shallo w LFEs. Shallo w, near-trench 
LFEs are not as common as deep LFEs. Takemura et al. ( 2023 ) 
pointed out the difficulty of shallow LFEs detection. It is not easy to 
distinguish LFEs and tremors due to thick low-velocity sediments at 
the shallow plate boundary. Understanding this discrepancy about 
the shallow LFEs occurrence is critical, as the relationship between 
LFEs and tremors may offer new insights into strain accumulation 
and release in slow slip areas. 

The subduction zone in Mexico has been responsible for signif- 
icant earthquakes over the past century, notably the impactful Mw 

8.0 Michoac án earthquake in 1985, which resulted in the tragic loss 
of over 10 000 lives in Mexico City (Beck & Hall 1986 ; UNAM 

Seismology Group 1986 ; Kanamori et al. 1993 ). Ho wever , there 
is a notable exception known as the Guerrero seismic gap. This 
specific segment of the Mexican subduction zone has not experi- 
enced M7 + earthquakes since 1911 (Singh et al. 1981 ; Yoshioka 
et al . 2004 ; UNAM Seismology Group 2015 ). Instead, it has been 
characterized by large and relatively shallow slow-slip events (Kos- 
toglodov et al. 2003 ; Radiguet et al. 2012 ; Radiguet et al . 2016 ; 
Cruz-Atienza et al. 2021 ). Thus far, the unique pattern of strain 
accommodation and, therefore, the slip behaviour observed in the 
Guerrero gap, which differs from adjacent segments where signifi- 
cant earthquakes occur regularly, is not fully understood. 

Tremors and LFEs in the Guerrero gap have been widely studied 
in relation to long- and shor t-ter m SSEs occurring in deep onshore 
segments of the plate interface (Payero et al. 2008 ; Kostoglodov 
et al. 2010 ; Frank et al. 2013 ; Cruz-Atienza et al. 2015 ; Villafuerte 
& Cr uz-Atienza 2017 ; Cr uz-Atienza & Villafuer te et al. 2018 ). 
Offshore tremor observations, ho wever , were only made possible 
following the deployment of ocean bottom seismometer (OBS) in 
2017 (Cruz-Atienza & Ito et al. 2018 ). Plata-Martinez et al. ( 2021 ) 
made a breakthrough by identifying shallow tectonic tremors off- 
shore in the Guerrero seismic gap using OBS data, marking the first 
detection of tremors in this region. To date, no shallow LFEs have 
been detected in Mexico, likely due to observational limitations 
and the challenging nature of these e vents. Gi ven that LFEs are 
considered a component of tremor, understanding their dynamics is 
essential for gaining deeper insights into the behaviour of tremors 
and slow slip in the plate interface (Shelly et al . 2006 ). 

Plata-Martinez et al. ( 2021 ) used the models of global bathymetry 
and gravity anomaly models (Bassett & Watts 2015a , b ) to explain 
the tremors phenomena in the Guerrero seismic gap. Residual grav- 
ity anomalies can provide insights into the structure and density 
variations within the Earth’s crust, which in turn may relate to the 
occurrence of slow earthquakes, such as those found in the seismic 
gap. The large positive and negative residual gravity anomalies are 
also interpreted as an irregular subducting relief that increases pore 
pressure and fracturing and decreases coupling, generating shallow 

tremors (Plata-Martinez et al. 2021 ). Building on the work of Plata- 
Martinez et al. ( 2021 ), this study delves deeper into the relationship 
between LFEs and tremor by using both OBS data and onshore seis- 
mic networks for a continuous period of two y ears, w hich is twice 
as long as the period analysed by Plata-Martinez et al. ( 2021 ). Our 
objective is to clarify how these phenomena interact, particularly 
in offshore regions where observations have been sparse. By refin- 
ing detection methods for LFEs and tremors, we aim to shed light 
on the processes governing slow earthquakes in the Guerrero gap 
and contribute to a broader understanding of slow slip behaviour in 
subduction zones. 

2  DATA  A N D  M E T H O D S  

2.1 Data 

We used continuous data from ocean bottom seismometers (OBS) 
at a two-y ear -long array of stations deployed in 2017 November 
throughout the offshore portion of the Guerrero seismic gap (Cruz- 
Atienza & Ito et al. 2018 ). The array was located between the 
Guerrero shoreline and the Middle American Trench, and data were 
analysed from 2017 November to 2019 November. An additional 
OBS was deployed in the second year to complete the seismic array 
with eight units (OBS10, Fig. 1 ). 

The OBS stations were equipped with three-component 1 Hz 
short-period sensors and deployed at water depths ranging between 
980 and 2350 m. Station locations were determined with an average 
uncertainty of 2 m and the data were corrected using time-shifts and 
instrumental responses. 

We collected information about earthquakes in this area. For 
earthquakes with magnitudes of 5 or higher since 1976, we adopted 
focal mechanisms provided by the Global Centroid Moment Tensor 
(GCMT) agenc y. Howev er, due to the systematic bias of event loca- 
tions by this agency in the region of about 15–20 km to the northeast 
(Hj örleifsd óttir et al. 2016 ; Singh et al. 2019 ), we adopted more reli- 
able hypocentres determined by the National Seismological Service, 
the Geophysics Institute of the National Autonomous University of 
Mexico (SSN, 2018 ) from its local broad-band seismic network. 

