Tareas de la asignatura Geologia de Yacimientos de Fluidos

Grupo: 04

Profesor: M. en C. Elia Escobar Sánchez.

Referencias bibliográficas

Libros

[Apellido(s) de autor(es)], [Inicial(es)], [año de edición], [Título del libro]: [número de edición], [Editorial], [ciudad y/o país de elaboración], [número de páginas totales del libro] p.

Ejemplos:

Faure, G., 1986, Principles of Isotope Geology: 1a ed., Ed. John Wiley, New York, EU, 345 p.

Press, F., Siever, R., 1998, Understanding earth, 2da ed., Ed. W. H. Freeman, New York, EU, 682 p.

Nota: en caso de no tenerlas se restará un punto menos por tarea.

Referencias bibliográficas

Artículos

[Apellido(s)], [Inicial(es)], [año], [Título del artículo]: [Título de la revista], [Volumen (número)], [número de la primera y la última página del artículo].

Ejemplo:

Aguillón-Robles, A., Aranda-Gómez, J.J., Solorio-Munguía, J.G., 1994, Geología y tectónica de un conjunto de domos riolíticos del Oligoceno medio en el sur del estado de San Luis Potosí, México: Revista Mexicana de Ciencias Geológicas, 11(1), 29-42.

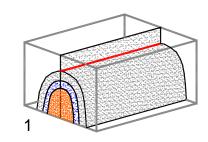
Nota: en caso de no tenerlas se restará un punto menos por tarea.

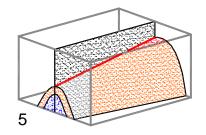
- Recursos electrónicos (en línea, en cd-rom, programas informáticos, bases de datos, etc.). Dependiendo del tipo de documento, incluir la información necesaria para identificarlo
- [Autor(es)/Responsable(s)], [año de publicación], [Título (tipo de soporte)], [Edición/Versión]: [Lugar de publicación], [editor], [fecha de publicación/actualización/revisión], [Descripción física], [<Dirección de la página o Disponibilidad>], consulta: [Fecha de consulta], [Número normalizado, p. ej. DOI, ISSN].
- Byram, S., 1995, Methodological notes on the use of obsidian hydration data (en línea): Corvallis, Oregon, International Association for Obsidian Studies, actualización: 01 de octubre de 1997,http://www.peak.org/obsidian/byram1.html, consulta: 16 de marzo de 2004.
- EarthRef, 2004, Geochemistry of the Continental Crust (en línea), en GERM Reservoir Database: San Diego, EarthRef.org, base de datos, http://earthref.org/, acceso libre, consulta: 16 de marzo de 2004. SPSS, 1994, SPSS Professional Statistics (cd-rom), ver. 6.1: Chicago, SPSS Inc., 1 cd-rom, programa informático.
- Pilet, S., Hernandez, J., Sylvester, P.J., 2005, The isotopic signature in OIB mantle sources; the metasomatic alternative, (en línea), en Foulger, G.R., Mantle plumes: United Kingdom, University of Durham, <www.mantleplumes.org>, Origin of OIB, consulta: 23 de noviembre de 2005.
- Hochstaedter, A., Gill, J., Peters, R., Broughton, P., Holden, P., Taylor, B., 2001, Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subductiong slab (en línea): Geochemistry, Geophysics, Geosystems (G3), v. 2, publicado: 2 de Julio de 2001, paper number 2000GC000105.

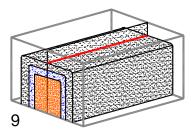
Tarea 1: sobre Fuerzas

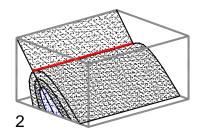
Ejercicio 3. Calcule la Fuerza y el esfuerzo que se ejerce en la base (1m²) de una columna de calizas a una profundidad de 1000 m, que tienen una densidad promedio de 2.64 g/cm³, considere que la gravedad tiene un valor de 981 cm/seg².

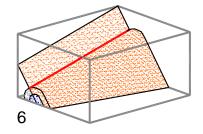
Ejercicio 4. Calcule la fuerza y el esfuerzo que se ejerce en la base de una Placa Tectónica que tiene un espesor promedio de 100 km, un área de 4 x 10⁸ km² y una densidad media de 2.856 g/cm³.

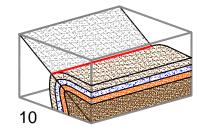

Tarea 2

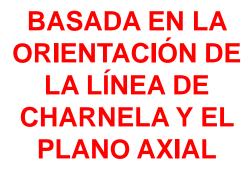

 Lectura 2: Importancia del Conocimiento Geológico de los yacimientos petrolíferos para su mejor explotacion.

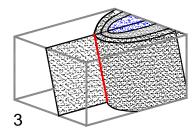

Entregar reseña de una pagina.

