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2Instituto de Geofı́sica, Universidad Nacional Autónoma de México, Circuito de la, Investigación Cientı́fica s/n, C.U., Coyoacán, 04150 CDMX, Mexico
3Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Accepted 2021 April 15. Received 2021 April 14; in original form 2020 July 1

S U M M A R Y
To shed light on the prevalently slow, aseismic slip interaction between tectonic plates, we
developed a new static slip inversion strategy, the ELADIN (ELastostatic ADjoint INversion)
method, that uses the adjoint elastostatic equations to compute the gradient of the cost function.
ELADIN is a 2-step inversion algorithm to efficiently handle plausible slip constraints. First
it finds the slip that best explains the data without any constraint, and then refines the solution
by imposing the constraints through a Gradient Projection Method. To obtain a self-similar,
physically consistent slip distribution that accounts for sparsity and uncertainty in the data,
ELADIN reduces the model space by using a von Karman regularization function that controls
the wavenumber content of the solution, and weights the observations according to their
covariance using the data precision matrix. Since crustal deformation is the result of different
concomitant interactions at the plate interface, ELADIN simultaneously determines the regions
of the interface subject to both stressing (i.e. coupling) and relaxing slip regimes. For estimating
the resolution, we introduce a mobile checkerboard analysis that allows to determine lower-
bound fault resolution zones for an expected slip-patch size and a given stations array. We
systematically test ELADIN with synthetic inversions along the whole Mexican subduction
zone and use it to invert the 2006 Guerrero Slow Slip Event (SSE), which is one of the most
studied SSEs in Mexico. Since only 12 GPS stations recorded the event, careful regularization
is thus required to achieve reliable solutions. We compared our preferred slip solution with two
previously published models and found that our solution retains their most reliable features.
In addition, although all three SSE models predict an upward slip penetration invading the
seismogenic zone of the Guerrero seismic gap, our resolution analysis indicates that this
penetration might not be a reliable feature of the 2006 SSE.
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1 I N T RO D U C T I O N

An elegant and powerful mean to solve geophysical inverse problems is the adjoint method (AM) since it provides a robust theoretical
framework for constrained optimization problems. Given an objective function, C, measuring the difference between data and a model
prediction (i.e. a forward problem), to determine the model parameters that minimize C, the AM allows computing efficiently the derivative
of C with respect to the parameters by combining the forward problem and the solution of an adjoint equation (i.e. of an adjoint problem,
Tarantola 1984; Gauthier et al. 1986; Tromp et al. 2005; Fichtner et al. 2006). Thus, the inverse problem can be solved by using any
optimization method that exploits that derivative to find the minimum of C. The AM has been successfully used to solve full-waveform
inverse problems in seismology, either to determine the elastic properties of the earth (Tromp et al. 2005; Askan et al. 2007; Fichtner et al.
2010; Krischer et al. 2018) or the kinematic history of earthquake sources (Sánchez-Reyes et al. 2018; Somala et al. 2018). For geodetic data,
Kano et al. (2015) used the AM to estimate frictional parameters during the afterslip of an earthquake.

The long-term deformation of the Earth’s crust close to the tectonic boundaries may be often explained in terms of the aseismic slip
occurring between the plates. Depending on whether the interplate slip rate is larger or smaller than the relative plate motion, the plate interface
experiences a relaxing slow slip event (SSE, Dragert et al. 2001) or a stressing coupling regime (i.e. creeping or full locking, Simpson et al.
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1988), respectively. In the first case, a slip dislocation may predict the associated displacement field. In the later, the crustal deformation
could be explained through the backslip formulation (Savage 1983). The surface displacement is the summation of all contributions from the
interface points experiencing either a coupling regime or an SSE. In this work, to determine the plate interface aseismic slip history in these
terms from continuous GPS (or any other geodetic) measurements, we introduce and solve a constrained optimization problem based on the
adjoint elastostatic equations with a Tikhonov regularization term (Calvetti et al. 2000; Asnaashari et al. 2013) and a projection operator
built with the von Karman autocorrelation function (Mai & Beroza 2002; Amey et al. 2018). The new method, called ELADIN (ELastostatic
ADjoint INversion), simultaneously determines the distribution of the interplate coupling and slow slip from surface displacements.

In those cases where the crustal strain field corresponds to a quasi-static seismotectonic process, the surface displacement is linearly
related to the fault slip. However, determining the slip over an extended buried fault from such displacement remains an ill-posed problem.
Underdetermination of the model parameters, that is the slip distribution, arises from the sparse sampling of the displacement field and the
rapidly decreasing sensitivity of displacement to slip with distance from the fault (Nocquet 2018). One rigorous framework to overcome
this problem and to determine the uncertainty of such an inverse problem solution are the Bayesian approaches. The incorporation of prior
information through probability density functions (pdf) allows determining the posterior model covariance and pdfs, as well as imposing
model restrictions by means of truncated prior pdfs (Tarantola & Valette 1982; Yabuki & Matsu’Ura 1992; Nocquet et al. 2014; Nishimura
et al. 2004; Minson et al. 2013; Amey et al. 2018; Nocquet 2018). For instance, Minson et al. (2013) samples the posterior pdf using a Monte
Carlo Markov Chain that enables to apply non-negativity constraints and any prior pdf. Dettmer et al. (2014) even showed how the optimal
slip parametrization can be estimated from the data. Although Bayesian approaches are widely used and powerful, one important limitation
that most have is the large computational load required to determine stochastically the posterior pdfs and thus the uncertainty of the model
parameters. Yet, a proper selection of the prior pdf can overcome these issues making the sampling of the posterior pdf much faster through
analytical or semi-analytical evaluations (Nocquet 2018; Benavente et al. 2019).

An alternative to solve the elastostatic inverse problem is by introducing model regularizations and physically consistent restrictions. To
prevent unrealistic oscillatory slip distributions, the most common regularization approach is to smooth the solution by applying a Laplacian
operator (i.e. penalizing the second derivative of the slip, McCaffrey et al. 2007; Wallace & Beavan 2010). Usually, the hyperparameter
controlling the smoothing is chosen subjectively by finding a satisfactory compromise between the data fit and the smoothing of the slip
distribution. One common strategy to determine the hyperparameter is through an L-curve analysis that looks for an optimal value that
keeps the data fitted with the strongest possible regularization (Radiguet et al. 2011). From a statistical approach, the hyperparameter can be
determined using objective methods such as the Akaike Bayesian Information criterion (ABIC, Yabuki & Matsu’Ura 1992; Miyazaki et al.
2006) or fully Bayesian techniques (Fukuda & Johnson 2008). Although the Laplacian operator reduces unphysical and rough slip solutions
(and thus unreliable large stress drops), this is not the most convenient regularization strategy to preserve the real nature of the fault slip, which
has a self-similar spectral signature (Mai & Beroza 2002). Recently, Amey et al. (2018) proposed to use the von Karman autocorrelation
function to build the model covariance matrix such that the penalization term should lead to self-similar slow-slip solutions.