2.2 Modified envelope correlation method 

The initial identification of tremors within the subduction zone of 
western Japan was accomplished using the envelope correlation 
method (Obara 2002 ). This method examines the similarity of en- 
v elope wav eforms recorded at various seismic stations. It locates 
the source of tremors by elucidating the observed differences in 
traveltimes for tremor signals, achieved by optimizing the cross- 
correlations of envelope waveforms. These tra veltimes w ere calcu- 
lated based on ray theory. The precise location of a tectonic tremor 
poses challenges because of the absence of characteristic impul- 
si ve body w ave arri v als on which conventional earthquake-location 
techniques rely. Although more sophisticated location methods have 
been proposed (Hendriyana & Tsuji 2021 ; Akuhara et al. 2023 ), we 
adopted an improved version of the technique introduced by Mizuno 
& Ide ( 2019 ), to detect and locate tremors; it is based on a maximum 

likelihood method that is suf ficientl y fast, accurate, and applicable 
to large databases. 
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Figure 1. Map view of the study area in the Guerrero seismic gap. Triangles show the location of eight ocean bottom seismometers (OBSs). Circles represent 
tectonic tremors. Stars whose colour changes with the rightmost colour bar series represent the LFEs family, and different colours indicate the number of LFEs 
in each family. Residual Gravity anomalies are from Plata-Mart ́ınez et al. ( 2021 ). The four dashed circles in the figure represent seamounts from left to right: 
Koyuki, Popped-up, Ender and Yoshi seamounts ( ̌Cern ý et al. 2020 ). The transparent circles represent the rupture areas of earthquakes that have occurred over 
the past few decades. 
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To estimate the env elope wav eforms, we carried out the following
teps: (1) band-pass filtering of continuous velocity data between
 and 8 Hz, (2) squaring of the filtered data, (3) low-pass filtering
t 0.3 Hz, and (4) resampling of the filtered signal at 1 Hz. The
quare root of those filtered data was adopted as envelope. For
remor detection, 300-second time windows with 150-second time
teps were used. The detection threshold for the cross-correlation
oefficient between stations was set to 0.6 (Ide 2010 ). 

For the analysis, we examined a collection of continuous envelope
 aveforms deri ved from seismo g rams with a sampling inter val � T .
he objecti ve w as to identify tremors within a fixed time window
ith a width T w = N t � T , where N t represents the number of time

amples. Within this time window, we define the normalized enve-
ope waveform as w i ( t) . Thus, the timing of the tremor windows for
ll components at each station is 

 i ( t ) = 

w 

′ 
i ( t ) √ ∑ N t 

k= 1 
(
w 

′ 
i ( t k ) − w 

′ 
i 

)2 
(1) 

here the sub-index i represents the i-th component, w 

′ 
i ( t) is the

riginal envelope waveform, w 

′ 
i is the temporal mean, N t is the

umber of time samples, and t k is the k-th time step in the win-
ow. In our method, we assumed that the shape of the envelopes
as consistent across all components and stations. As a result, each

remor observation, denoted as the normalized envelope waveform
 i ( t) , can be modelled as the sum of a common template waveform
( t) after applying a common moveout, � t i , associated with the

raveltimes from the source, and a Gaussian error term e i ( t) follow-
ng a distribution N ( 0 , σ 2 

i ) . Mathematically, this relationship can be
xpressed as: 

 i ( t + � t i ( x ) ) = w 

( t ) + e i ( t + � t i ( x ) ) (2) 
here � t i ( x) is the traveltime from a potential source position x to
he station recording the i-th component. 

Under these assumptions, we can formulate mathematical ex-
ressions to maximize the likelihood when detecting the observed
nvelopes by combining a common template waveform w( t) and
he traveltimes to a specific position x . The maximum likelihood
roblem can be solved by calculating the weighted sum of the
ross-correlations, where the weights are determined by the error
 ariance. Consequentl y, we aim to maximize the average of the
eighted cross-correlations, also known as the average weighted
ross-correlation ( ACC ), 

AC C 

( x ) = 

∑ 

( i, j ) 

∑ N t 
k= 1 

w i ( t k + � t i ( x ) ) w j ( t k + � t j ( x ) ) 
σ 2 

i σ
2 
j ∑ 

i, j 
1 

σ 2 
i σ

2 
j 

(3) 

The error variance was determined by assessing the similarity
etween the template and the observed waveforms. In this method,
he objective is to identify the optimal tremor location x best that
aximizes AC C . To achiev e this, trav eltimes to various positions x
ere computed using ray theory and a modified 1D velocity model

pecific to the Guerrero region (Obana et al. 2003 ; Spica et al.
016 ; Espindola-Carmona et al. 2021 ). Around offshore areas, due
o the influence of sedimentary layers, the Vp Vs −1 ratio typically
xceeds 1.73 (Bell et al. 2016 ; Chow et al. 2022 ). The Mexican
ubduction zone is characterized by a thick sedimentary layer on the
andward slope of the trench. We integrated data on the sedimentary
ayer thickness and referred to the Vp Vs −1 values in the Nankai
rough (Obana et al. 2003 ) and crustal models in the Mexican region
Spica et al. 2016 ; Espindola-Carmona et al. 2021 ) to construct 1-D
elocity models. The subsurface structure is shown in Supporting
nformation (Fig. S1 ). 

art/ggaf057_f1.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaf057#supplementary-data
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To identify the optimal tremor locations, we employed a com- 
bination of grid search and gradient methods. Assuming a fixed 
tremor depth of 10 km, the grid search explored multiple positions 
and selected several local maxima of the AC C as potential tremor 
epicentre locations. It is important to note that we focused on the 
local maximum rather than the global maximum because multi- 
ple tremors may occur at different locations within the same time 
window. Thus, local maxima may indicate the presence of multiple 
tremors within a single time window. 

