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Summary

Since the differential equations governing steady supersonic flow of an inviscid
gas are hyperbolic, the fluid acceleration must satisfy some compatibility relations
along characteristic surfaces. These relations are here obtained and integrated
for a characteristic surface bounding a region of uniform flow, and it is then shown
that the same relations are satisfied to a first approximation in a region adjacent
to the region of uniform flow. The singularities predicted in this manner are
discussed, and an approximate method of solution, complementary to the Linearized
Theory, is briefly explained.

1. Introduction

The theory of quasi-linear hyperbolic partial differential equations has been
extensively developed in connection with problems involving two independent
variables. But the theory is virtually undeveloped for problems involving three
independent variables, and the present work is concerned with its extension
to this class of problems. The example chosen here is that of steady, three-
dimensional supersonic flow without entropy gradients.

The successful analytical methods for 2-variable problems were developed in
two stages. The first was to study problems involving only progressive waves,
such as those emitted by thin aerofoils and slender bodies of revolution. The
second stage was the study of wave interactions, and this stage is still rather
incomplete, for instance, for axially symmetrical flow. Accordingly, the present
work is concerned only with progressive waves.

The approach also follows that found successful in 2-variable problems for
the derivation of uniform first-order approximations by a wave-front approxi-
mation []. The procedure is briefly as follows. First, consider the characteristic
surface forming the border between a region of uniform and a region of non-
uniform flow. The fluid acceleration may be discontinuous at such a surface,
and if so, the jump will satisfy a differential equation on the surface, that is,
a differential equation in at most two variables. Next, a continuity argument
is used to extend the same analysis to a suitable part of the region of non-uniform
flow regardless of whether a discontinuity of the acceleration occurs or not.
An approximation to the exact continuous solution of the governing differential
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equations is thereby obtained, but that solution may be multivalued. Finally,
it is known how a weak shock wave can be fitted into the approximate solution
to remove the multivaluedness in 2-variable problems, but this last part of the
procedure is not studied in the present investigation.

The important role played by characteristic surfaces in the theory of hyper-
bolic equations makes it convenient to introduce a system of coordinates con-
taining them as coordinate surfaces. It is impossible, however, to include them
all in a system of coordinates. If only some characteristic surfaces are included,
it is natural to comstruct a system of coordinates based on two families of
characteristic surfaces and an additional family of surfaces which are not required
to be characteristic. Because the bicharacteristic lines play a distinguished role,
it would be desirable to take the third family of coordinate surfaces intersecting
the characteristic surfaces of the other two families along bicharacteristics. In
general, however, this is impossible. To avoid this difficulty, directional deri-
vatives are used in what follows, but in order to profit from the properties of
characteristic surfaces, a characteristic parameter will also be introduced.

The work reported here owes much to two earlier publications. M. SCHIFFER [2]
has shown that in 3-variable problems any discontinuity of the acceleration
must satisfy an ordinary differential equation along bicharacteristics, but his
proof does not give this equation in a form in which it could be integrated, or
even discussed. T.Y.TroMas [3] has considered the unsteady motion of a gas
in 3-dimensions, of which the steady problem here studied is a special case.
He has derived and integrated the differential equation for the discontinuity
of the acceleration for the case of a discontinuity occurring at the front of a
wave spreading into gas at rest. But his method appears to be less suitable for
the discussion of multivalued solutions or the construction of approximate
solutions in the region of non-uniform motion behind the wave front, which
is the aim of the present study.

In the following, the matter is therefore attacked ab initio. The first part
of the work is devoted to the establishment of a suitable notation and of pre-
liminary results required for the analysis. THOMAS' results are then obtained
in the notation adopted here, and their significance is discussed. Finally, the
analysis is extended to a uniform first-order approximation for a region behind
the wave front.

2. Preliminary definitions and results

The motion of a gas devoid of viscosity and thermal conductivity which
comes from a region of uniform flow is governed by the irrotationality condition,

3111‘ 61;,—
e d—N 21a
ox; ox;’ ( )
and the equation of continuity,
8%’1‘ -3 av
9% ¢ U = 2.1b
bx,; cTrvy; ox, 0, (2.1Db)

where v=(v; v;)*>0 and c=(0p/00)%>0 is some known function of v.
When the velocity magnitude v exceeds the speed of sound ¢, the system
(2.1) is hyperbolic and possesses characteristics. A surface is characteristic if and
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only if the normal component of the velocity at each of its points is ¢. A dis-
continuity of the derivatives of the velocity components can occur only across
such surfaces, when the velocity components themselves are continuous.