When designing ELADIN, our goal was to introduce a regularization approach that would preserve the above-mentioned nature of
faulting and, at the same time, allow a spectral control of the problem solution that guaranties a given resolution criterion. To this purpose
we use a von Karman autocorrelation function that reduces the model space to a domain where the wavenumber content of all possible
solutions satisfies a minimum slip characteristic length previously determined through robust resolution tests. In our approach, we do not
build a model covariance matrix, as proposed by Amey et al. (2018), but we convolve the von Karman correlation function with the slip to
project it into a reduced model space. We illustrate the capabilities of the method by inverting GPS data for the 2006 Guerrero SSE, which
has been widely investigated in the literature, and describe several benefits that our solution has in comparison with some previous models.
Systematic inversion of GPS data along the entire Mexican subduction zone applying the ELADIN method is presented in an associated work
(Cruz-Atienza et al. 2021) where we analyzed the aseismic slip history of the plate interface between 2017 and 2019, and its interaction with
large earthquakes.

2 T H E E L A D I N M E T H O D

In this section, we first introduce the forward model that allows us to compute the synthetic displacements produced by a slip over the fault.
Then, we formulate the inverse problem in a constrained optimization framework, reducing the solution space to control its spectral content
with a von Karman autocorrelation function. We also include a Tikhonov term to penalize regions where slip is not expected to occur and to
impose slip magnitude constraints. Finally, we present a 2-step algorithm that first solves the inverse problem without slip constraints using
the adjoint equations for the gradient computation, and then projects the resulting solution into the feasible solution space which is later
improved by means of a Gradient Projection method that imposes the desired physically consistent slip constraints.

2.1 Forward model

The elastostatic representation theorem for the displacement field, u(x), due to a slip, d(ξ ), produced at a fault, �, is

u j (x) =
∫

�

Tk(Si j (ξ, x), n̂(ξ ))dk(ξ )d�, i, j, k ∈ {x, y, z}, (1)
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where Ti( ·, ·) is the i-component of the traction vector on the fault computed through the Somigliana tensor, Si j (ξ, x), and the fault normal
vector n̂(ξ ). It is a common practice to compute the Somigliana tensor considering a half-space homogeneous medium. However, Williams &
Wallace (2015) have shown that neglecting the medium heterogeneities can result in slip overestimates of ∼20 per cent for deeper events, and
underestimates up to 42 per cent for shallow earthquakes. For this reason, we adopted the AXITRA method (Bouchon & Aki 1977; Coutant
1990) for the calculation of the Somigiliana tensor, which allows us to consider heterogeneous layered media.

If the traction and the slip are projected along the plate convergence direction, c-, and the complementary perpendicular direction,
p—direction, eq. (1) can be written in matrix form as⎡
⎢⎣u1(x)

u2(x)
u3(x)

⎤
⎥⎦ =

∫
�

⎡
⎢⎣Tp(Si1(ξ, x), n̂(ξ )) Tc(Si1(ξ, x), n̂(ξ ))

Tp(Si2(ξ, x), n̂(ξ )) Tc(Si2(ξ, x), n̂(ξ ))
Tp(Si3(ξ, x), n̂(ξ )) Tc(Si3(ξ, x), n̂(ξ ))

⎤
⎥⎦

[
dp(ξ )
dc(ξ )

]
d�, i ∈ {x, y, z}

u(x) =
∫

�

T (ξ ; x)d(ξ )d�. (2)

Then, the fault is discretized in M subfaults such that the integral can be approximated as

u(x) �
M subfaults∑

i=1

Ai T (ξ i ; x)d(ξ i ), (3)

where Ai is the i—subfault area. Finally, if we want to compute the displacement for N receivers, we can order the displacements in a single
vector such that the entire computation is reduced to a simple matrix–vector product as⎡
⎢⎢⎢⎢⎣

u(x1)
u(x2)

...
u(x N )

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

A1T (ξ 1; x1) A2T (ξ 2; x1) · · · AM T (ξ M ; x1)

A1T (ξ 1; x2) A2T (ξ 2; x2) · · · AM T (ξ M ; x2)
...

...
. . .

...
A1T (ξ 1; x N ) A2T (ξ 2; x N ) · · · AM T (ξ M ; x N )

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

d(ξ 1)
d(ξ 2)

...
d(ξ M )

⎤
⎥⎥⎥⎥⎦ ,

U = T D, (4)

where U ∈ R
3N , T ∈ R

3N×2M and D ∈ R
2M .

2.2 Inverse problem

The inverse problem consists in recovering the slip at each subfault of a known interface that produces displacements observed at geodetic
stations. Due to the linearity of the forward model, eq. (4), we construct a quadratic cost function to formulate a convex inverse problem as

C(D) = 1

2

[
U − U o

]T [
U − U o

]
, subject to U = T D, (5)

where U o ∈ R
3N are the displacements observed at the N geodetic stations stored in a single ordered vector, as we did with U in eq. (4).

Since real data are sparse and may have significant noise, the inverse problem (5) is ill-conditioned. In order to face these issues, a problem
regularization and realistic physical constraints are introduced next.

2.2.1 Problem regularization

Most often, the problem regularization is done by means of two elements: a model precision matrix and/or Tikhonov terms. The model
precision matrix is the inverse of the model covariance matrix which controls how sensitive is the slip in a given subfault to the slip on
its neighbor subfaults. Radiguet et al. (2011) proposed a subfault correlation that follows a decreasing exponential function according to a
defined correlation length. The problem we found with this approach is that the precision matrix for different correlation lengths does not
have significantly different effects due to the fast decay of that function. For different types of correlation functions we tested, for example
Gaussian and linear correlation functions, the model covariance matrix starts to become ill conditioned when the subfaults size becomes
smaller than the correlation length. So, the precision matrices that could be computed were useless.

Tikhonov terms added to the cost function are used to penalize the roughness of the solution. Generally, the penalization is applied to
the first or second spatial derivatives of the slip. However, when penalizing the derivatives, the norm of the slip solution is reduced as well.
Besides, these two alternatives involve hyperparameters that need to be optimally determined because they control the tradeoff between the
misfit of the data and the strength of the regularization.