After identifying candidate locations from the grid search, we 
used the conserv ati v e conv e x separab le appro ximation (CCSA) 
algorithm (Svanberg 2002 ) to refine the locations. This method 
was similar to gradient descent in that it iteratively improves the 
hypocentre coordinates (epicentre and depth) by optimizing the 
ACC . CCSA is specifically chosen because it handles the conv e x 
optimization problem ef fecti vel y and w as capable of handling sepa- 
rable objective functions, making it ideal for this type of waveform- 
fitting problem. Each potential tremor epicentre served as an ini- 
tial value for the algorithm, enabling the determination of the best 
hypocentre location for each tremor. In cases where hypocentre so- 
lutions from different potential locations were very close to each 
other, we combined these solutions to obtain a unified result. 

We eliminated outliers by establishing two conditions that de- 
tected tremors must satisfy. First, the cross-correlation coefficients 
must be greater than the initial threshold of 0.6, as originally pro- 
posed. Secondly, the similarity between the envelope and template 
waveforms should be significant. If the correlation coefficient was 
below 0.4, the corresponding envelopes were rejected as outliers. 

Once outliers were excluded, the location procedure was iterated 
using the gradient method and continued until no further outliers 
were identified. In addition to the gradient-based refinement, boot- 
strapping (Efron 1979 ) is used to assess the uncertainty of the 
determined hypocentre locations. In bootstrapping, we resampled 
the waveform data multiple times and repeated the location process 
for each resampled data set. This helps us to estimate the variability 
of the hypocentre solutions due to data noise or other factors. The 
standard deviation of the hypocentre parameters (latitude, longitude, 
depth) is then computed from the distribution of solutions across the 
bootstrap iterations. The standard deviations of the tremor location 
were approximately 1.5 km horizontally and 4.5 km vertically. 

Fig. 2 shows an example of a tremor detected at the seven OBS 

stations. The first three stations clearly record the tremor signal, 
while signals at other stations become stretched due to propagation 
path effects. For detection and location, as long as three stations 
clearly record the signal, the event can be localized. Once the loca- 
tion of the tremor was identified, the waveforms at different stations 
were plotted with increasing epicentral distances. 

The hypocentre time, duration and energy for each detected 
tremor were determined as follows: 

‘ 
E s ( t ) = 4 πρβ

∑ 

i, j 

(
w ′ i 

2 ( t+ � t i ( x best ) R 2 i ) 
σ 2 

i 
+ 

w ′ j 
2 
(

t+ � t j ( x best ) R 2 j 
)

σ 2 
j 

)

∑ 

( i, j ) 

(
1 
σ 2 

i 
+ 

1 
σ 2 

j 

) , (4) 

where Ė s ( t ) is the average seismic energy rate, R i is the hypocentre 
distance to the station recording the i-th component, ρ and β are 
the density and S -wave velocity at the station, which are assumed 
as ρ = 3000 kg m 

3 −1 and β = 2.844 km s −1 . 
The hypocentre time was defined as the time at which maximum 

Ė s ( t ) occurred. The tremor duration was also estimated as the time 
at which Ė s ( t ) exceeded a quarter of its maximum value. Because 
of the local site effect at the stations, the amplitudes of the recorded 
wa veforms ma y lack a common reference. The invalid rigidity as- 
sumption also causes additional overestimation of seismic energies 
for shallow tremors (Takemura et al. 2024a ). Therefore, the magni- 
tudes of the events were not considered in the analysis. 

The described detection method demonstrated efficient perfor- 
mance even in cases, where multiple events occurred within the 
same time window. In windows with overlapping events, the method 
detected all occurrences, validating its ability to function with off- 
shore data. Ho wever , as noted in Plata-Mart ́ınez et al. ( 2021 ), it 
remains challenging to distinguish between different types of seis- 
mic signals, such as tremors, earthquakes and T-phases (Okal 2008 ; 
Plata-Mart ́ınez et al. 2021 ; Takemura et al. 2024b ). This limitation 
stems from the similarity in waveforms and the potential overlap in 
the frequency content of these ev ents. For e xample, both tremors 
and T-phases can produce continuous, low-frequency signals, mak- 
ing it difficult to rely on automated detection alone for precise event 
classification. 

To isolate tremors from earthquakes and other signals, we incor- 
porated a visual inspection. This involved analysing both spectro- 
g rams and wavefor ms for each detection, ensuring a more accurate 
classification. Fig. 3 illustrates the typical appearance of an event 
during this inspection, highlighting key characteristics that differ- 
entiate tremors from other seismic events. The filtered signal of 
tectonic tremor presents a long duration spindle shape, fluent in 
tens to hundreds of seconds, shorter can be in a few seconds. There 
is no obvious P or S arri v als e ven in the 2–8 Hz filtered signal. In the
spectrogram, the energy is low above 10 Hz. Together these charac- 
teristics are the basis we used to validate the tremor detections. By 
visually examining the frequency content and signal duration, we 
were able to identify patterns that automated methods might miss, 
improving the reliability of the detection results. 

2.3 Matched filter technique 

There are several different methods to detect LFEs: the matched 
filter method (Gibbons & Ringdal 2006 ; Shelly et al. 2007 ; Peng 
& Zhao 2009 ), polarization analysis (Maceira et al. 2010 ) and the 
statistical method (Ide 2021 ). The matched filter approach is a tech- 
nique employed to find LFEs (Tang et al. 2010 ; Frank et al. 2013 ; 
Chamberlain et al. 2014 ). The waveform similarities are the ba- 
sics of the matched filter technique. In this approach, the observed 
waveforms of known LFEs were employed as templates to cross- 
correlate with continuous waveform data to search for similarities. 
Detection is achieved when the accumulated cross-correlation func- 
tion exceeds a pre-defined threshold. 