Let R be a region next to and downstream from a region of uniform flow
and such that the flow is non-uniform in R. It is assumed that the transition
from uniform to non-uniform flow takes place by means of a break of the
continuity of some derivative of the velocity, but that no shock is present in
the flow, so that the velocity components are continuous. It is then clear that
the ‘‘surface of transition’” 2, which separates R
from the region of non-uniform flow, is character-
istic. It is assumed, furthermore, that a family § of
characteristic surfaces is defined in R in such a
manner that every point of R lies in one and only
one member of §§ (except at limit surfaces) and
that X, belongs to . In addition a function £ is a*
defined in R so as to be constant on the members #
of ¥, and to have non-vanishing gradient every- #
where in R.

Let P denote an arbitrary point of R, and let

i

—

2’ be the member of § which passes through P. & v
At P, define the “ray vector” e} as the unit nor- |
mal vector to 2 such that its scalar product with Fig. 1

the velocity is positive; the ‘‘bicharacteristic vec-
tor”” e as the unit vector with the same direction and sense as the projection
on X of the velocity vector; and the ‘‘transversal vector’” ¢ by the vector
sroduct

ed="7! Xe (2.2)
The ray, bicharacteristic and transversal vectors form an orthogonal system,
he “‘characteristic system” at P. Thus

& 6/2:(5(1,3 and ef ef=0,;. (2.3)

The plane orthogonal to the transversal vector will be called the ‘‘principal
lane” (see the figure). We define two orthogonal vectors lying on the principal
lane, the “stream vector” /; and the “‘normal vector’ #;, by

l;=e3cos i+ ejsin p, n,=elsin y — ercos p (2.4a)
> that
ei =1;sin yu — n;cos u, e} =1;cos ji+n;sin u (2.4b)

here 4 is the local Mach angle,

p=sin"lefv, O<u<<mf2. (2.5)
1e direction of the velocity is given by the stream vector, because
Li=vifv. (2.6)
1e “‘Prandtl angle’”” @, defined by
v i;}’ =coty, w=0 when wv=c, (2.7)

14%*
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often provides a useful measure of the velocity magnitude. The stream, normal
and transversal vectors form a second orthonormal system, the “equipotential
system’” at P.

The “‘outer vector’” b, is the unit vector defined by

b,=1l,cos g —m;sin g or b,—elcos2ut elsin2pu. (2.8)

The differential operators D,, D, and D, are defined by

D =e280x,, Dy=0b,8/0x;, Dy=h.D, (2.9)
where the “metric coefficient’” %, is given by
1
o= 241
© o Dyé (2.10)

When they are applied to any function, they yield directional derivatives with
respect to length, D, and D,, and with respect to the parameter &, D,. Observe
that (2.9) and (2.3) imply

0]0x; =€l D,. (2.11)

3. The characteristic equations

In this section the equations of motion (2.1) will be transformed into char-
acteristic form. The introduction of the directional derivatives in these equations
leads to

> ¢8 D,v, = e Dyv;, (3.1)

et D v, —c v v,efDyv;=0.
The last equation is further reduced, by virtue of (2.6) and (2.4a), to

(e} — 1;cosec i) Dy v, + (€ —1;cot pu cosec ) Dyv;+- €2 Dyv;=0.
Since e2Dyv,=cDyv;, by (3.1), the derivative in the ray direction may be
eliminated using (2.4a). This yields
(n; —1;cot ) cosec uDyv; e} Dyv;=0.

When the velocity vector is expressed in terms of the stream vector (2.6) and
of the Prandtl angle (2.7), this equation becomes

Dyw —m;Dyl;=sin el Dyl (3.2)
a generalization of the well known characteristic relations for plane and axially
symmetrical flows. Observe that the term 2 Dyl;= —1,Dye? has the geometrical
interpretation of the normal curvature of the equipotential surface in the trans-
versal direction.