These inconveniences lead us to propose a new approach that reduces the solution space so that the wavenumber content of the solution
(i.e. the minimum characteristic length of the slip patches) can be controlled. The main idea is to apply a filter, projection operator, F , to the
slip D. Then, the cost function (5) can be formulated as

C(D) = 1

2

[
U − U o

]T
C−1

d

[
U − U o

]
, subject to U = T F D, (6)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/2/1187/6246430 by U

N
AM

 Instituto de Investigaciones Biom
édicas user on 06 June 2021



1190 J. Tago et al.

where C
d

is the data covariance matrix to weight the data according to their quality or proximity to the slip.
Recently, Amey et al. (2018) build a model covariance matrix with the von Karman autocorrelation function and showed that it is a good

strategy to guarantee the slip self-similar properties (Mai & Beroza 2002) that cannot be achieved with a common Laplace regularization.
The spatial von Karman autocorrelation function is

vk(r ) = r H K H (r )

(1e−10)H K H (1e−10)
, (7)

where H is the Hurst exponent, KH( · ) is the modified Bessel function of second kind of order H, r is the correlation length that can be
computed as

r =
√

s2

a2
s

+ d2

a2
d

, (8)

where (s, d) are the coordinates in the along-strike and along-dip directions on the fault, and (as, ad) are the correlation lengths in those
directions. Instead of using the von Karman autocorrelation function, eq. (7), to build a model covariance matrix, we propose to construct
a linear operator K which, convolved with the slip D, controls the wavenumber content of the output function along both the strike and dip
component. This convolution can be formulated as a matrix-vector product where the projection matrix, F , applies the convolution of the
linear operator K to the slip, D, as was done in eq. (6) (see Appendix A for further details). That is, F projects the slip, D, into a reduced
solution space bounded by a chosen wavenumber.

2.2.2 Slip constraints

The model regularization we introduced guarantees that an optimal slip solution can be found. However, this solution may violate some
expected physically consistent restrictions, such as the full-coupling regime limit or slip rakes consistent with the plate convergence direction.
Thus, slip constraints need to be imposed according to the available geological information. The cost function (6) can then be reformulated as

C(D) = 1

2

[
U − U o

]T
C−1

d

[
U − U o

] + β

2

[
W (F D − D p)

]T [
W (F D − D p)

]
, (9)

subject to U = T F D, (10)

D j,l
i ≤ (F D)i ≤ D j,u

i , i ∈ {p, c} ∧ j ∈ {SSE, Coupling} regime, (11)

where β is a hyperparameter, W is a model-weight diagonal matrix that penalizes the slip per subfaults, D p is an a priori slip solution

and (D j,l
i , D j,u

i ) are the lower and upper limits of the i-component of the slip in the j-regime. The slip is either in the SSE regime if its
c-component is opposite to the plate convergence direction or in the coupling regime otherwise. If we have an a priori slip solution, D p ,
we can force the solution to be as close as possible to it by accepting only model changes that improve the data fit. In that case, the weight
matrix should be the identity matrix, W = I . If no a priori slip information is available, we simply set D p = 0 and, to obtain the minimum
norm solution, we make again W = I . Since we are not interested in getting the minimum norm solution in this study, we thus set W = 0
everywhere except in the subfaults where we assume free slip (i.e. no coupling or SSE regime). The bigger the weighting value, the bigger is
the subfaults slip penalization. The hyperparameter β controls the tradeoff between the fit of the data and the Tikhonov regularization term.
Its value only guarantees that the solution does not contain significant slip in the penalized regions. On the other hand, if an a priori slip
solution (D p �= 0, W = I ) is used or a minimal norm solution (D p = 0, W = I ) is desired, then β must be determined following an optimal
strategy as an L-curve analysis (e.g. Radiguet et al. (2011)) or the ABIC criterion (e.g. Miyazaki et al. 2006).

2.2.3 Gradient computation: AM

To solve the inequality-constrained inverse problem (eqs 9–11), first we address the gradient of the cost function without considering the
inequality constraints, eq. (11). In the framework of constrained inverse problems, the Lagrangian can be computed as

L(D, U , λ) = C(D) + λT
[
U − T F D

]
, (12)

where λ are the Lagrange multipliers. The Lagrangian total derivative with respect to the slip, D, is

DDL = ∇DL + ∇UL · ∇DU + ∇λL · ∇Dλ. (13)

To simplify the computation of the gradient, we follow the adjoint method strategy (Fichtner et al. 2006). We start forcing ∇λL = 0 by solving
a forward model Ũ = T F D. Then, we use the predicted displacement, Ũ , to compute the adjoint source as λ̃ = C−1

d

[
U o − Ũ

]
which implies

∇UL = 0. As a result, the Lagrangian total derivative is the solution of the adjoint problem plus a term related with the slip constraints as

DDL = ∇DL

= −(T F)T λ̃ + β
[

F T W T W
(

F D − D p

)]
. (14)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/2/1187/6246430 by U

N
AM

 Instituto de Investigaciones Biom
édicas user on 06 June 2021



Adjoint slip inversion 1191

Once the gradient of the cost function has been evaluated, we can follow any numerical optimization strategy to find the set of model
parameters that minimize that function.

2.2.4 Gradient projection method

To avoid dealing with inequality constraints, it is often convenient to bring the current solution into the physically consistent space after each
iteration of the inversion procedure. However, for the slip inversion we realized that such procedure is not convenient because the gradient
direction is often orthogonal to the slip constraints making the algorithm to stop. For large scale problems with lower and upper bounds
for the variables, Nocedal & Wright (2006) propose the gradient projection method (GPM) as an efficient strategy to deal with inequality
restrictions. The GPM consists of two stages per iteration. In the first stage, the steepest descent direction is followed until a bound, that is
the limit of an inequality constraint, is encountered and needs to be bent to stay feasible. Then, along the resulting piecewise-linear path, a
local minimizer, called Cauchy point, is found (see Appendix B for details). For the second stage, a new optimal point is searched in the face
of the feasible box on which the Cauchy point lies, that is those slip constraints that have reached a limit are changed to equality constraints.
It implies that those inequality constraints are now part of the active set. This subproblem is usually not solved exactly since the remaining
inequality constraints are usually not considered.

For the slip inversion, we do not follow exactly the GPM to avoid the subproblem of the second stage. This is because we expect that many
subfaults in the coupling regime achieve its slip limit and that the number of iterations required was difficult to define. So, after computing the
Cauchy point, we directly take it as a new iteration point where the gradient is computed again. Thus, our approach is essentially a steepest
descent algorithm that respects the inequality constraints. Our GPM version is slow, so to achieve a fast convergence we then propose an
algorithm that is explained in the next section.