We visually inspected the waveform and spectrogram within 
the detected tremor to find possible LFE templates as the initial 
templates and then cross-correlated them through continuous data 
(Shell y et al . 2006 ; Shell y et al . 2009 ; Frank et al. 2013 ).LFEs
were identified as isolated events in tremor sequences. The horizon- 
tal components are easier to identify due to the LFEs’ principally 
shearing motions (Shelly et al . 2006 ; Husker et al. 2012 ; Frank 
et al. 2013 ). Fig. 4 is one example of an initial inspection for a pos- 
sib le LFE template. F ig. S4 (Supporting Information) is an example 
showing LFE within tremor in the horizontal components and the 
vertical component. The signal is more notable in the horizontal 
components than in the vertical one. The LFE obtained from tremor 
with initial location is shown in Fig. S5 (Supporting Information). 

Following the initial detection run, new LFE templates with rel- 
ati vel y high signal-to-noise ratios were generated by stacking the 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaf057#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaf057#supplementary-data
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Figure 2. Example of one tectonic tremor seismogram as a function of the epicentral distance. In this example, due to the weak tremor signals, the waveforms 
of only three stations were significant. The smoothed line is a tremor’s envelope. 

Figure 3. Waveform and spectrogram of a tremor. In the waveform plot, the cluttered trace represents the original waveform, while the spindle-shaped trace 
corresponds to the waveform after applying a 2–8 Hz bandpass filter. The spectrogram below illustrates the frequency content of the original waveform. 
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aveforms at the same station and component (Fig. 5 ). Stacking
as linear, with each template normalized in amplitude (Thurber

t al. 2014 ). As shown in Fig. 5 , the waveforms before stacking can
ardly be seen as obvious P or S phases. After stacking is performed,
o wever , the P and S phases clearly emerge in the horizontal com-
onents while the P phase is even clearer in the vertical component.
oreov er, as e xpected, the amplitude of the horizontal components

s higher than that of the vertical component, which is consistent
ith the fact that LFEs are mainly generated due to shear rupture
Ide et al . 2007 ; Supino et al. 2020 ). What we also need to be aware
f is that the site amplification coefficients in the horizontal compo-
ents are typically larger than those in vertical components (Yabe
t al. 2019 , 2021 ; Takemura et al. 2024a ), and so the site ampli-
cation differences between horizontal and vertical components in
BS recordings require attention. 
The hypocentre of the detected LFE was assigned the same value

s the corresponding template. These LFEs are considered to re-
eat at the source (Chamberlain et al. 2017 ). For some templates

art/ggaf057_f2.eps
art/ggaf057_f3.eps
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Figure 4. Visual inspection for a possible LFE template waveform at different stations during the initial detection stage. The start time is from 2017 December 
20 03:42:12. The arri v als of the possible LFE are around 30 s. These show records for one of the horizontal components. 

Figure 5. Example of a three-component LFE waveform with stacking. The first waveform of each subgraph represents the stacked LFE waveform, and the 
each waveform at the beginning of the second and thereafter is the individual LFE used to perform the stacking on the same station and the same component. 
OBS07 is the station code. Z is vertical component, and H 1, H 2 are horizontal components, respecti vel y. The vertical line in the plot of the Z component is the 
arri v al of the P wave, the vertical lines at the same positions in the H 1 and H 2 components are also the arri v al of the P wave, and the other vertical lines in the 
H 1 and H 2 components are the arri v al of the S wave. 
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ith lower signal-to-noise ratios, this process of stacking and cross-
orrelation is iterated two to three times until the set of detected
vents and associated waveform stacks are stabilized (Shelly 2017 ).
fter confirming the stacked waveform templates, all the waveforms
ere cross-correlated using continuous data. 
To accelerate the subsequent computations, we initially down-

ampled all raw continuous waveforms from 200 to 20 Hz. We then
pplied a fourth-order , tw o-way bandpass filter with a frequency
ange of 2–8 Hz to both the continuous and template seismograms.
ubsequently, we calculated the correlation coefficient (CC) value
ithin a time window of 6 s between the template and continuous
ata. 

To filter out noisy traces and reduce false detections, we assessed
he signal-to-noise ratio (SNR) for all traces by examining a signal
indow of 1 s before and 5 s after the arri v al time of either the P
r S waves. A noise window of equi v alent duration ending 1 s prior
o the P -wave arrival was also analysed. We only included template
vents that presented at least 12 traces with SNRs exceeding 3.
he analysis proceeded with a step size of one data point (0.05 s),
ligning the CC values with the original time of the template event
nd calculating the average CC value across all channels at each data
oint. To reduce the uncorrelated background noise and amplify
he signals of the LFEs, these shifted functions were stacked. To
dentify new detections, we set a threshold of 12 times the median
bsolute deviation of the daily mean CC functions (Meng et al. 2013 ;
ao et al. 2017 ; Beauc é et al. 2018 ). The detection is considered
 new LFE if the stacked CC function surpasses this threshold. A
ummary of the w orkflo w is provided in the Supporting Information
Fig. S3 ). 