One component of Dyl; in the equipotential system is given by (3.2); the

second,

& D,l,=elDyl;+sin Dy,
follows from (3.1), if (2.6), (2.4a) and (2.7) are used, and the third vanishes
because /,/;=1. Hence
Dyl,= Dy —sin ped Dgl)) n;+ (¢f Db+ sin peDyw) el. (3.3)

This equation involves only the bicharacteristic, transversal and normal vectors,
and the derivatives of the dynamical variables in the direction of the first two
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of these vectors. Now, starting with the outer vector b, in the role of the bi-
characteristic vector ¢?, we can construct the vectors corresponding to the trans-
versal and normal vectors, and they are —&% and —#. Since e} Dy=e}e}8/0x,
is invariant under such a change of signs, it follows that corresponding to equa-
tion (3.3}, we must also have

Dyly=—(Dyw —sin u ej’])3lj) n;+ (b; D41+ sin pDyw) e, (3.4)
whence
Dyw+n; Dyl =sin ped Dyl;, (3.5)

corresponding to (3.2). In terms of the intrinsic coordinate &, (3.4) and (3.5)

read
Deli=— (Dew — hgsin el Dylyn,+ he (b; Dyl 4 sin u Do) e}, (3.6)

Dew+n;Dgl;=hesin pel Dyl;. (3.7)

4. The commutators
In general, D,Dy4=DyD,, D,D;FD:D,, and it will be necessary for our
purpose to compute the differential operators

(2,3]=D,D3—D3Dy, [2,E]=DyD;—D;Dy, [3,&]=D3D;—D;Dy. (4.1
The first result to be shown is
2,3]=82"Dy—02D,, (4.2)
where
Q=eDyed and Q' =éiD,é. (4.3)
It follows from the facts that
(2, 3]=(Dye} — D;éf) 00x,= (¢f Dy 6} — e} Dyél) D,

= 23| =1 and

Py
€

by (2.11),

et Dyed =el Dyel. (4.4)
To prove (4.4), observe that
[2,316=0 and [2,3]&= (] Dyel — e; Dyef) Dyé.
Since D;£4:0, (4.4) follows.

We show next that [2, £], and [3, &] also, involve only differentiation in a
direction tangential to the members of §. In order to be able to prove both results
simultaneously, we adopt the convention that the index y takes only the values
2 and 3 in the remainder of this section. The result will follow from

er D, (heb;) = e;Dgel (4.5)

because
[2, ] ={Dy (hsb;) — Dye}} 8]0x;= {f Dy (hb;) — ef Dy e} D, (4.6a)
[3, &= {Dy(h;b;) — Dyel} 8]0x;={e} Dy (heb;) — €} Dged} D, (4.6b)

by (2.11). To prove (4.5) observe that D.&=1, D,§=0 in R, by (2.9) and
(2.10). Thus
[y, E1€=0 and [y, &]é={ei D, (h:b,) — e} D€} D, .

Since D, &0, (4.5) follows.
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For later reference, note that
sin2uDyh.=e; D 6] — hee; Dyb;, (4.7a)
sin2uDyh;=e; Dy} —hye; D3b; (4.7b)
follow from (4.5) by setting y=2 and y=3, respectively, and using (2.8).

5. The structure of the characteristic surfaces

The shape of the characteristic surfaces is governed by a system of ordinary
differential equations along bicharacteristics which will now be obtained in our
notation. Since e}l,=sin I,

1;D,e;=—et Dyl +cos uD, u,
and by (2.4a),
e?Dyer = —sec pe; Dyli+ Dy e, (5.1a)
e} Dyel = —sec pef Dyl -+ Dy u=1¢} Dy}, (5.1b)
in view of (4.4). Since |&'| =1, (5.1a, b) give the non-zero components of D,e},
and '
Dyel==(Dy pn—sec pef Dyl) €+ (Dg u — sec pej Dgl) e}, (5.2)

The corresponding relation for the bicharacteristic vector €2,

D,e? = (sec pe Dyl — Dy p) €;+ {tg uDg(w — 1)} €2 (5.3)

follows from (5.1a), because €l ¢} =0, |¢2| =1 and
e Dyel=tg uDy(w— ). (5.4)
To obtain (5.4), apply €} D, to the first of equations (2.4a) to get
2 Dye=sec uel Dyl —tg pel Dyel,
use (3.3) and (5.1b) to eliminate e?D,/;, and e?D,e}, and reduce the result by
the help of (2.4a).
Finally, for the transversal vector
Dyé} = (sec e} Dyl — Dy p) e} + {tg u Dy (11 — w)} €, (5.5)

by (5.1b), (5.4) and the orthonormality of the characteristic system.