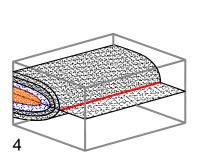

Tarea 3

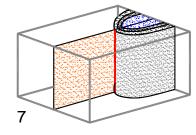


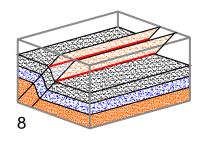


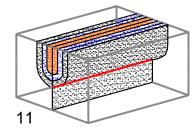


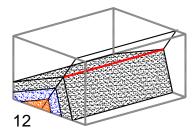


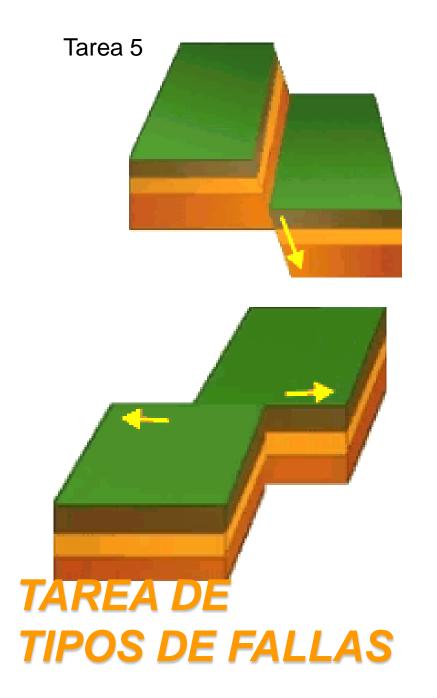


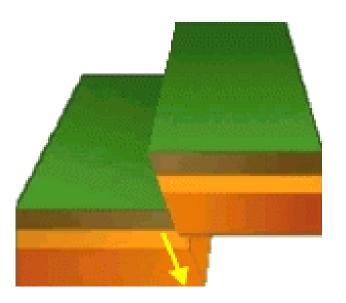


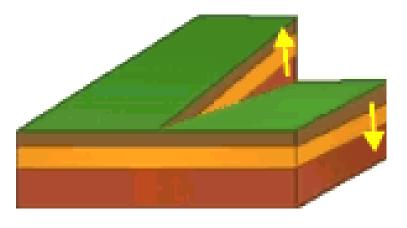


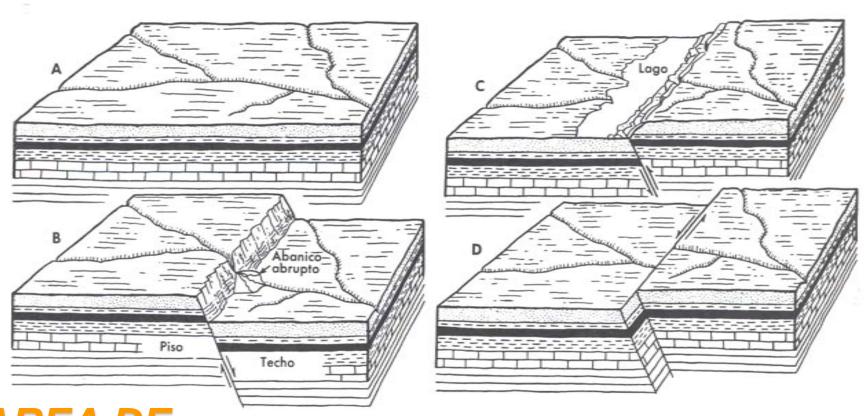




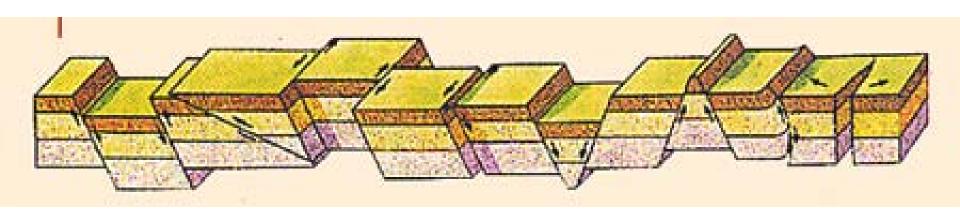


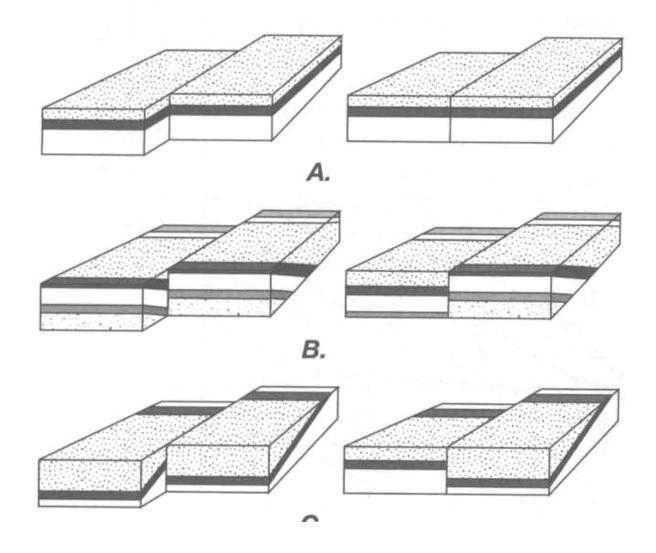

Tarea 4


Lectura 1: Como escribir mal


Hacer una reseña de una pagina

Fecha de entrega:




TAREA DE TIPOS DE FALLAS

TAREA DE TIPOS DE FALLAS

Tarea 5

TAREA DE TIPOS DE FALLAS

Tarea 6

Reseña del video: Viajeros del tiempo

Tarea 7

 Historia del sedimento, a partir de la tectónica de placas

Tarea 8

Resolver nuevamente el examen

Tarea 9. Definiciones

Conceptos básicos para estudiantes de Ciencias de la Tierra

Definiciones:

- 1. Mineralogía
- 2. Mineral
- 3. Cristal
- 4. Roca
- 5. Diferencia entre roca ígnea, sedimentaria y metamórfica
- 6. Petrología
- 7. Geoquímica
- 8. Geocronología
- 9. Isótopo
- 10. Minerales formadores de roca
- 11. Grupo de los silicatos, cuales son y ejemplos mineralógicos de cada grupo
- 12. Grupo de las arcillas, ¿Cuáles son?
- 13. Arcillas importantes en la industria

- 14. Fósil
- 15. Era geológica
- 16. Extinción, extinciones masivas
- 17. Sismo, temblor y terremoto
- 18. Clima
- 19. Suelo
- 20. Litósfera
- 21. Astenósfera
- 22. Atmosfera
- 23. Meteorito
- 24. Asteroide
- 25. Condritas
- 26. Crater de impacto
- 27. Crateres de impacto importantes en el mundo y su importancia económica.
- Nota: Colocar referencias de los trabajos consultados, citar bibliografía como se indica en la página. En caso de no tenerlos un punto menos sobre su calificación.