2.2.5 2-step inversion algorithm

In order to increase the convergence speed, we developed a 2-step inversion algorithm. The purpose of the first step is to get an optimal
initial solution for the GPM. In this step, we solve the unconstrained slip inverse problem using the adjoint method to compute the gradient
of the cost function. Once the gradient is obtained, any iterative optimization algorithm can be used to find the optimal solution, for example
the Conjugate Gradient method, the l-BFGS method, etc. In this work, we use the SEISCOPE optimization toolbox, which is a friendly and
powerful optimization library developed in FORTRAN 90 with many available optimization strategies (Métivier & Brossier 2016). After
some performance trials, we decided to use the l-BFGS method. In the second step, we first project the solution into the physically consistent
domain and then we solve the constrained slip inverse problem with a slight modification of the GPM. As explained above, after computing
the Cauchy point, instead of reformulating the inverse problem according to the new active set incorporating some inequality constraints, we
use it as the new iteration of the slip. This is not a fast strategy, but since we start from a slip distribution that is close to the optimal solution,
only a few iterations of the GMP are required (about 200). The pseudcode is described in Algorithm 1.

3 R E S O LU T I O N

Resolution of our inverse problem essentially depends on the geometry configuration of the problem. This is, on the fault geometry and the
distribution of observation sites, that is on the displacement field sampling and its sensitivity to dislocations at the fault. For a given problem
discretization, synthetic inversions are a powerful mean to quantify how well an inverse method performs. If well-conceived, these tests may
lead to very useful resolution information under realistic conditions, that is if they include data uncertainties and minimize the dependence on
the target model. In the following, we present comprehensive exercises where the restitution of the target model is systematically quantified.
To this purpose, for a given slip solution we define the restitution index, ri as

ri = 1 −
∣∣∣∣dT

i − d I
i

dT
i

∣∣∣∣ , (15)

where dT
i and d I

i are the slip of the target and inverted models at the i-subfault, respectively. The slip component used to determine the
restitution index can be either the plate convergence or its perpendicular direction. We also introduce the average restitution index, ari, which
is the mean of the restitution indexes over the M subfaults that discretize the 3-D subduction interface between the Cocos and the North
American plates in central Mexico (Cruz-Atienza et al. 2021). ri is one if the inverted slip equals the target slip and zero if the difference
between them equals the target value. We have discretized the plate interface with subfaults whose surface projection is a square of 10 ×
10 km2. To compute the static traction vectors along the interface due to single body forces at the stations, eq. (1), we assumed a four-layer 1-D
structure suitable for the region (Campillo et al. 1996) and used the AXITRA method (Bouchon & Aki 1977; Coutant 1990). For the analysis,
we have considered all available permanent GPS stations (66 sites) in central Mexico (Cruz-Atienza et al. 2021) and 5 ocean bottom pressure
gauges (OBP) deployed in the Guerrero seismic gap since November 2017 (Cruz-Atienza et al. 2018), where only the vertical displacements
were considered.
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1192 J. Tago et al.

Algorithm 1: 2-Step Algorithm

1st Step: Unconstrained slip inverse problem (Adjoint method)
Data: GPS Data
Initialize the slip D0 = 0;
while Convergence is not achieved do

(i) Compute a forward problem

U k = T F Dk .

(ii) Compute the adjoint source

λk = C−1

d

[
U o − U k

]
.

(iii) Compute the adjoint problem to get the gradient

∇DL = −(T F)T λk + β
[

F T W T W
(

F Dk − D p

)]
(iv) With the gradient use any iterative optimization algorithm to find an update step �Dk

(v) Update the slip

Dk+1 = Dk + �Dk .

end

2nd Step: Constrained slip inverse problem (Gradient Projection Method)
Data: Optimal solution of 1st step, D∗

Project D∗ into the physically-consistent domain to get the initial solution D0;
while Convergence is not achieved do

(i) From Dk compute the Cauchy point Dc
k (details in Appendix B)

(ii) Update the slip

Dk+1 = Dc
k .

end

3.1 Mobile checkerboard

A widely used strategy to quantify an inverse problem resolution is the checkerboard (CB) test. However, this test is intrinsically linked to
the arbitrary choice of the target CB model, which means to the CB unit size, its positions and the absolute model-properties periodically
attributed. For this reason, we performed comprehensive mobile checkerboard (M-CB) tests for different patch sizes (PS). Based on previous
GPS data inversions in central Mexico (Radiguet et al. 2012; Cruz-Atienza et al. 2021), we set up the checkerboards by alternating patches
with 30 cm of slip (a typical value for SSEs in the region) and –10 cm of back slip (a cumulative value of slip deficit over 20 months in a fully
coupled regime assuming a plate convergence rate of 6 cm yr–1). It should be noted that this type of checkerboard tests, where the resolution
of the slip and coupling can be evaluated simultaneously, is not common practice because most of the available inversion methods can only
handle these two quantities separately.

Fig. 1 shows the inversion results for three CBs with different PS, [60, 80 and 100 km], and the same correlation length, L = 20 km.
As we shall see, this value of L maximizes the average restitution index (ari) in these cases where no slip restrictions were imposed (i.e. no
gradient projection method was used) and no data uncertainly was considered (i.e. the precision matrix was the identity matrix). Although
the data fit is almost perfect in all three cases, it is clear that the target model restitution strongly depends on PS, the slip model characteristic
length. As expected, the larger PS the better is the restitution. This is quantified in the right column, where the restitution index, r, is displayed
for all subfaults. Besides, two more conclusions stand out: (1) restitution is better in SSE patches than in coupling patches and (2) the inversion
scheme cannot resolve the unrealistic slip discontinuity along the boundary of the CB patches. Both conclusions were expected because the
backslip is one third of the positive slip, and because of both the imposed model regularization and the limited sensitivity of displacements
with distance to the fault.

Previous results do not provide a reliable estimate of the problem resolution when facing real data because in that case we do not know
the actual slip producing the observed displacements. A M-CB test consists in multiple CB inversions so that all possible model positions are
explored. Results from the test may be translated into the mobile checkerboard restitution index (mcri) per subfault, which corresponds to the
average of the r values estimated for each inversion. The mcri is a quantity that eliminates the resolution dependence on the CB configuration.
For a given PS, we performed 6 M-CB tests, one without regularization, L = 0 km and the rest with different correlation lengths, L = 10, 20,
30, 40 and 50 km. Five different PS of 40, 60, 80, 100 and 120 km were considered so each case required a different number of CB inversions
to complete the associated M-CB test. Since the horizontal projection of subfaults is 10 km per side and we shifted the CBs with a 20 km
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Adjoint slip inversion 1193

Figure 1. Checkerboard inversions for PS of (a) 60, (b) 80 and (c) 100 km, and correlation length, L, of 20 km. The inverted slip along the plate convergence
direction, c-slip, with the surface displacement fits (left column) and the associated restitution index (right column) are displayed on the 3-D plate interface
(grey contours). Green triangles are the GPS stations.

jump along the dip and strike directions to complete all possible configurations, the total number of CB inversions in a M-CB test for an given
PS in km is (PS/10)2.