6. The acceleration on the transition surface

The equation (3.6) reduces to
D.,=—nD.w on 2 (6.1)

because the velocity vector is constant there. To find the fluid acceleration
at any point of X, it will therefore suffice to know ;' D, w at that point. In
this section we shall obtain ordinary first-order differential equations along
bicharacteristics of X, for D,w and A, from which both may be computed at
all points of X, if they are known along a curve intersecting every bicharac-
teristic of 2.
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Since the velocity is constant on X, the results of Section 4 imply that the
operators Dy, Dg and D, commute on X, when applied to the dynamical variables,
li;. Moreover (5.2), (5.3) and (5.5) imply that Dye}=D,e?=D,e?=Dyn,=
Dyb;=Dyw=Dyw=0 on Z,. In this section, we shall make repeated use of
these facts without any further explicit mention.

The ordinary differential equation for D,w,
DyDyow + ;’ D.w=0 on J, (6.2)

is obtained by cross-differentiation of the characteristic equations (3.2) and (3.7),
observing that

6§ DyD.l;=— (62Dyn)Dew on X,
by (6.1), and that
e} Dy, = cosec puef Dyel =0cosec . on X,
by (2.4b), and using the definition (4.3) of Q. To integrate (6.2) along bichar-
acteristics of 2}, observe that
DyQ=e!DyDye=—02 on X,
by (4.3) and (4.2). Hence
Dl=s (6.3)

on an arbitrary bicharacteristic of X, where s is the oriented length along that
bicharacteristic measured from the point (not necessarily in R) where 2-1=0.
The equation (6.2) now integrates to

Diw=g|s| ™ (6.4)

where o is constant on bicharacteristics and the range of s must be restricted
to be either positive or negative.

The equation for the metric coefficient is given by (4.7a), which may be
transformed into

Dyhe = cosec2p (1 — gg)DEa) on 2, (6.5)
by the help of (6.1) and (2.4a), if use is made of the fact that
e;Dgef=sec pe;Del,— D, everywhere in R, (6.6)
by (2.4a). Equations (6.4) and (6.5) imply
he=hy +-2mo |s |}, (6.7)

where /i is constant along bicharacteristics of X, m stands for the value of
cosec 2/t(1—du/dw) on X, and the sign is given by that of s.

On any bicharacteristic on which 2=0 the equations (6.3), (6.4) and (6.7)
must be replaced by

.QEO, (6.8&)
Dew=const. = (D w),, (6.8b)
hew = hy+m(Dew),s, (6.8¢)

where s is now measured from an arbitrary point.
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7. Bicharacteristic equivalence and shock prediction

When the flow in R is axially symmetric, the results of the last section become

s= -f-7cosec 4, (7.1a)
£271= L rcosec u, (7.11b)
D.w =0 r~¥(cosec u)~4, (7.1¢)
he=hy - 2mor~t(cosec )4, (7.14)

where 7 denotes distance from the axis of symmetry, the plus sign holds on the
characteristics of one family, and the minus sign on those of the other family.
Comparison with (6.3), (6.4) and (6.7) reveals the following

Equivalence Principle. Given an arbitrary bicharacteristic on X, we can
associate a locally equivalent axially symmetric flow, tn the sense that the velocity,
pressure, fluid acceleration and pressuve gradient have the same distribution along
the bicharacteristic as along a meridian characteristic of the axially symmetric flow.
Two-dimensional flows are included here as limiting cases, and they are corre-
lated by this equivalence to bicharacteristics on X, on which 2=0.

The results of Section 6 also elucidate the singularities of the fluid acceleration
that can occur in the transition surface. Since the velocity components are
constant on X, it follows from (6.1) that a singularity of the acceleration occurs
at a point of X if and only if, the outer derivative of w is singular there, 7.c.
(Dyw)t=he(Dew)?=0. Consider first a point where (D.w)?=0. By (6.4),
s==0 there. In the associated axially symmetric flow, this point lies on the
axis of symmetry. We shall accordingly call this type of singularity ‘‘center
of symmetry”’. By (6.3), we see that this type of singularity of the fluid acceler-
ation is induced by a geometrical singularity of the surface of transition and
indeed will occur independently of conditions downstream, as long as Do ==0
on the bicharacteristic passing through the singular point. Observe that the
centers of symmetry define a line on 2.

The other type of singular points on the transition surface are those at
which %,=0, that is, points of an envelope of the family & of characteristic
surfaces. These singularities define a line on 2 which will usually be continued
in R by a “limit surface’” enveloping the family . From the known results
for two-dimensional and axially symmetric flows [I], it may be expected
that such singularities are usually connected with the formation of shock waves.