Ejemplos de cómo colocar las referencias citadas de libros, artículos y revistas electrónicas:

Libros

[Apellido(s) de autor(es)], [Inicial(es)], [año de edición], [Título del libro]: [número de edición], [Editorial], [ciudad y/o país de elaboración], [número de páginas totales del libro] p.

Ejemplos:

Faure, G., 1986, Principles of Isotope Geology: 1a ed., Ed. John Wiley, New York, EU, 345 p.

Artículos

[Apellido(s)], [Inicial(es)], [año], [Título del artículo]: [Título de la revista], [Volumen (número)], [número de la primera y la última página del artículo].

Ejemplo:

Aguillón-Robles, A., Aranda-Gómez, J.J., Solorio-Munguía, J.G., 1994, Geología y tectónica de un conjunto de domos riolíticos del Oligoceno medio en el sur del estado de San Luis Potosí, México: Revista Mexicana de Ciencias Geológicas, 11(1), 29-42.

Nota: en caso de no tenerlas se restará un **punto menos por tarea**.

Recursos electrónicos (en línea, en cd-rom, programas informáticos, bases de datos, etc.). Dependiendo del tipo de documento, incluir la información necesaria para identificarlo

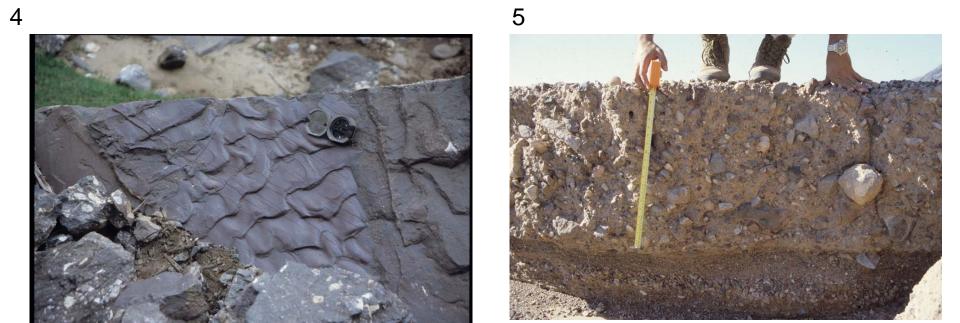
[Autor(es)/Responsable(s)], [año de publicación], [Título (tipo de soporte)], [Edición/Versión]: [Lugar de publicación], [editor], [fecha de publicación/actualización/revisión], [Descripción física], [<Dirección de la página o Disponibilidad>], consulta: [Fecha de consulta], [Número normalizado, p. ej. DOI, ISSN].

Byram, S., 1995, Methodological notes on the use of obsidian hydration data (en línea): Corvallis, Oregon, International Association for Obsidian Studies, actualización: 01 de octubre de 1997,http://www.peak.org/obsidian/byram1.html, consulta: 16 de marzo de 2004.

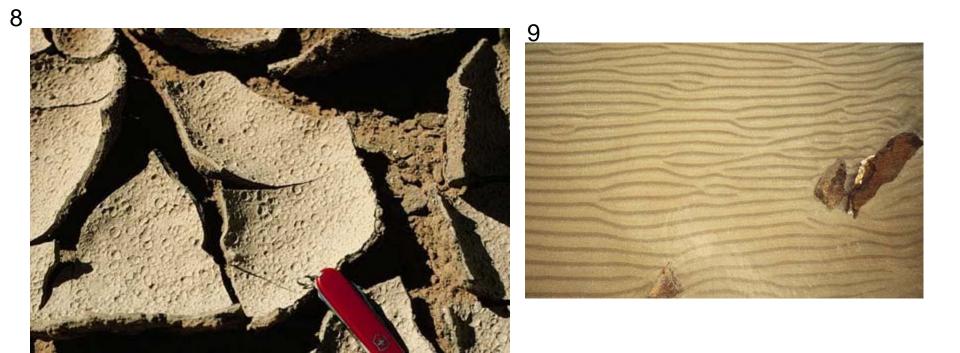
EarthRef, 2004, Geochemistry of the Continental Crust (en línea), en GERM Reservoir Database: San Diego, EarthRef.org, base de datos, http://earthref.org/, acceso libre, consulta: 16 de marzo de 2004. SPSS, 1994, SPSS Professional Statistics (cd-rom), ver. 6.1: Chicago, SPSS Inc., 1 cd-rom, programa informático.

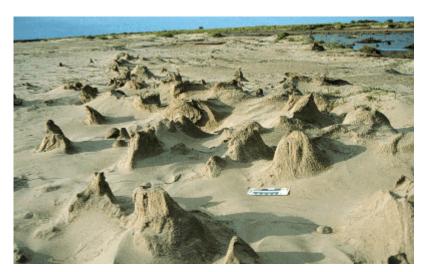
Pilet, S., Hernandez, J., Sylvester, P.J., 2005, The isotopic signature in OIB mantle sources; the metasomatic alternative, (en línea), en Foulger, G.R., Mantle plumes: United Kingdom, University of Durham, <www.mantleplumes.org>, Origin of OIB, consulta: 23 de noviembre de 2005.