After detecting the LFEs using the matched filter technique,
e estimated their hypocentre locations. To achieve this, we em-
loyed the WIN system (Urabe 1992 ) for manual phase picking
nd hypocentre calculation of the LFE families. The WIN system
s a comprehensive processing platform for analysing multichan-
el seismic waveform data, featuring a suite of UNIX-compatible
rogrammes, including the hypocentre determination tool hypoMH
Hirata & Matsu’ura M 1987 ). P - and S -wave arrival times were
anually selected and the hypocentres were calculated using hy-

oMH, assuming a modified local 1-D velocity model (Fig. S1 ,
uppor ting Infor mation) considering a sedimentar y surface layer
Obana et al. 2003 ; Spica et al. 2016 ; Espindola-Carmona et al.
021 ). 

 R E S U LT S  

e compared the spectra of stacked waveforms of regular earth-
uakes, tectonic tremors, LFEs, and ambient noise recorded at the
ame station (Fig. 6 ). The distinct spectral characteristics of each
vent type are evident. The spectra for earthquakes demonstrate
ither increasing or stable energy levels up to around 10 Hz. In
ontrast, LFEs and tremors exhibit a steady decline, or at least
onstant energy from the lower frequencies onward. LFEs display
ignificantly higher energy than noise. LFE and tremor spectra are
ighly similar, but tremors have larger amplitude. This reduction
n energy at higher frequencies is a defining feature of LFEs and
remor. Although the variations present in the geological environ-
ent across different regions can influence the spectral characteris-

ics of these signals, it is generally possible to distinguish between
hem. This capability of differentiating signals is consistent with
he characteristics of LFE, tremors and regular earthquakes pre-
iously identified in other regions (Shelly et al. 2007 ; Beroza &
de 2011 ). 
A total of 637 tremors with durations ranging from 5 to 300 s
ere identified. The spatial distribution of these events is illustrated

n Fig. 7 (colour coded circles) and the Supporting Information
Fig. S6 ). These results include short-duration tremors (Poiata et al.
018 ; Toh et al. 2023 ). The uncertainties of tremor location were
onfined to within 1.5 km horizontally and 4.5 km vertically. Tremor
redominantly occurred at depths of 8–23 km, as depicted in the
epth histogram in Supporting Information (Fig. S2 ). 

Ho wever , the depth estimates for these tremors are subject to
ignificant limitations. First, the locations were calculated based
n S -wave traveltimes, without incorporating P -wave traveltimes.
econd, the velocity model employed for tremor location did not ac-
ount for the low-velocity sedimentary layers present on the ocean
oor. This omission is critical because the sedimentary layer signif-

cantly influences the traveltimes of seismic waves from the source
o the OBS positioned above this layer. The absence of these consid-
rations likely introduces additional inaccuracies in our locations,
articularl y af fecting the depth. As a result, there w as a systematic
ias, leading to hypocentres deeper than the actual depths. Con-
equently, depth remained the least reliable parameter for tremor
ocations. 

We employed a set of 12 LFE templates to detect events through-
ut the continuous data for the first year 2017–2018. Consequently,
05 LFEs were detected and located with an uncertainty of approx-
mately 3 km. These LFEs were predominantly distributed in the
or thwester n par t of the OBS array (colour coded stars), exhibiting
 higher density near OBS8 and OBS9 (Fig. 7 ). Notabl y, se veral
FEs located south of OBS9 were proximal to the trench, suggest-

ng that they may have been triggered by slow-slip transients in this
ery shallow zone. The regional distribution of LFEs was consistent
ith the observed tremor activity at depths ranging from 5 to 15 km.
e show all the LFEs families in the Table 1 . 
Analysis of the cross-section showed that the depths of LFEs

ncreased with distance from the trench compared with tremors.
his pattern suggests the influence of inherent errors in tremor
alculations. Despite these errors, we expect consistency between
he observed depths of tremors and LFEs (e.g. Shelly et al. 2007 ).
hese discrepancies are primarily attributable to limitations of the
ross-correlation method used for tremor localization. This method,
hich relies on the maximum amplitude of the tremor envelope,
ffers less precision than traveltime measurements of direct P or
 waves utilized for LFEs. In contrast, the location of the LFEs
nvolves the calculation of both the P - and S -wave arrival times,
roviding more accurate focus information. LFEs depth is therefore
ore reliable than that of tremors. 

 D I S C U S S I O N  

n general, tectonic tremors could be explained by the superposi-
ion of successive LFEs (Ide et al . 2007 ; Brown et al. 2009 ), while
hallow LFEs observed in this study were not always accompanied
y tremors. Soon after station deployment, in 2017 November, we
etected a cluster of LFEs in the southwestern part of the OBS ar-
ay, very close to the trench (Fig. 8 a). One month later, LFE activity
n the same spots sharply decreased and remained stable, similar
o other clusters for the rest of the period (Fig. 8 b). In Fig. 8 (a),
ignificant LFE activity can be observed in 2018 Febr uar y. This is
onsistent with the tremor activity of Husker et al. ( 2019 ) in tempo-
al distribution. The Husker et al. ( 2019 ) tremor catalogue uncovers
dditional seismic transients, including post-seismic slip in Oax-
ca following the 2018 Febr uar y 16 Mw 7.2 Pinotepa Nacional
arthquake. 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaf057#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaf057#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaf057#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaf057#supplementary-data
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Figure 6. Comparison of the earthquake, LFE and tremor spectra. A comparison of stacked raw waveforms from the OBS seismogram’s horizontal components 
is shown. The three signals are selected from approximately the same hypocentre region. We selected a 3-s time window to calculate their spectra. 
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At many plate boundaries, the transition zone between seismo- 
genic and stable slip conditions results in slow earthquakes, includ- 
ing slow-slip events. Tremors usually occur together with SSEs and 
their locations are similar (Beroza & Ide 2011 ), whereas not all 
slow slips coincide spatially and temporally with tremors (Wech & 