8. Perturbation Assumptions

It is natural to expect that the relations along bicharacteristics of Section 6
ne satisfied to a first approximation, also in some region R of non-uniform flow
bear the transition surface X;. This will be proved under certain assumptions
to be introduced and discussed now.

We shall consider continuous velocity fields. Such a field must possess a
region R(d), adjacent to and downstream of X, in which |v;,— U] <4, for
arbitrary 6>0, if U, denote the velocity components of the uniform flow up-
stream of 2. In the following, § will be taken small, so that the velocity in R
differs from the incident velocity U, by only a small perturbation. A similar
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statement concerning the fluid acceleration cannot be made in general, since
continuity of the velocity has been seen above to be compatible with discon-
tinuity of the acceleration, for instance across X,. The assumption that the
acceleration be as small as the velocity perturbation forms part of the basis
of the Linearized Theory, but no such restriction will be made in the following.
On the other hand, the acceleration may happen to be small, and a notation
is desirable which exhibits the implications of such a state of affairs. A separate
parameter ¢ will therefore be introduced which characterizes the fluid acceleration
and which is not necessarily small.

This will be done in such a way, moreover, that singularities of the acceleration
connected with limit surfaces are not excluded. It then becomes plausible,
because it has been strictly confirmed for two-dimensional and axially sym-
metric flow [I], that the analysis of continuous velocity fields will possess
validity and usefulness also for cases in which R contains a weak shock wave.
The present analysis in such cases yields multi-valued continuous solutions which
in two-dimensional and axially symmetric flow, can be converted into single-
valued solutions with a discontinuity satisfying the weak shock equations, at
least to the first order. A similar extension of the analysis given below is likely
to be possible but is outside the scope of the present investigation. Similarly,
strictly transonic and hypersonic flows will be excluded by the condition

0<y§/,t§g—~y (8.1)

where y is some positive number.

As before, the analysis will be based on the consideration of a family ¥ of
characteristic surfaces 2, which contains X as a member and is labelled in
a one-to-one manner by a parameter & such that £=0 on 2. Without undue
restriction, from a practical point of view, of the boundary conditions down-
strcam of X, which determine the flow in R, this flow may be assumed to
satisfy some regularity conditions. More precisely, consideration will be restricted
to the collection of sets # (¢, 8) of flows defined as follows. A flow G (i.¢. a solution
v; of (2.1)) belongs to #(¢, §) if, and only if, — for some choice of ¥ and &, and
for some given positive numbers K, g, §, with d<(¢ — the three conditions

| Dyw], | Dyly], |6 DyDsly|, |6 Dyéll, | he] <K, (8.2a)
|D:w| <e, (8.2b)
[#,Deed|, | DeDyow|, | DeDyly|, | De Diw|, | D D3| < Ke (8.2¢)

are satisfied in the region K (e, §, G} which is the intersection of some fixed
bounded region containing part of X, and the region where 0=X£<Cd/e. Here
K will be understood to be a fixed number; § to be variable, subject to 0<< § < §,,
where §, is a small, fixed number; and ¢=¢(d) to be bounded and large compared
with § in the sense that a positive integer » exists such that

(6/e)"< K 8 (8.2d)

for every 6, so that either ¢ is a fixed number independent of §, or d/e—0, if
£(0)—0 as §—>0.
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In accordance with this definition, a function f(x,;, G) will be called O(8)
if a number M (independent of 8) exists such that, for all 6< §,,

[f(x;, G)| <M,

whenever x,€ R (¢, §, G) and G&.#(¢, §). Similarly, f will be called bounded if,
for all d<< d,, Cir et o
; [1(x;, G)| <M,

whenever x,€ R(e, d, G) and GE (g, 9).

Assumptions (8.2) imply that w —w,=0{(4), and in Section 11, the velocity
will be seen to be predicted by our analysis, except for errors O(d%/¢). Under
the assumptions (8.2), the acceleration will be shown to be O(e), and it will be
predicted except for errors O(d). On the other hand, the thickness of R is
0O(d/e), while the errors in the prediction of position will be O(d2/¢). All this
is independent of the relation between ¢ and ¢ but shows that the results become
uninformative if we allow 6/e -1 as 6 —0. It will be shown in the next section
that the derivatives of the velocity in any direction tangential to the members
of i¥ are O(d). On the other hand D.w is O (e), % is bounded and Dyw=»h;'D,w,
so that the derivative in the outer direction is much greater than the tangential
derivatives to the members of §§. Such a distinction in order of magnitude
between the derivatives taken normally and tangentially to a family of charac-
teristic surfaces is typical of a “‘progressive wave’’, in contrast to a wave inter-
action, and the main substance of (8.2) is indeed that the flow in the region
R be a progressive wave in this sense. Such a region occurs where a uniform
flow develops into a non-uniform one with streamline curvature much greater
than the velocity perturbation. More generally, such a region can be expected
to occur where a flow whose perturbations of the velocity and its derivatives
of sufficiently high order are O (d) develops into a flow with streamline curvature
much greater than . The results here obtained do not generally yield the velocity
field in the whole region adjacent to a thin wing, but they represent an essential
step beyond the restriction to the transition surface 2.