Hochstaedter, A., Gill, J., Peters, R., Broughton, P., Holden, P., Taylor, B., 2001, Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subductiong slab (en línea): Geochemistry, Geophysics, Geosystems (G3), v. 2, publicado: 2 de Julio de 2001, paper number 2000GC000105.


Tarea 10. Estructuras Sedimentarias

- Definir que tipo de estructura es: inorgánica tipo (superficie de estratificación, de carácter interno o de deformación) o orgánica tipo (fósiles traza o biostratificación).
- Ambiente de deposito.
- Nombre de la estructura





12 13

Puntos que deben cubrir los temas de exposición Grupo 04

AMBIENTES CONTINENTALES

Ambientes glaciares (lunes 5 de octubre)

- a) Localización geográfica
- b) Ejemplos de los principales glaciares actuales
- c) Geomorfología glaciar
- d) flujo glacial
- e) Erosión glacial
- f) Depósitos glaciales estratificados
 - Kame, Esker, Deltas glaciales, Depósitos fluvio-glaciales, Depósitos glaciolacustres, ejemplos de carbonatos glaciares
- h) Depósitos glaciales no estratificados
 Sandur, Morrenas, Depósitos glaciomarinos
- i) Características granulométricas y texturales de los depósitos glaciales
- j) Importancia económica y tectónica,

Ambientes eólicos (lunes 5 de octubre)

- a) Situación geográfica
- b) Ejemplos de los principales depósitos eólicos actuales
- c) Climatología
- d) Erosión eólica
- e) Procesos de sedimentación eólica
- f) Tipos de depósitos
 Hamada, Serir, Wadi, Deriva de arena, Sombras de arena,
 Gozes, Loess, Capas de arena, Dunas, Zonas de interdunas
- g) Características granulométricas y texturales de los depósitos eólicos
- h) Importancia tectónica y económica

Ambientes fluviales (lunes 5 de octubre)

- a) Introducción
- b) Madurez fluvial
- c) Tipos de canales fluviales
- d) Principales partes de un río
- e) Tipos de depósitos
 Facies de canal-Facies de banco o nivel natural-Facies de llanura de inundación-Facies de lagos meandricos. Carbonatos fluviales.
- f) Modelos de facies (relaciones laterales y verticales) y principales ejemplos actuales
- g) Importancia tectónica y económica

AMBIENTES MIXTOS

Ambientes palustres (lunes 5 de octubre)

- a) Introducción
- b) Tipos de pantanos
- c) Climatología
- d) Flora y fauna
- e) Asociaciones con otros ambientes de deposito
- f) Características litológicas de pantanos marinos asociados a océanos (Carbonatos palustres).
- g) Características litológicas de pantanos asociados a ríos y lagos
- h) Estructuras y texturas asociadas
- i) Carbón mineral y tipos de carbón mineral asociados a pantanos
- i) Importancia tectónica y económica

Sabkhas (5 de octubre)

- a) Información general
- b) Climatología
- c) Situación geográfica y principales ejemplos actuales
- d) Tipos de sabkhas
- e) Sabkhas marinos Con conexión al mar y sin conexión al mar (Facies de plataforma-Facies de carpetas de algas-Facies de supramarea-Facies continentales)
- f) Sabkhas continentales Facies aluviales-Facies de planicie de arena-Facies wadi-Facies de lodo salino-Facies de halita caótica-Facies de halita en forma de tolva
- g) Ciclo yeso-anhidrita
- h) Dolomitización, tipos de dolomitización (dedolomitización).
- i) Importancia tectónica y económica

Ambientes costeros (Playa) (7 de octubre)

- a) Información general
- b) Definición de zona costera y principales ejemplos actuales
- Subambientes de la zona costera
 Facies continentales-Facies supramarea-Facies de intermarea-Facies de submarea-Facies de plataforma
- d) Litología y características texturales de cada facies
- e) Estructuras sedimentarias primarias en cada facies
- f) Costas regresivas y costas transgresivas
- g) Importancia tectónica y económica

AMBIENTES MARINOS

Plataforma clástica o continental (miércoles 7 octubre)

- a) Modelos de plataformas clásticas y clasificación
- b) Controles geológicos en la sedimentación Aporte de sedimento-Régimen hidráulico-Fluctuaciones en el nivel del mar
- c) Procesos físicos Corrientes de marea-Corrientes meteorológicas-Corrientes de fondo-Corrientes de oleaje-
- d) Sedimentación dominada por tormentas
- e) Sedimentación dominada por mareas Rizaduras de arena-Barras de arena-Parches de arena-Plataforma lodosa
- f) Estructuras y texturas asociadas a cada facies
- g) Islas de barrera asociadas (formación y evolución)
- h) Importancia tectónica y económica

Plataforma Carbonatada (7 de octubre)

- a) Generalidades (Definición).
- b) Localización geográfica y principales plataformas carbonatadas actuales
- c) Modelos de plataformas carbonatadas (Plataformas bordeadas, no bordeadas, epeiricas, aisladas, rampas, rampas homoclinales, sumergidas
- d) Modelo de plataforma de rampa y facies para rampa
- e) Modelo de facies estándar de Wilson para plataformas carbonatadas
- f) Deposito de arenas carbonatadas Bancos de arena-Barras de arena-Cinturones de arena-Dunas-Capas de arena de la plataforma interior
- g) Estructuras y texturas asociadas a cada facies
- h) Importancia tectónica y económica

- Plataforma de las Bahamas y Plataforma de Florida:
- (7 de octubre)
- A) Definir que tipo de plataforma carbonatada es, ¿presenta otros tipos dentro de esa misma?
- B) Sedimentos que constituyen la plataforma: submarea, intermarea y supramarera.
- Plataforma de Florida.
- A) Tipo de plataforma o tipos.
- B) Sedimentos de submarea, inter y supramarea, definirlos.
- C) Ejemplos
- D) Importancia económica en la industria del petróleo.