Fig. 2 presents an overview of three M-CB tests for PS of 60, 80 and 100 km (those considered in Fig. 1). As expected, in the top row,
we see that the mcri increases with the PS, reaching values close to 0.8 in some regions close to the coast where there is the largest density
of stations, and where the plate interface is closest to them. In deeper interface regions, between 30 and 50 km depth, mcri falls up to about
0.2 for PS of 60 km and over 0.5 for PS of 100 km along the whole subductions zone. As clearly seen in the right-hand column of Fig. 1,
the unrealistic slip discontinuities along the patches edges makes the restitution very difficult, so we can consider the mcri maps of Fig. 2
(first row) as a lower resolution bound. Isocontours of these maps for different PSs and optimal correlation lengths thus define reliable fault
regions where the inversions should resolve the unknown target slip above the mcri isocontour value (e.g. above 40 per cent of the target slip
if mcri equals 0.4).

The M-CB tests also allow to identify the optimum correlation length per subfault that maximizes the ari. This is shown in the second
row of Fig. 2, where we find that (1) the optimal L decreases for all PSs where the fault is well illuminated (i.e. in regions with high density
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1194 J. Tago et al.

Figure 2. M-CB tests for PS of (a) 60, (b) 80 and (c) 100 km and correlation length, L, of 20 km. Distributions of mcri (first row), the optimal correlation
length (second row) and the multiscale assembly of the restitution index (computed from the assembly of the best slip solutions for the CBs shown in Fig. 1),
all of them computed with the c-slips inverted and displayed on the 3-D plate interface (gray contours). Green triangles are the GPS stations.

of stations relative to the interface depth) and that (2) the optimal L increases as the PS decreases in places with sparse stations coverage, as
it happens offshore near the subduction trench, for instance. Based on this multiscale analysis we built optimal solutions for the same CBs of
Fig. 1 by integrating the best inverted slip per subfault that corresponds to the associated optimal correlation length. Resolution improvements
for the multiscale models ranged between 10 and 20 per cent as shown in the third row of the figure (compare with the right column of Fig. 1).
However, something unexpected came out when comparing whole-interface average mcri values for all M-CB tests. Fig. 3 shows this metric
along with the average data-misfit error (i.e. the L2 norm of the difference between target and inverted displacements) for all tested PSs as
a function of L, the correlation length. Although the spatial distribution of the optimal L depends on the slip characteristic length PS, the
best average regularization was the same for all PSs and equal to 20 km. Such independency of the average mcri on L for different PSs is
determined by the unrealistic slip jumps of the checkerboards slip values that sweep the whole interface no matter the PS. However, as we
shall see latter, the optimal regularization length actually increases with PS if both the data uncertainty (the precision matrix) and the slip
restrictions (the GPM step) are considered in the inversions. What is remarkable and was indeed expected in Fig. 3 is that (1) the maximum
restitution values increased with PS, (2) the restitution function for a given PS displayed a concave behavior and (3) the best fitting models
are not the best solutions (i.e. those with the highest restitution). Regularization is thus critical to achieve physically acceptable and reliable
slip models.

3.2 Gaussian slip

The analysis of the previous section did not consider the uncertainty in geodetic measurements that may be significantly large, especially in the
vertical component where atmospheric noise and non-tectonic physical signals are particularly present. Nor did the analysis incorporate slip
restrictions that are essential to guaranty tectonic expectations in our slip solutions such as backslip smaller than expected for a full-coupled
interface regime and slip rake angles close to the plate convergence direction. For this reason, we now study three synthetic exercises in which
the target slip corresponds to truncated Gaussian slip distributions (to SSE-like functions) with different spatial supports, surrounded by a
fully coupled plate interface. The associated surface displacements (i.e. the inverted data) are strongly and randomly perturbed according to a
normal probability distribution given by the data variance per component, which we took as 2.1, 2.5 and 5.1 mm in the north, east and vertical
directions, respectively (Radiguet et al. 2011).
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Figure 3. Results from all M-CB tests in terms of the whole-interface average mcri (blue) and the average data-misfit error (red), as a function of the inversions
correlation length L for PS of 40, 60, 80, 100 and 120 km.

Fig. 4 shows the target slip models and both, the associated exact displacements (blue arrows) and the perturbed ones (red arrows). The
data uncertainty is represented by the gray ellipses at the tips of the perturbed vectors, the semiaxes corresponding to the standard deviation
of the normal distribution used to perturb the data per component. The interplate coupling corresponds to 3-months cumulative backslip
assuming a 6 cm yr–1 plate convergence (i.e. 1.5 cm), and the geometry and position of the three Gaussian slip patches were inspired by recent
SSE solutions found in the region (Cruz-Atienza et al. 2021). Please note how large are the perturbations.

Inversions for the three Gaussian slip models were done for both the exact and perturbed data. Each set of data was inverted without
regularization, F = I , and with correlation lengths of 10, 20, 30, 40, 50 and 60 km. In all cases backlip restrictions were applied by means
of the GPM so the interplate coupling could never overcome the value of one. Fig. 5(a) shows some slip solutions for the largest-Gaussian
exact data together with the associated restitution maps. Although the data fit is excellent in all cases, acceptable solutions are only retrieved
when model regularization is applied. For L = 30 km, the ari is above 0.9 so that the slip solution is almost perfect, except along the Gaussian
contour where there is an unrealistic slip discontinuity in the target model (the same situtation as for the checkeboard tests).

When random noise is added to the theoretical observations and the inverse problem is solved by integrating the data uncertainty by
means of the precision matrix, the model regularization becomes even more critical to achieve a reliable solution. This can be seen in Fig. 5(b),
where the restitution is very poor around the Gaussian slip area when no regularization is applied as compared with that for L = 40 km,
where the ari is also above 0.9 and thus the slip solution is surprisingly good. Also astonishing, results for the other two, smaller Gaussian
slip models were very similar (see online Supplementary material, Figs S1 and S2). A summary of the 42 inversions (14 per Gaussian model)
is shown in Fig. 6, where we see that although the data-fitting errors for the noisy inversions are roughly four times larger than those obtained
from the exact data, the ari in all cases is above 0.9 for the best solutions (i.e. for the optimal L) even for the smallest and circular Gaussian
case, which has a slip characteristic length smaller than 80 km centred at 38 km depth (Fig. 4a).