Bartlo w 2014 ). Previous kno wledge of tectonic tremors and LFEs 
indicates that the two occur coherentl y; howe ver, there are some 
special cases where LFEs occur without tremor activity. A simi- 
lar phenomenon was observed in the Cascadia subduction zone, 
where Wech and Barlow ( 2014 ) concluded that there is a slip rate 
threshold for tremor genesis in the plate boundaries. Although our 
detected LFEs occur primarily along the slab interface, some LFEs 
were not associated with tremor catalogues. This pattern, simi- 
lar to observations in Guerrero where Frank et al. ( 2014 ) found 
only 18.3 per cent of LFEs occur during tremor episodes, and only 
35.4 per cent of tremors contain LFEs, suggests complex source 
mechanisms. 

Shallo w slo w earthquakes in Costa Rica occurred near the trench 
axis, but they are separated from repeating and tsunami earthquakes 
(Baba et al. 2021 ). Arai et al. ( 2016 ) discussed the structure of the 
tsunamigenic plate boundary and shallow LFEs at the southern 
Ryukyu Trench. The LFE distribution at the Ryukyu trench seems 
to bridge the gap between the shallow tsunamigenic zone and the 
deep slow slip region. In the Guerrero gap, slow tsunamigenic earth- 
quakes pre viousl y occurred near the trench (Iglesias et al. 2003 ). 
These earthquakes e xhibit low-frequenc y characteristics and gen- 
erate tsunamis. While some LFEs in this study are primarily found 
deeper along the subduction interface, given that these LFEs oc- 
cur in a region (Iglesias et al. 2003 ) identified as prone to tsunami 
earthquakes, besides one possible reason above that the slip rate 
threshold effect for tremor, Since not all LFEs are found within 
tremors, we consider that the LFEs not detected in tremors may 
be related to small tsunami earthquakes, especially those occurred 
near the trench. LFEs associated with tremors are more likely to be 
linked with slow slip events, while LFEs not associated with tremors 
near the trench, are likely linked to slow tsunamigenic LFEs. These 
LFEs might share the slow rupture and low-frequency signature of 
tsunamigenic earthquakes, even if they are not currently recognized 
as such. 

The LFEs families detected in this study indicated the existence 
of a shallow transition zone from creep to locking in the Guerrero 
seismic gap. Worldwide, most slow earthquakes occur updip and 
downdip from the locked seismogenic zone of the subducting plate 
interface in the so-called slip transition zones (Dixon et al. 2014 ; 
Todd et al. 2018 ; Nishikawa et al. 2019 ; Baba et al. 2020 ; Obara 
2020 ; Takemura et al. 2020a ). This supports the most widely ac- 
cepted idea that LFEs are minor thrust ruptures that release tectonic 
stress next to or at the subduction interface (Ide et al . 2007 ; Shelly 
et al. 2007 ; Ohta & Ide 2011 ; Frank et al. 2013 ). At this interface, 
the two plates interact, creating complex geological conditions that 
lead to LFE activity (Ohta & Ide 2011 ). The LFEs families identified 
in this study were located in the shallow portion of the subducting 
interface near the trench. Some LFEs were observed near the coast- 
line (Fig. 7 ). Between the LFEs near the trench and those close to 
the coastline, there is a low residual gravity anomaly, which was 
associated with a ‘silent zone’ where the interface may creep, as 
proposed by Plata-Mart ́ınez et al. ( 2021 ). From our observations, 
which include LFEs and tremors for a two-year period, although 
slow earthquakes are more frequent to the west, as found by these 
authors (i.e. west of longitude −101 o ), it is also clear that they dis- 
seminate across the study region with prominent clustering, some 
of which likely delineate subducted seamount trajectories, as dis- 
cussed below. Places with no activity were relatively scarce. The 
−101 o meridian roughly bounds the end of the seismic gap, west 
of which at least four Mw ≥ 7.2 ruptures have occurred in the past. 
(i.e. in 1943, 1979, 1985 and 2014) (UNAM Seismology Group 
2015 ). Therefore, the sharp increase in slow earthquakes around 
this boundary may indicate an along-strike transition zone of the 
plate interface that prevents most large earthquakes from penetrat- 
ing the gap. This suggests that LFEs and tremors concentrate around 

art/ggaf057_f6.eps
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Figure 7. Migration of tremors activities for two years and cross-section in profile AB according to the width of 20 km. The different coloured circles represent 
the time when the tremor occurs. The slab is based on Slab 2.0 (Hayes et al. 2018 ). The source of the focal mechanism solutions shown in the figure is from 

GCMT. The transparent circles represent the rupture areas of earthquakes that have occurred over the past few decades. 

Table 1. All the LFE families. The first three columns are latitude, longitude 
and depth, and the fourth column is the number of events detected per LFEs 
family. 

Lat Lon Depth Count 

16.77 −100.81 8.21 60 
17.33 −101.32 10.14 6 
16.79 −101.44 9.15 6 
17.09 −101.22 10.17 11 
17.11 −101.59 8.11 14 
16.84 −101.32 8.21 34 
16.98 −100.59 9.54 9 
16.79 −101.39 9.15 4 
16.98 −100.59 9.11 9 
16.76 −101.29 9.32 40 
17.06 −100.86 8.53 8 
17.14 −100.82 10.21 4 
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he transition between locked (to the west) and creeping (to the east)
nterface segments. 