Plataforma de Yucatán (9 de octubre)

- A) Origen de la plataforma
- B) Tipo de plataforma (incluye dos tipos principales)
- C) Zona de strandplain en bordes de playa(donde se localiza, explicar que es)
- D) Modernas barrera de playa, abanicos de marea y bancos de arena submarinos.
- E) Arrecifes de barrera
- Importancia económica y localización de los depósitos de hidrocarburos.
- Nota: buscar Ward, W. C., Weidie, A. E. (1985). Geology and Hidrology of the Yucatan, p160. New Orleans Geol. Soc.,

Arrecifes (viernes 9)

- a) Definición
- b) Localización geográfica y principales arrecifes actuales
- c) Clasificación de los arrecifes
- d) Procesos de formación y controles de crecimiento
- e) Principales tipos de arrecifes y arrecifes fósiles
- e) Descripción de los arrecifes carbonatados
- f) Caso de estudio de algunos arrecifes antiguos
- a) Facies arrecifales
 Prearrecife (base de talud y talud arrecifal)
 Cuerpo arrecifal principal (frente arrecifal)
 Cresta arrecifal y planicie arrecifal Postarrecife
- b) Tipos de sedimentos asociados a arrecifes
- c) Estructuras y texturas asociadas a cada facies
- d) Importancia económica, arrecifes en la península de Yucatán

Talud Continental Clástico y Planicies Abisales (9 de octubre)

- a) Generalidades del Talud continental
- b) Definición de Planicie y abanicos abisales y principales ejemplos actuales
- c) Cañones submarinos
- d) Secuencias tipo flysch
- e) Secuencia Bouma (características texturales y estructuras involucradas en cada facies)
- f) Características de turbiditas proximales y turbiditas distales
- g) Importancia tectónica y económica

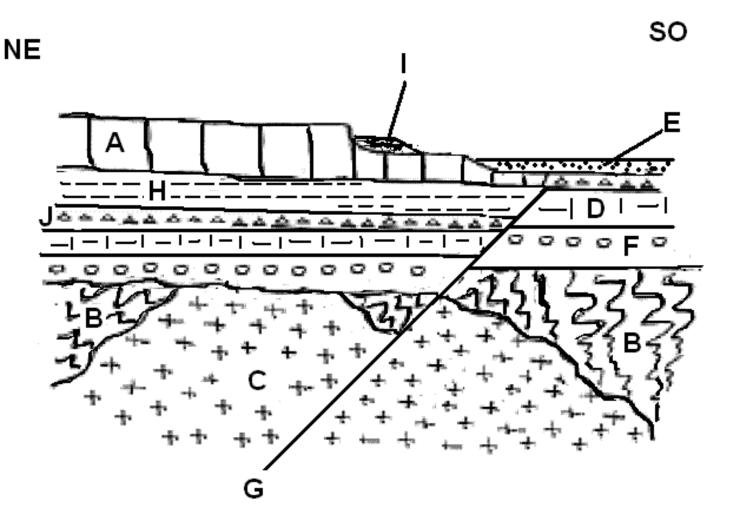
Cuenca Carbonatada

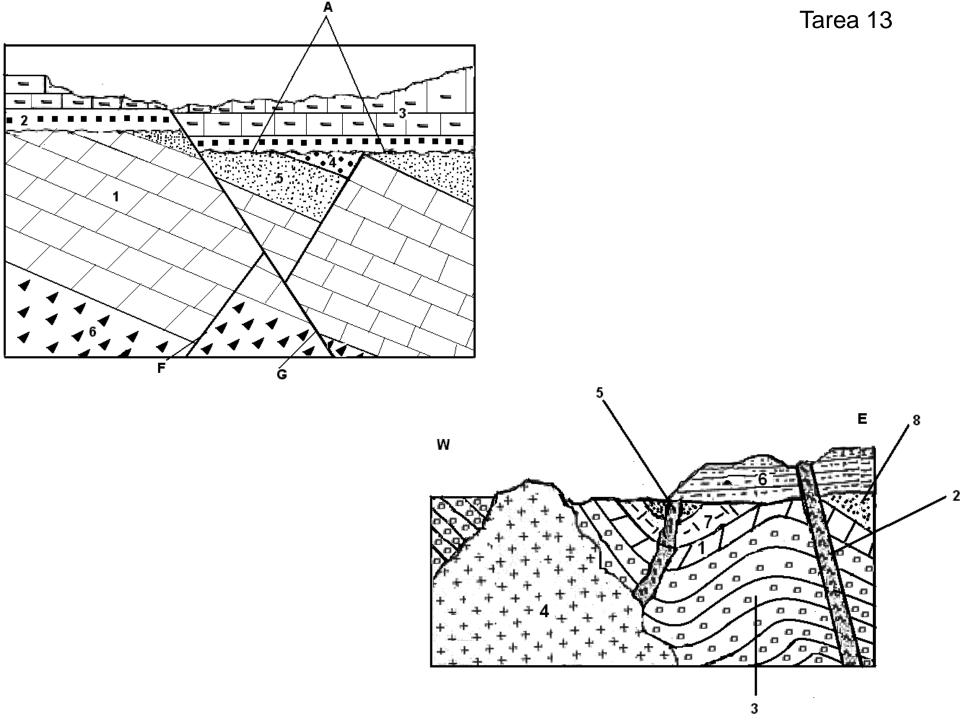
- a) Generalidades
- b) Relación con el esquema general de facies de Wilson
- c) Profundidad de compensación de carbonatos
- d) Estructuras y texturas asociadas
- e) Importancia tectónica y económica