4 T H E 2 0 0 6 G U E R R E RO S S E

During the 20 yr preceding the devastating 2017 Mw 8.2 Tehuantepec earthquake that took place offshore the Oaxaca state, Mexico, long-term
SSEs in Guerrero occurred almost every 4 yr (i.e. six events between 1998 and 2017) and had remarkably large moment magnitudes (Mw
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1196 J. Tago et al.

Figure 4. Slip models along the c-direction on the plate interface (background colours) and the associated model displacement predictions (arrows) for three
Gaussian-like slip patches with different characteristic lengths. Blue and black-solid arrows show the exact surface displacements while red and black-dashed
arrows show the same predictions but stochastically perturbed according to the normal distributions given by the data variance per component.
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Adjoint slip inversion 1197

Figure 5. Synthetic inversion results for the c-slip model shown in Fig. 4(c) from the exact target displacements (panel a) and from the perturbed (noisy)
displacements (panel b). The second row of each panel shows the distribution of the restitution index for the c-slip over the plate interface without regularization
and for different values of the correlation length, L.

>7.5) (Kostoglodov et al. 2003; Radiguet et al. 2012; Cruz-Atienza et al. 2018). After the earthquake, the regional plate-interface SSE
beating has strongly changed so that two other SSEs took place in that state in the next 2 yr (in 2018 and 2019) with much smaller magnitudes
(Mw ∼ 7.0, Cruz-Atienza et al. 2021). Among all Mexican SSEs, the 2006 Guerrero event has been the most investigated despite the poor
GPS instrumentation on that time (Kostoglodov et al. 2010; Vergnolle et al. 2010; Radiguet et al. 2011, 2012; Cavalié et al. 2013; Bekaert
et al. 2015; Villafuerte & Cruz-Atienza 2017). One of its most interesting features is that, unlike adjacent subduction segments, the slow slip
seems to have penetrated the updip seismogenic region of the plate interface up to 15 km depth in the Guerrero seismic gap. In this section
we perform a thorough analysis of the inverse problem resolution for that event and provide what we think are its most reliable features as
compared with previous results reported in the literature.

4.1 Resolution

In previous sections we found that the problem resolution depends on two main parameters: (1) the slip characteristic length (PS) and (2) the
inverse-problem correlation length (L). This is true for a given problem geometry (i.e. for a stations array and plate interface geometry). For
this reason, we can determine fault regions where resolution (i.e. the restitution index) is high enough for a given L and PS, which means that
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1198 J. Tago et al.

Figure 6. Synthetic inversion results for the three Gaussian-like slip functions shown in Fig. 4 in terms of the whole-interface average restitution index, ari,
and average data-misfit error (red) as a function of the inversions correlation length L. Solid lines correspond to the inversions using the exact data while dashed
lines to the inversions with noisy data (see Fig. 4). Note that in all cases the maximum restitutions, ari, are above 0.9.

the inverted slip in those regions is valid within the wavenumber bandwidth associated to the von Karman spectrum for that L. Since only 12
significant GPS stations registered the 2006 SSE, we performed three different M-CB tests considering only the location of these sites and
CB periodic c-slip values of –8 and 25 cm. The tests were done for checkerboard unit lengths (PS) of 80, 100 and 120 km, and for L = 0 (no
regularization), 10, 20, 30, 40, 50 and 60 km. These resolution exercises assumed reasonable backslip and rake angle restrictions so that the
c-slip component ranges within [−8, 32] cm and the angle within [20, −20]◦ with respect to the c-direction, which implies the admissible
range of [−3, 3] cm for the p-slip component.

Plate-interface resolution maps (i.e. for the mcri metric) are shown in Fig. 7 as a function of PS and L. As expected, overall mcri values
increase with PS for a given L. Although less evident, they also increase with L for a given PS up to a certain correlation value. However,
supplementary results not shown reveal that, in the latter case, the high-resolution regions stop expanding for L above 30 km for all three PS
cases. The maps show isocontours for mcri = 0.6, which delineate fault regions where the slip solutions are likely to resolve the actual slip
within 40 per cent error. As explained previously, these maps represent a lower resolution bound because the M-CB tests assume unrealistically
sharp slip discontinuities that strongly penalize the restitution index along the boundaries of the square slip patches (e.g. see Fig. 1). For this
reason, we expect the resolution within the regions to be higher than the mcri isocontours value. Either way, even in the M-CB test for the
maximum PS and L values, the high resolution region does not extend across the whole expected SSE area, as claimed by previous authors
using different inversion techniques (Radiguet et al. 2011). Our resolutions maps represent the key piece allowing us to tell something reliable
(to some point) about the 2006 SSE.

Fig. 8 summaries the results from all M-CB tests in terms of the average mcri and data-misfit L2 error. Although errors are similar for all
slip characteristic lengths PS, the maximum average mcri value increase with PS and follow a concave trajectory with L as previously noted
from Fig. 7. However, unlike the previous M-CB exercises considering all currently available geodetic stations (Figs 2 and 3), the optimal
correlation lengths (i.e. those maximizing the restitution) increase with PS. This remarkable and reasonable result is due to both the slip
restrictions and the sparsity of the stations. It tells us that, depending on the characteristic size of the SSE patch we want to solve best, the
regularization of the problem must be adapted. For instance, if we are interested in SSE patches with a characteristic length of 80 km, then L
= 10 km is the optimal choice. Of course, such small value is detrimental to the extent of the acceptable resolution region, as seen in Fig. 7.
If L = 20 km, then patches with characteristic length of 100 km will be optimally solved in a larger fault region.

4.2 2006 SSE inversions

The next inversions we present were done using the same GPS data as Radiguet et al. (2011). This means that the displacement time-series
were carefully pre-processed (Vergnolle et al. 2010) and then corrected for inter-SSE deformations by subtracting the linear trends from the
period 2003–2005 per station. Thus, the resulting time-series are supposed to show the deviations from the long-term steady motion during
the 2006 Guerrero SSE.