In two-dimensional flow the uniform first-order theory has been brought
to the stage where it contains the linearized theory [/], and in axially symmetric
flow this has been largely achieved [I], especially for progressive waves. The
following analysis derives only a uniform first-order approximation of more
limited scope which complements the linearized theory because it permits the
treatment of flows with singular accelerations such as occur at limit surfaces.
The continuous solutions of the non-linear equations of motion which contain
limit surfaces are multi-valued, but as in two-dimensional and axially symmetric
flow, when the region of multivaluedness occurs inside the region of flow, their
analysis may be expected to represent the proper first step in the construction
of physically acceptable solutions with shocks.

The assumption that e} Dye? is bounded excludes centers of symmetry. On
a purely mathematical level, the exclusion of centers of symmetry is related
to the condition (8.1) excluding the values 1 and 0 of the reciprocal of the local
Mach number. All these conditions serve to exclude singularities of the governing
differential equations, and it is well known from the theory of transonic flow
and axially symmetrical flow that such singularities may introduce severe physical
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and mathematical difficulties. The exclusion of centers of symmetry is also
related to the physical assumption that R is a region in which the flow is a pro-
gressive wave. Near centers of symmetry, wave interaction processes play
necessarily a dominant role. In particular, if the region considered is that
adjacent to a wing surface W, the admissible surface shapes must be restricted
so as not to generate centers of symmetry in their neighborhood. For instance,
the leading edge of W must not have certain types of corners.

With regard to (8.2c) observe that D,Dyw, D;Dyl;,, D.D} and D D3/, are
determined by the manner in which the transversal derivatives of the velocity
vary as we move into the region of non-uniform flow, and therefore it is natural
to expect these quantities to be controlled by the boundary conditions. It is
plausible that they are of the order of D.w, unless D.w has strong wavy variations
in the transversal direction.

The assumption n;D.e}=0(s) implies D.ef=0(e), because efD,e?=0,
I;D;e}=—¢€}D,l;, and it will be shown later that D,l;=0(c). Therefore, since
the range of & is O(d/e), any change of /; and ¢ in the outer direction must be
0(6). This in turn implies that the same is true for #;, e}, ¢# and b,. On the
other hand, any surface of discontinuity for the derivatives of the velocity must
belong to . Therefore, in the case of a wing W, any line along which the normal
curvature in the stream direction of W is discontinuous must be almost parallel
to the leading edge.

9. Tangential derivatives in a velocity perturbation
It will be shown now that the assumptions (8.1) and (8.2) imply that
Dyw, Dyl;, Dyw and Dgl; are O(6), {(9.1a)
[2.3)0, (2,310, [2.8]o, [2,6]0, [3,6]o and  [3,£]4; are 0(3). (9.1b)

Recall that (8.1) implies tgu, cotu, secu and cosec u are bounded; this
will be used repeatedly without further mention. Since the range of £ is O(/e),

Dyw=0(d), Dgl,=0(9) (9.2a)
Diw=0(d), D31,=0(0) {(9.2b)
follows from (8.2). That Dyw and D,/; are O (§) follows, by (8.2d), from repeated
application of the following
Lemma. If Dyw, Dyl; and €} DyDgl; are O (n), where 5(0) is a bounded function,
then they are in fact O (ndfe) or O(6).
To prove this lemma we first use (3.6) to show that

D¢l;=0(e) (9:3)
by virtue of (9.2a) and (8.2). Secondly, we show that
Deel, Dyn;, D:b; are O(eg), (9.4a)
Dyel, Dyn;, Dyb; are O(n), (9.4b)
Dyef, Dym,;, D;b; are bounded. {9.4c¢)