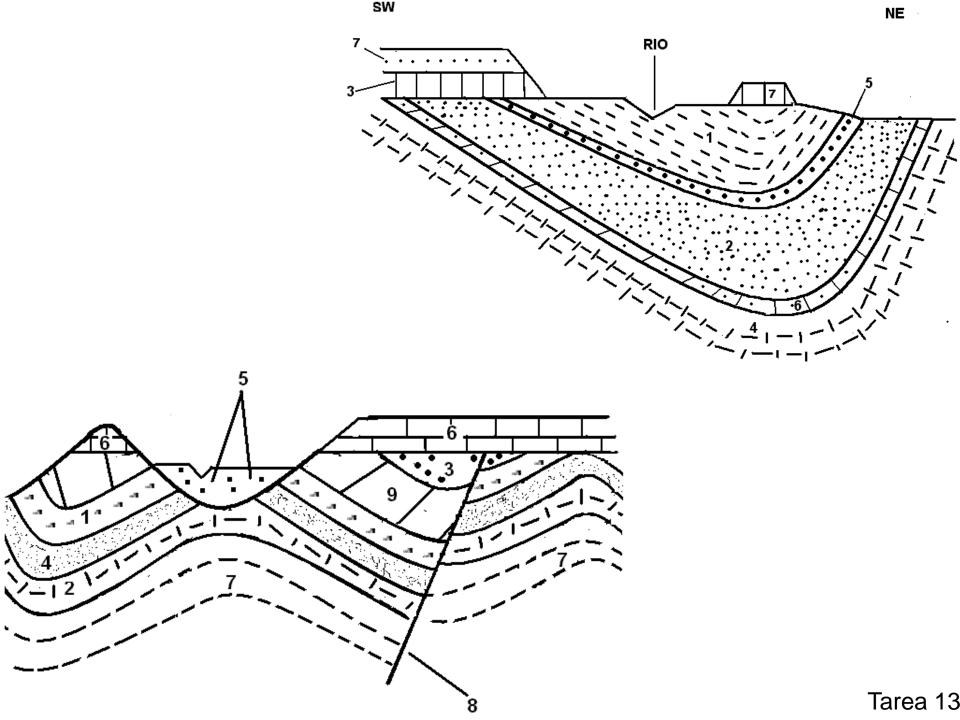
Continuidad 2

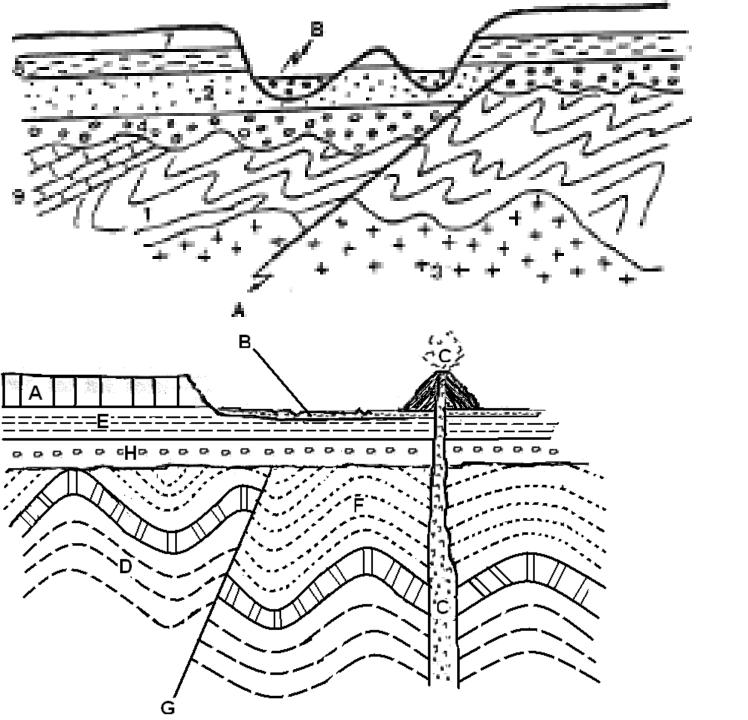
Tarea 11

Ejercicio:
Determinar el
tipo de
discontinuidad o
continuidad que
se presenta en el
gráfico.