Since the inter-SSE displacement trends per station are significantly different in Guerrero (Radiguet et al. 2012), it is important to
emphasize that the removal of these individual (usually linear) trends from the data for SSE imaging is an incorrect practice for two reasons:
(1) the resulting displacement (or velocity) guesstimates no longer correspond to the initial reference system (e.g. fixed tectonic plate), often
leading to overestimated deformation values and thus unrealistically high SSE moment magnitudes and (2) the non-linear transformation
implied by the corrections removes the common reference frame between GPS stations, which makes the resulting data set not strictly
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Adjoint slip inversion 1199

Figure 7. Plate interface distribution of the mobile checkerboard restitution index (mcri) of the c-slip inverted from M-CB tests corresponding to patch sizes
(PS) of 80, 100 and 120 km and correlation lengths L = 10, 20 and 30 km for the 2006 SSE stations configuration. Black contours correspond to mcri values
of 0.6 (i.e. slip resolution of 60 per cent).

comparable and therefore its inversion meaningless. Either way, for the sake of comparison with previous solutions using this data set, we
have inverted the corrected time-series from January 30 (2006) to January 15 (2007) for four different correlations lengths (L = 10, 20, 30
and 40 km) considering slip restrictions, so that the backslip could not overcome the full-coupling regime in that period and the rake vector
could vary ±20◦ from the c-direction.

Fig. 9 shows the inversion results for two optimal correlation lengths (L = 20 and 30 km). Since the data is almost perfectly explained
in both cases, the preferred solution will depend on both the scale at which we are interested in for interpretations and reasonable physical
considerations. Taking the 1 cm slip contour as the effective SSE area, then the moment magnitude of the 2006 event is consistent for both
inversions and equal to Mw 7.4. For estimating Mw , we considered a typical crustal rigidity μ = 32 × 109 Pa.

As shown in the last section, given the poor GPS coverage during the 2006 SSE, the inverse problem regularization plays a critical
role to have some confidence in the slip solutions. In the absence of resolution analysis, it is difficult to justify any conclusion, especially
between distant stations. For instance, the absence of data along most of the northwest Guerrero seismic gap (NW-GGap, i.e. between ZIHP
and CAYA, UNAM 2015) and the Guerrero Costa Chica (i.e. between CPDP and PINO) is unfortunate and obliges us to be cautious in the
interpretations. Previous investigations concluded that SSEs behave differently between these two Guerrero subduction segments so that,
unlike the Costa Chica, the slow slip in the NW-GGap reaches the updip seismogenic interface zone (i.e. up to 15 km depth, Radiguet et al.
2011; Cavalié et al. 2013) releasing aseismically a significant part of the accumulated inter-SSE strain (Radiguet et al. 2012; Bekaert et al.
2015).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/2/1187/6246430 by U

N
AM

 Instituto de Investigaciones Biom
édicas user on 06 June 2021



1200 J. Tago et al.

0 10 20 30 40 50 60

Correlation length [km]

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

A
ve

ra
ge

 m
ob

ile
 c

he
ck

er
bo

ar
d 

re
st

itu
tio

n 
in

de
x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
rr

or
 L

2
 n

or
m

PS = 80 km
PS = 100 km
PS = 120 km

Figure 8. Results from all M-CB tests for the 2006 SSE stations configuration in terms of the whole-interface average mcri (blue) and the average data-misfit
error (red), as a function of the inversions correlation length L and PS of 80, 100 and 120 km.

Figure 9. Aseismic slip inversions, in the plate convergence direction, of the 2006 Guerrero SSE for correlation lengths L = 20 km (a) and L = 30 km (b).
The plate interface coupling is determined from the ratio between the back slip and the cumulative slip in the inverted period given a plate convergence rate of
6 cm yr–1.
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Adjoint slip inversion 1201

Figure 10. Comparison of our preferred solution (model A – for L = 30 km, Fig. 9) with two previously published models for the 2006 Guerrero SSE, model B
from Cavalié et al. (2013) and model C from Radiguet et al. (2011). 60 per cent resolution contours for slip-patch (PS) characteristic lengths of 80 and 120 km
are shown over model A.

Fig. 10 shows a comparison between our preferred solution (model A, i.e. for L = 30 km) and two previously published solutions, one
from the simultaneous inversion of both GPS and InSAR data (Model B by Cavalié et al. 2013) and the other from GPS data only (model C
by Radiguet et al. 2011). Our solution is shown together with the associated 60 per cent resolution regions (regions where the average mcri
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is higher than 0.6), which are taken from Fig. 7 according to the optimal solutions of Fig. 8. Confidence contours thus delineate the fault
regions where solutions should disagree with the actual slip by less than 40 per cent in different wavenumber bandwidths depending on L.
The red contours delineate the 60 per cent confidence regions for a slip characteristic length of 80 km, while the green contours depict the
same regions for a 120 km characteristic length. Although the three slip solutions are in general consistent, there are clear differences among
them. The most visible are (1) the concentration of separated patches in model C (i.e. one of them far from the coast and below 40 km depth,
and another one to the east) which may be artefacts due to a lack of regularization (Bekaert et al. 2015), which are consistent north of the
CAYA and COYU stations and (2) the peak slip values that range between 20 and 25 cm. Moment magnitudes are also slightly different (i.e.
7.4 and 7.6 for models A and C, respectively). However, all three models coincide on the updip SSE spreading west of station CAYA, where
our model has resolution higher than 60 per cent up to a distance no more than 30 km west of that station. This region is of critical importance
because it extends along the NW-GGap, where recent onshore and offshore observations show that slow earthquake indeed happen in a
particular way, and thus where the mechanical properties of the plate interface could be different (Cruz-Atienza et al. 2021; Plata-Martı́nez
et al. 2020). Models B and C are remarkably different between stations ZIHP and CAYA, where the InSAR data used for model B does not
play any significant role. West of this region, model B predicts a very large shallow penetration of the SSE across the mechanically stable
zone where M7+ earthquakes occur every ∼35 yr (see past rupture areas, UNAM 2015). For this reason, model C, which is consistent with
our model A, is the most plausible solution for that zone. Besides, our resolution close to the ZIHP station is higher than 60 per cent as well.
In conclusion, our preferred ELADIN solution has the most reliable features of both previously published slip models.

5 C O N C LU S I O N S

We have introduced the ELADIN method, a new fault-slip inversion technique based on the adjoint elastostatic equations under a constrained
optimization framework. The method main characteristics are the projection operator built with the von Karman autocorrelation function
to control the spectral content of the solution, that is the problem regularization, and the gradient projection method to impose physically
consistent slip restrictions (e.g. interplate coupling smaller than any given value and rake angles consistent with the relative plate motion). To
account for the data uncertainty, the method weights the observations according to their individual variances through the precision matrix.
Synthetic slip inversions from strongly perturbed data show that the model restitution across the plate interface is surprisingly high (for both
SSE and coupled interface regions) when this uncertainty is taken into account. The ELADIN method thus allows determining the aseismic
slip on any 3-D plate interface (or any fault surface) by simultaneously inverting relaxing slip and coupled fault areas with a spectral control
of the problem solution that guaranties a given resolution criterion. We defined this criterion by means of the mcri, which allows determining
fault regions where the resolution (i.e. the slip restitution index) is high enough for a given von Karman autocorrelation length, L. This means
that the inverted slip in those regions is valid (to some desired extent) within the wavenumber bandwidth associated to the von Karman
spectrum for that L.