The vectors e, n; and b; are determined by I; and ¢ through the algebraic
relations (2.2), (2.4) and (2.8), and in these relations the coefficients are functions
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of w only. Now D.w, D,l; are O(¢) by (8.2) and (9.3), Dyw, D,l; are 0(d) by
(9-2), and we are assuming D,w and D,l; are O(n), so (9.4) may be established
by showing that D,e} is O(e), Dye? is O(y) and that D,e? is bounded. By (5.5)
and (9.2a),

D,é=0(3), 0.5)

and since the equipotential system is a basis,

Dyei=(;D36) 1+ (n;Dye) m,

Dyl = (D)l + (n,Dséd)m,.
Here n,D. 6 and I, D e = — 2 D1, are O (¢), by (8.2) and (9.3), I, Dyel = — &2 D1,
is 0 (d) by (9.2a), and (9.4) may therefore be established by showing that »;D,e
is bounded. Indeed,

n;Dyel=— e Dyn,—= —tg ued Dyl;+ sec pel Dyel,
by (2.4b), and since elDye;= —e¢;Dye? is bounded by (8.2), it follows that
n;Dye? is bounded.
Thirdly, we note that
Dyhe and Djh, are bounded, (9.0)

which follows from (4.7) by virtue of (9.4) and the assumed boundedness of 7;.
Fourthly, we show that

(23], [2,3]4, (28w, (2,84, [3.&lw, [3,€); are Ofy). (9.7)

According to the results of Section 4, the commutators are linear combinations
of derivatives in directions tangential to the members of &, and such derivatives
of w and [, are bounded, by (8.2a) and (9.2a). Moreover, the coefficients in these
linear combinations are bounded — for 2, 3] this follows from (4.2), (4.3), (9.4);
and for [2,£] and [3, &], it follows from (4.6), (9.4), (8.2a) and (9.6) — and so
(9.7) is established.

Observe that, since the quantities considered in (9.1b) are such linear com-
binations of those considered in (9.1a), and since they satisfy (9.7), the lemma
will also serve to prove (9.1b) as a corollary of (9.1a).

Finally, we show from the characteristic equations (3.2) and (3.7) that
D,w=0(ndle). Indeed, by (3.2) and (9.2a),

Dyow —n;Dy1,=0(0). (9.8)
On the other hand, if D, be applied to (3.7), there results
D (Dyw+n;Dyl;) =Dy (hesin e Dyl) — [2, Elo —n;[2, E]1,+
+ (Dgn;) Dol — (Dgn) Del; =0 () + 0 (¢),

by (9.6), {8.2), (9.4), (9.7) and (9.3). Integrating this equation from X, we
obtain
Dywr+n;D,1,=0 (néle)+ 0(6) =0 (ndls),

and therefore by (9.8)
Dy =0(ndfe),
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which also implies
Dyl=0(5]¢)
by (3.3) and (9.2a). This in turn implies that [2, 3]/,=0(nd/e), and therefore
applying ¢} Dy to (3.3),
2Dy Dyl;= e} Dy Dyl 0 (n6fe)
= (Dyw — sin uéf Dyly) & Dyn;+ Dy (ef Dyl sin p Dyw)

because #,;¢=0 and é}e?=1; but Dyn,, Dyel are bounded by (9.4c), Dyl;, Dy,
D3l;, Diw are O(6) by (9.2), and we have just shown that D,w is O (5 d/e), so that

€; Dy Dyl =0(nd[e)+0(9),

and the proof of the Lemma is complete.
For later reference, we show that

Dye?, Dyn;, Dyb;, are 0(9) (9.9)

by recalling that the vectors e, n;, b;, are given in terms of /; and ¢ by means
of a set of algebraic relations whose coefficients are functions of w only. Since
D,w and D,l; are O(d) by (9.1) and D,e} is O(8) by (9.5), (9.9) follows. From
(2.4b) and (9.2), moreover,

Dyn;=cosec uDyei+0 (). (9.10)

10. The acceleration on the members of §

The results of Section 6 will now be extended to the region of non-uniform
flow. Corresponding to (6.1), we have

D ;= —n;D.0+0(6) (10.1)

by (3.6) and (9.1a), so that we shall again need to determine only D.w and 7,
in order to know the acceleration, because the tangential derivatives of the
velocity are O () on the members of 3.