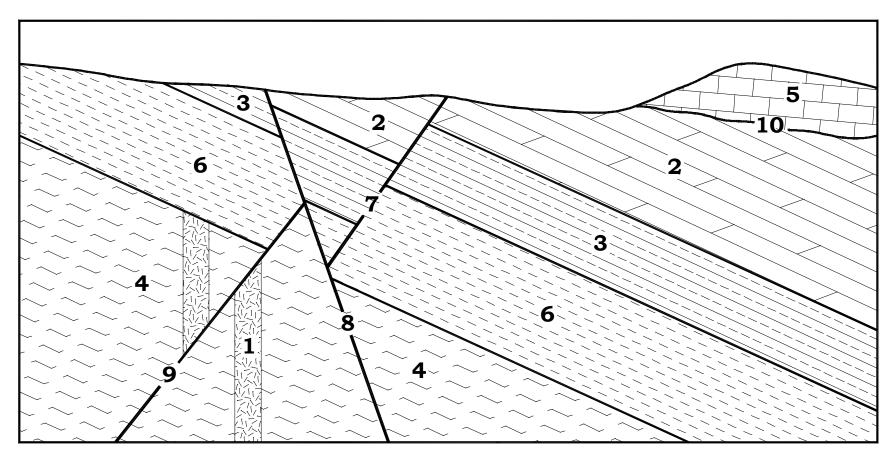

TAREA 12. LECTURA

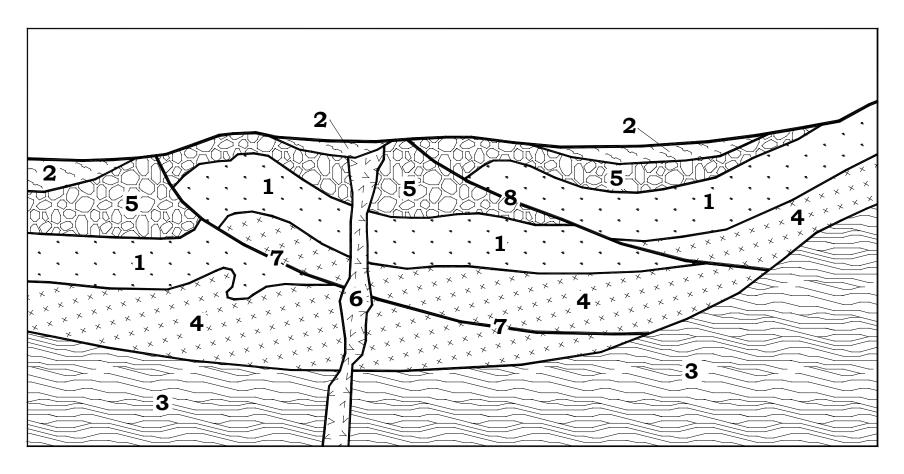

6.Explotacion de hidrocarburos en plataformas


RESEÑA

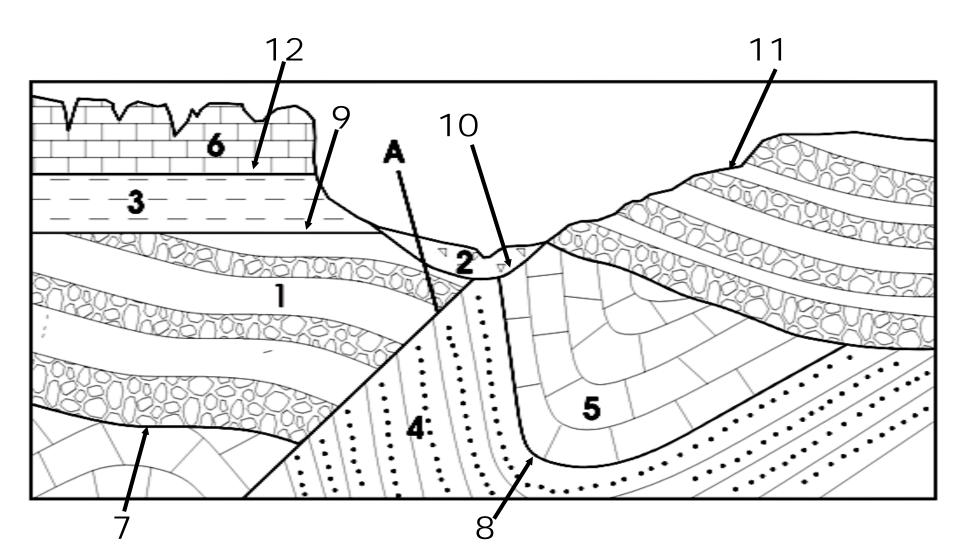

Tarea 13:

Identifica el orden de los eventos de viejo (1) a joven (n) en los siguientes cortes. Fíjate que la misma litología puede presentarse en diferentes cuerpos ó unidades de roca (diferente posición estratigráfica), cada cuerpo ó unidad de roca es un evento diferente (la formación del cuerpo de roca en cuestión). También son eventos las fallas y plegamientos.

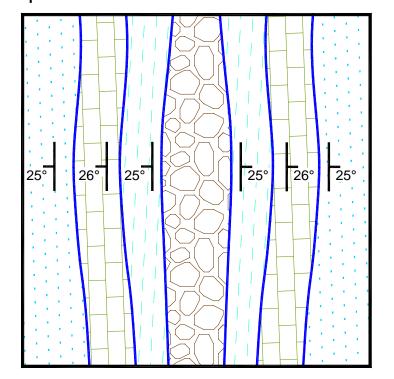


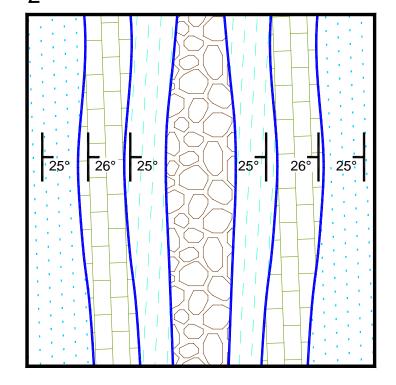

Tarea 14: Discordancias

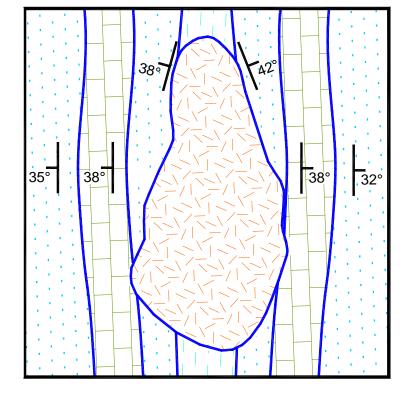
EJERCICIO: Tomando como base el siguiente esquema, determine la secuencia de eventos por orden de ocurrencia, de acuerdo con los principios estratigráficos. Observe los límites entre cada unidad y describa que tipo de continuidad o discontinuidad estratigráfica se tiene.