Shallow LFEs were likely located at the plate interface in the
uerrero seismic gap. The distribution of the LFEs families shown

n Fig. 7 suggests an interface dip angle of less than 10 ◦, which is
n reasonable agreement with previous investigations in Guerrero,
uggesting a dip of 12 deg (Pacheco & Singh 2010 ). In general, the
eep tremors and LFEs in Nankai, Mexico and Cascadia subduction
ones are generally located on or around the plate interface. Toh
t al. ( 2023 ) and Takemura et al. ( 2023 ) suggested that the difficulty
n detecting shallow LFEs is due to the effects of low-velocity
ediments beneath the OBSs (Takemura et al. 2020b ). Although the
epth error of shallow tremors where the distribution in the slab
s relati vel y spread out is still large in our observations, the LFEs
ound in this study seem to occur on the plate interface, suggesting
hat similar physical processes and mechanisms of shallow tectonic
remors and deep tremors should be considered. 

art/ggaf057_f7.eps
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The specificity of earthquake activity in the Guerrero seismic gap 
makes us further consider the mechanisms of shallo w slo w earth- 
quakes and the factors controlling their occurrence. Generally, fluids 
ma y pla y an auxiliary role by altering the conditions at the plate in- 
terface to enable transient slip events and tremor migration (Shelly 
et al . 2006 ; Cruz-Atienza et al. 2018 ; Warren-Smith et al. 2019 ). 
As mentioned above, a low residual gravity anomaly exists between 
the LFEs near the trench and beneath the coastline, around the 
−101 o meridian (Fig. 1 ). Additionall y, v ariations along the strike of 
the interface geometry and subducted seamounts around the Guer- 
rero seismic gap may control LFEs and tremor activities. As shown 
in Fig. 1 , the distributions of tremors and LFEs in the Guerrero 
seismic gap are correlated with the presence of seamounts and min- 
imums in the residual gravity anomal y. This observ ation has also 
been made in other regions, where negative residual gravity anoma- 
lies are associated with small earthquakes and creep (Bassett & 

Watts 2015a , b ). 
The large positive and negative residual gravity anomalies have 

been interpreted as irregular subducting reliefs that increases pore 
pressure and fracturing and thus decreases coupling to generate 
shallow tremors (Plata-Martinez et al. 2021 ). Ide ( 2010 ) noted that 
deep tremors are influenced by the subduction of inhomogeneous 
structures, such as seamounts. Submarine geomorphic features on 
the active margin along the Mexican Pacific coast result from the 
subduction process ( ̌Cern ý et al. 2020 ). Large seamounts and base- 
ment reliefs cause permanent deformation when they collide with 
the overriding plates in subduction zones (Bangs et al. 2023 ). They 
may redistribute stress and reduce seismic slip. Small-scale fore- 
arc basins and seamounts have been found in the Guerrero seismic 
gap. The subducting topography drives marked spatial variations 
in tectonic loading, sediment consolidation and megathrust stress 
states (Sun et al. 2020 ). The distribution of slow earthquakes be- 
tween OBS9 and OBS7 was clearly located over a large negative 
anomaly of gravity residuals anomaly that coincided with the lo- 
cations of incoming and subducted seamounts (Figs 1 and 7 ). The 
same phenomenon was observed by Tomoda & Fujimoto ( 1981 ) in 
the Japanese subduction zone, where subducted seamounts were dis- 
tributed in areas with ne gativ e gravity anomalies. When seamounts 
subduct, the y leav e behind a trail of soft sediments along the plate 
interface. Sediment patches help gradually release tectonic pressure 
during slow-slip earthquakes (Bangs et al. 2023 ). 

The occurrence of tectonic tremors and shallow LFEs exhibited 
typical episodic features in the Guerrero seismic gap (Fig. 8 ). We ob- 
served three significant bursts of LFE occurrences in 2017 Novem- 
ber, 2018 Febr uar y and May (Fig. 8 a). In general, tectonic tremors 
and LFEs occur episodically in temporal distributions, such as in 
Nankai, Cascadia, and Parkfield (Bostock et al . 2015 ; Shelly 2017 ; 
Kato & Nakagawa 2020 ).In contrast, small ordinary earthquakes 
are not characterized by such regularities in space and time, ex- 
cept for repeating earthquakes (Nadeau & Johnson 1998 ). Shallow 

tremors in the Guerrero seismic gap show episodic characteristics 
(Plata-Martinez et al. 2021 ), and the LFE are roughly distributed 
around the tremor, which can also be reflected in the tremor being 
composed of a series of LFEs (Shelly et al. 2007 ) (Fig. 1 ). This pat- 
tern bears a striking resemblance to the model of slow earthquakes 
in subduction zones summarized by Ito et al. ( 2007 ). 

Around the Guerrero area, one evolution of the aseismic slip is 
in a northerly direction (Cruz-Atienza et al. 2021 ). At the same 
time, the aseismic slip re gion ov erlapped to some e xtent with the 
previous seismic rupture region. The area of overlap was the location 
where the LFEs numbered ID02, ID07 and ID12 were present (Fig. 
S7 , Suppor ting Infor mation). Fig. 8 (b) shows the concentration of 
tremor occurrences near the trench in 2018 Febr uar y. The temporal 
distribution of tremors suggests a southeast migration subparallel 
to the subduction zone axis (Figs 8 b and c) along the along-strike 
transition zone bounding the seismic gap. In the diffusion model 
of slow earthquakes, the front location x and time t are typically 
related by the equation x ∝ 

√ 

t , more specially, this relationship 
can be expressed as x = 

√ 

Dt , where D is the diffusion coefficient, 
within the range of dif fusion coef ficients b y pre vious LFEs study 
(Kato & Nakagawa 2020 ) and tectonic tremors (Ide 2010 ; Ando 
et al. 2012 ). The migration of the tremors is shown in Fig. 8 (c). 
Based on the diffusion equation of slow earthquakes, we calculated 
the coefficient D to be 1.0 × 10 4 m 

2 s −1 . It is similar with Kato 
& Nakagawa ( 2020 ). The diffusion coefficient can quantify the 
rate at which this slip or tremor signal expands spatially. A high 
dif fusion coef ficient suggests that the slip or tremor is propagating 
rapidly over a large area, while a lower value indicates slo wer , more 
localized spreading. 