First, apply D, to the characteristic equation (3.7), and interchange directional
derivatives by means of (9.1b) to obtain

DyDew+n;DyDel;=hesin pef Dy Dyl A0 (6),
in view of (9.9). This equation reduces to
DyDew-+n,DyDel;=0(6), {(10.2)

because application of D, to (3.3) shows that e}DyD,l;=0(d), by (9.1a) and
(9.2b). Next, apply D, to (3.2), and interchange directional derivatives by means
of (9.1b) to obtain

DyD.w —n;DyDely=sin pel Dy D¢l + 0 (9)
by virtue of (9.1a). Then use (3.6) to show

DyDew —n;Dy D= —sin p (€} Dyn;) D+ 0 (0)
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by (9.1a) and (9.2b). This equation reduces to

DyDiew —n;DyDyly= — QD040 (6), (10.3)
by virtue of (9.10) and (4.3), and implies, together with (10.2),
DyDew+ £ Dy =01(9) (10.4)
which corresponds to (6.2).
Moreover,
D,Q24-22=0(9) {10.5)

follows from the fact that (4.3), (9.9) and {4.2) imply
DzQ:e?[)ZD3e?+O((S):e?D3Dze?—(Q')z—.Q2+O(6),

where £’ is O(6) by (4.3) and (9.9), and et D3 Dy el is 0(8) by (5.3), in view of
(9.1a) and (9.2b). From (10.5) and (10.4),

Q=54 0(5s,), (10.6)
Diw=0|s|74+0(ds,), (10.7)

where s, is the length along bicharacteristics measured from the point where
the data are prescribed.

To compute the metric coefficient he, observe that (4.7a) reduces to
Dyhg=cosec2pe; Deel++0(9),
by (9.9), and it follows from (6.6), (10.1) and (2.4a) that

Dyhe=cosec2u(1-—duldw) Diw+0(8). (10.8)
By (10.7), therefore,
he=hy +2mo|s[}+0(ds3) (10.9)

where the sign is again given by that of s, as in Section 6.

11. Conclusions

The Equivalence Principle of Section 7 holds, to a first approximation, along
the bicharacteristics of the family §, by virtue of (10.6), (10.7), (10.9) and (10.10).

Equation (10.7) suggests that the centers of symmetry of 2, may be continued
by a surface of the same type of singularities in R. Since our theory breaks
down near centers of symmetry, this point remains open. It is certainly true
for some special types of flow, for instance axially symmetrical flows, for which
the axis of symmetry is a line of singularities in any region of non-uniform flow.

At the points where he=0, a limit surface must be expected, and the
present scheme can be applied at such singularities if the family 7 is properly
chosen. The results of Section 10 can then be used, by letting /%, change sign,
to compute a first approximation to the multivalued solution.

Perhaps the most interesting result of the present work is the first-order
approximation to the flow which can be deduced. We shall illustrate the method
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by obtaining an approximation to the flow in a thin region next to, and down-
stream of a uniform flow when a stream surface W is prescribed. We treat
first the case when the stream surface joins the uniform flow smoothly. ILet
C, denote the line on which the stream surface joins the uniform stream, and
assume that C, is supersonic. Here as in what follows a curve is said to be
supersonic if it makes an angle with the velocity greater than . This assumption
is made in order to assure the existence of a characteristic surface passing
through C,. Assume also that a part of W adjacent to Cy has non-small curvature,
and restrict attention to a portion of it which lies within a short distance along
streamlines from C,. Let §, be a family of non-intersecting supersonic curves
C covering W, and  the family of characteristic surfaces passing through them.
It is plausible, and the author has indeed shown, that %, and D,w may be com-
puted on W, except for terms O(d), when the assumptions (8.1) and (8.2) are
satisfied. The results of Section 10 then allow us to compute, 4. and D.w in
R as a function of the length along bicharacteristics. To obtain the velocity,
we can integrate D.w and (10.1) with respect to & in the outer direction. To
obtain the corresponding position, we can integrate D x;=heb 0x;/0x;=h:),
with respect to & observing that the change of b; in the outer direction is O (d/e)
by (8.2). Within this order of approximation, R may be decomposed in as many
subregions as surfaces of discontinuity of the acceleration occur in R, and for
integration in the outer direction, 4, and D.w need be recomputed only when
we cross a surface of discontinuity. By proceeding in this manner, the acceleration
is obtained except for terms of Q(8), the velocity except for terms of O(0%e)
and the corresponding position except for terms of O (§%/e?).

When W does not join the uniform stream smoothly, C, is a limit line and
he==0 there. Corresponding to C,, we then have infinitely many values of &,
and the method described above can be used to compute the flow in the region
next to the uniform flow, which in this case is similar to a Prandtl-Meyer ex-
pansion.
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