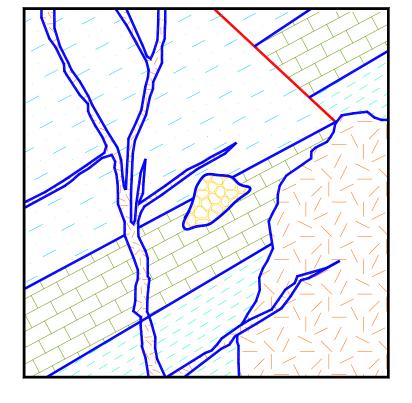

Tarea 14: Discordancias

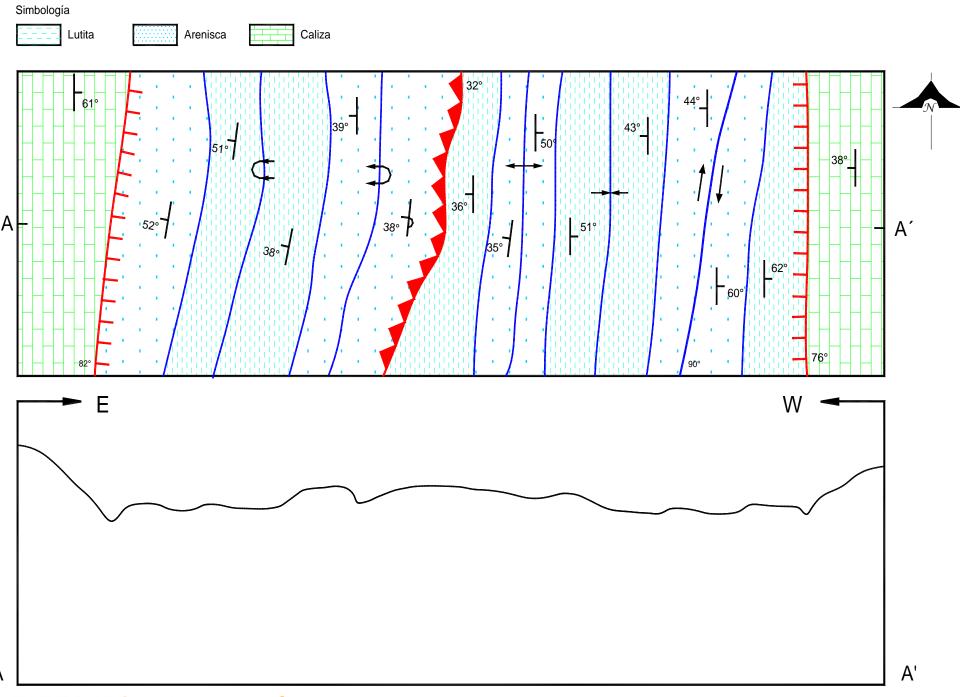
EJERCICIO: Tomando como base el siguiente esquema, determine la secuencia de eventos por orden de ocurrencia, de acuerdo con los principios estratigráficos. Observe los límites entre cada unidad y describa que tipo de continuidad o discontinuidad estratigráfica se tiene.


Tarea 14: Discordancias

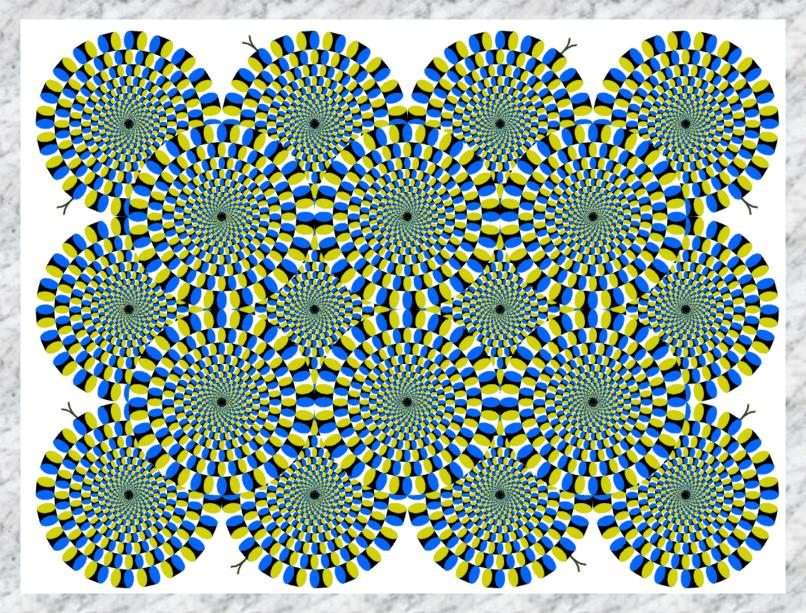

EJERCICIO: Tomando como base el siguiente esquema, determine la secuencia de eventos por orden de ocurrencia, de acuerdo con los principios estratigráficos. Observe los límites entre cada unidad y describa que tipo de continuidad o discontinuidad estratigráfica se tiene (asigne un número a cada unidad o evento).


Simbología Caliza Granito Aluvión Contacto Arenisca Lutita Conglomerado Falla 24° 24° 25 23°


TAREA 15: Secciones geológicas



TAREA 15: Secciones geológicas



TAREA 15: Secciones geológicas

Página en construcción