5  C O N C LU S I O N  

This study analysed continuous seafloor seismic data in the Guerrero 
seismic gap from 2017–2019. We employed the envelope cross- 
correlation method to detect both long- and short-duration tremors 
and identified unreported tremors offshore the seismic gap. This 
facilitated the subsequent detection of LFEs also offshore, which 
were first discovered in this study. The LFE signals were curated 
by visual inspection within the tremor catalogue and further refined 
b y w aveform stacking in order to enhance the signal-to-noise ratio. 
Robust templates have been developed through iterative stacking 
and processing, enabling increased LFE detection via a template- 
matching strategy. 

637 tectonic tremors and 205 LFEs have been successfully identi- 
fied. The spatial and temporal clustering of these events aligned with 
the episodic nature of slow earthquakes. Notably, tectonic tremors 
were primarily detected near the trench, with significant activity ob- 
served at specific times, indicating southeastward migration parallel 
to the trench. Such tremor migration around the −101 o meridian, 
which delineates the western end of the seismic gap, may reveal an 
along-strike plate interface transition zone preventing most of the 
large earthquakes to penetrate the gap from the adjacent segment. 
The LFEs were distributed close to and within the trench. The shal- 
low LFEs did not al wa ys coincide with tremor acti vity, particularl y 
near the trench. 

Although initiall y acti ve, tectonic tremors showed reduced activ- 
ity over the subsequent two years, in contrast to other areas where 
activity remained stable. The spatial distribution of tectonic tremors 
as well as LFEs along the plate interface, indicates a shallow, trench- 
parallel transition zone from eastern creep to western lock, differing 
from the patterns observed in both the updip and downdip segments 
in other regions, such as the Nankai and Cascadia subduction zones. 
Notably, the occurrence of these seismic events correlates with geo- 
logical features, such as seamounts and residual gravity anomalies, 
which appear to influence or even control slow earthquake mecha- 
nisms by altering the conditions on the plate interface. 
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Figure 8. Panel (a) shows the cumulative number of the LFEs and daily LFEs count. The epicentre of different LFEs ID in Fig. S7 (Supporting Information). 
Panels (b) and (c) show the spatial and temporal migration of tremors in a selected period. The points that don’t follow the colour bar gradient in panel (b) are 
tremors outside panel (c), while the points that change with the colour bar are tremors within panel (c). 
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S U P P O RT I N G  I N F O R M AT I O N  

Supplementary data are available at GJIRAS online. 

Figure S1. One-dimensional velocity model beneath the subsurface 
structure we assumed. 
Figure S2. Histogram of the tremor depth. The distribution of 
tremor depth is mainly around 10 km. 
Figure S3. Workflow of the matched filter detecting. 
Figure S4. One LFE within tremor shown on the horizontal and 
vertical components. 
Figure S5. The initial location of those LFE candidate within 
tremors. 
Figure S6. The number of tremor distributions, the colour of each 
block represents the number of tremors the block contains. 
Figure S7. The epicentre of different LFEs ID in Fig. 8 (a). 

Please note: Oxford University Press is not responsible for the con- 
tent or functionality of any supporting materials supplied by the 
authors. Any queries (other than missing material) should be di- 
rected to the corresponding author for the paper. 

DATA  AVA I L A B I L I T Y  

We use Python toolbox ‘ObsPy’ (Beyreuther et al . 2010 ) and Seis- 
mic Analysis Code (SAC; Goldstein & Snoke 2005 ) to process 
seismic data. We opened the LFE and tremor catalogue in the Sup- 
por ting Infor mation. The Code is available on request. Onshore 
data is available from SSN at: www.ssn.unam.mx . Ocean-bottom 

seismometer data from the SATREPS-UNAM project are subject to 
policies on restricted access. We used Generic Mapping Tools (Wes- 
sel et al . 2019 ), ‘Matplotlib’ (Hunter 2007 ) package and PyGMT 

(Uieda et al. 2021 ) to produce the figures. 
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j örleifsd óttir , V. , Singh, S. & Husker, A., 2016. Differences in epicentral
location of Mexican earthquakes between local and global catalogs: an
update, Geofis. Int., 55 (1), 79–93. https://doi.org/10.22201/igeof .00167
169p.2016.55.1.1713 . 

unter , J .D . , 2007. Matplotlib: a 2D graphics environment, Comput. Sci.
Eng., 9 (03), 90–95. 

usker , A. , Frank, W.B., Gonzalez, G., A vila, L., Kostoglodov , V. &
Kazachkina, E. 2019. Characteristic tectonic tremor activity observed
over multiple slow slip cycles in the Mexican subduction zone, J. Geo-
phys. Res. Solid Earth, 124 (1), 599–608. 

usker , A.L. , Kostoglodov, V., Cruz-Atienza, V.M., Legrand, D., Shapiro,
N.M., Payero, J.S., Campillo, M. & Huesca-P érez, E., 2012. Temporal
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