After a thorough resolution analysis of the study region, we inverted the 2006 Guerrero SSE. Our preferred slip model (model A),
obtained for L = 30 km, was compared with two previously published solutions and found that it retains the most reliable features of these
two models. On one hand, our model is consistent with the solution of Cavalié et al. (2013, model B) in that it places the maximum slip
region above 40 km depth (i.e. downdip from stations CAYA and COYU), where this solution is well constrained by the InSAR data. On the
other, although all solutions predict the SSE shallow penetration along a large part of the NW-GGap segment (west of CAYA), our resolution
analysis clearly shows that this penetration might not be a reliable feature of the 2006 SSE. However, our Model A is much closer to the
solution of Radiguet et al. (2011) (model C) close to station ZIHP, where only GPS data is available. In this sense and considering also that
M7+ earthquakes occur every ∼35 yr east from that station (see previous rupture areas in Fig. 10), which implies that the plate interface is
mechanically unstable, then the extremely large updip SSE penetration predicted by Model B (Cavalié et al. 2013) between stations ZIHP
and CAYA seems unrealistic.

A systematic application of the ELADIN method has been made in two associated works (Cruz-Atienza et al. 2021; Villafuerte et al.
2021) to invert recent GPS and InSAR data from the large array shown in Fig. 1, in the period 2016–2020, where four major earthquakes and
multiple SSEs occurred throughout the Mexican subduction zone. ELADIN is in a private github repository but we expect it to make it public
in the near future. If you are interested in the code please contact the corresponding author.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1 Synthetic inversion results along the c-direction for the Gaussian-like slip model shown in Fig. 4(a) from the exact target
displacements (panel a) and from the perturbed displacements (panel b). The second row of each panel shows the distribution of the restitution
index over the plate interface without regularization and for different values of the correlation length, L.
Figure S2 Synthetic inversion results along the c-direction for the Gaussian-like slip model shown in Fig. 4(b) from the exact target
displacements (panel a) and from the perturbed displacements (panel b). The second row of each panel shows the distribution of the restitution
index over the plate interface without regularization and for different values of the correlation length, L.
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A P P E N D I X A : C O M P U TAT I O N O F T H E P RO J E C T I O N M AT R I X : F

The projection matrix, F , can be computed with any correlation function and with different strategies. For reproducibility purposes, we
explain in the following algorithm how we compute it.

Algorithm 2: Computation of the projection matrix: F

(i) With the von Karman autocorrelation function, eq. (7), compute the Von Karman mask, V ∈ R
Mp×Mc , which has the same dimensions

as the fault domain with Mp and Mc the number of subfaults along p- and c-directions, respectively.
(ii) Build the convolution matrix, C ∈ R

M×M , with replication and the Von Karman mask, V . C is a square matrix with dimension
M = Mp · Mc. For the arithmetic details, we recommend Dumoulin and Visin (2018).

(iii) Build an split operator, S ∈ R
2M×2M , such that

SD =
[

D p

Dc

]
, (A1)

where D p, Dc ∈ R
M are the p- and c-slip components ordered according to the subfaults enumaration of the fault domain used for the von

Karman mask, V .
(iv) Ensamble the two-components convolution matrix, B ∈ R

2M×2M , as

B =
[

C 0

0 C

]
, (A2)

where 0 ∈ R
M×M is a null matrix.

(v) Compute the projection matrix, F ∈ R
2M×2M , as

F = ST BS. (A3)
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A P P E N D I X B : G R A D I E N T P RO J E C T I O N M E T H O D : C AU C H Y P O I N T C A L C U L AT I O N

The Cauchy point is an optimal state computed with a descent direction that respects the feasible solution region (Nocedal & Wright 2006).
We begin by reformulating our inverse problem, eqs (9)–(11), as the quadratic problem

1

2
DT G D + cT D, (B1)

subject to

D j,l
i ≤ (F D)i ≤ D j,u

i , i ∈ {p, c} ∧ j ∈ {SSE, Coupling} regime, (B2)

where

G = F TT T C−1

d
T F + βF T W T W F,

c = −
[
U T

o C−1

d
T F + DT

p W T W F
]
. (B3)

The gradient without considering the inequality constraint, eq. (B2), is

g = G D + c, (B4)

First, we need to identify the step lengths for which each slip component reaches its bound along the direction −g and store them in t̄ . Then,
we eliminate duplicates and zero values of t̄ to obtain a sorted reduced set of breakpoints {t1, t2, . . . , tl} such that ti < ti + 1 for i ∈ {1, 2, . . . ,
l − 1}. With this set, we construct a set of intervals like {[0, t1], [t1, t2], . . . , [tl − 1, tl]}. Suppose that we have not found the minimizer up to
the interval [tj − 1, tj], then we can model the slip along that interval as

D(t) = D(t j−1) + (�t)p j−1, (B5)

where

�t = t − t j−1 ∈ [0, t j − t j−1],

p j−1
i =

{
−gi if t j−1 < t̄i ,

0 otherwise.
(B6)

If we substitute eq. (B5) in the quadratic cost function (B1), we leave it as a function of �t

q(�t) = 1

2

(
D(t j−1) + (�t)p j−1

)T
G

(
D(t j−1) + (�t)p j−1

)
+ cT

(
�t)p j−1

)
, (B7)

which can be reformulated as

q(�t) = f j−1 + g j−1�t + 1

2
h j−1(�t)2, (B8)

where

f j−1 = 1

2
D(t j−1)T G D(t j−1) + cT D(t j − 1),

g j−1 = D(t j−1)T G p j−1 + cT p j−1,

h j−1 =
(

p j−1
)T

G p j−1. (B9)

The solution of this problem is

�t∗ = − g j−1

h j−1
. (B10)

Only one of the following three cases can occur

(i)If gj − 1 > 0 the minimizer is at �t∗ = 0 with t∗ = tj − 1 and p∗ = pj − 1.
(ii)If �t∗ ∈ [0, tj − tj − 1) the minimizer is in the interval with t∗ = tj − 1 and p∗ = pj − 1.
(iii)If �t∗ > tj − tj − 1 then try the next interval.

Once the optimal step has been found, �t∗, the Cauchy point is evaluated as

Dc = D(t∗) + �t∗ p∗. (B11)
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