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SYNOPSIS 

Slightly nonlinear materials and structures with purely hysteretic damping, 
subjected to harmonic disturbances are studied. It is shown that a load­
deíormation or stress-strain relationship P = A x o: on first loading (in which 
P is the stress, x denotes strain and A and o: are material constants) supple­
mented by a rule to obtain the curves on unloading and reloading, leads to a 
behavior very near that of a linear viscoelastic matetial, but the equiva.lent 
damping. ratio does not depend on frequency or amplitude. The relations 
between P and x in unloading and reloading can be obtained from that for first 
loading in accordance with a rule developed by Masing and studied by Housner 
and J ennings. It is contended that sorne materials thought of as viscoelastic 
actually possess this type of hysteretic ·behavior. Expressions are included 
for equivalent viscous damping and for the period of free vibration. 

,Note.-Discussion open until January 1, 1965. To the closing date one 
a written requestmust be filed with the Executive Secretary, ASCE. This paper is part 
of the copyrighted Journal of the Engineering Mechanícs Division, Proceedings of the 
American Socíety of Civil Engíneers, Vol. 90, No. EM4, August, 1964. 
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INTRODUCTION 


It is known that for a large class of materials and structures, over a wide 
range of frequencies, the degree of damping depends little on the frequency 
and on the amplitude of vibrations.4,5,6,7,8 Their behavior inthis range is 
known as that of constant Q. The load-deflection curves of these materials 
and structures are independent of the rate of loading, within the range in 
question, and can be determined from static tests. 

Many materials behave, apparently, as linearly viscoelastic over a wide 
range oí strains. However, .independence oí the degree oí damping írom the 
frequency implies a creep function inversely proportional to time", This is 
inadmissible since it can be shown that this function in turn implies that de­
formation of an initially undisturbed material introduces a nonzero state of 
stress in the pasto 

On the other hand, purely hy steretic materials under harmonic disturbance 
absorb an amount of energy, per cycle, that dapends only on the amplitude, 
not on the frequency. In general, the corresponding equivalent degree of 
viscous damping is also a function of amplitude, but a relationship can be 
found, as done herein, for which the degree of equivalent viscous damping is 
independent of the amplitude of vibration. It is natural, thereíore, to advance 
the assumption that the actual behavior of these apparently linear visco­
elastic materials is, in fact, mildly hysteretic and of the type treated herein. 

It is the purpose of this paperto establish mildly nonlinear load-deformation 
01' stress -strain curves that give an equivalent degree of damping which is 
independent of amplitude and of frequency under steady-state sinusoidal 
oscillations. With suitable restrictions the principIe of superposition will 
give a sa:tisfa,ctory approximation to the behavior of the present type of 
constant-Q materials an.d structures, as the degree of nonlinearity is small 
over a wide range of deformations.. \. 

Eesults derived here apply to continuous as well as to discrete systems 
with any number of degrees of freedom provided certain re.strictions are meto 
For the sake of simplicity the theory will be developed for systems having 
a single degree .of fre~dom, and generalizations will be described subsequently, 

The main object in establishing load-deformation curves of this type is 
to allow the characteristics of slightly nonlinear structures that have 
constant -Q damping to be set down in a simple manner so that their responses 
to a number of disturbances can be computed, for example in a Monte CarIo 

3 Mindlin, R. D., Stubner, F. N., and Cooper, H. L., "Response of Damped Elastic 
Systems to Transient Disturbances," Bell System Technical Publication Monograph 
B-1561, 1945. 

4 Alford, J. L., and Housner, G. W., "A Dynamic Test of a Four-Story Reinforced 
Building," Bulletin of the Seismological Society of America, Vol. 43, No. 1, January, 
1953. ' 

5 Knopoff, L., "The Seismic Pulse in Materials Possessing Solid Friction, 1: Plane 
Waves," Bulletin of the Seismological Society oí America, Vol. 46, No. 3, July, 1956, 
pp. 175-183.. . 

6 Hunter, S. C., "Viscoelastic Waves," Progress in Solid Mechanics, edited by I. N. 
Sneddon, Vol. 1, Chapter 1, North Holland PublishingCo., Amsterdam, 1960. 

7 Herrera, I."Rosenblueth, E., and Rascón, o. A., "Earthquake Spectrum Prediction 
for the Valley of Mexico," 3rd World Conf. on Earthquake Engineering, New Zealand, 
1964. 

8 Kimball, A. L., and Lovell, D. E., Physical Reviews, Vol. 30, 1927, pp. 948-960. 
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type of analysis. It is true that essentially the same can be achieved by 
stipulating the correct dashpot constants, and methods are available to com­
pute the constants required to give a specified set of damping ratios.9 But 
such methods are not simple and must be applied anew in every specific 
instance. 

Notation. --Letter symbols adopted for use in this paper are defined where 
they first appear and Usfed alphabetically in the Appendix. 

TYPE OF LOAD-DEFORMATION CURVES 

Following Masing10 it shall be assvmed that the load-deformation curves 
of aH flexible elements to be dealt with are given by 

P - P (X -X)
O F O 2 • • .. . . . . . . . . . . .• (1) 

in unloading, and by 

• . . . . . . . . . . . . .. (2) 

in reloading, in which P F(x) is the load-deflection relation for first loading 
and xo, Po are the displacement and load at which the direction of loading was 
reversed. Inconsistencies are obviated byspecifying, as done by Jennings, 11 
that if a curve defined by Eq. 1 or Eq. 2 intersects the curve described by a 
previous loading or unloading process, .respectively, the p(x) curve foHows 
one defined in the earlier process (see Fig. 1). ~ 

These relations closely resemble many experimental results and include 
several common idealizations (such as linear and elastoplastic behavior) as 
special cases. The curves are characterized by the fact that the initial sUff­
nesses on first loading, bn unloading, and on reloading are equal to each other. 

THE NONLINEAR SYSTEM 

The problem of specifying a linear systein equivalent to a nonlinear one 
will be approached by treating the latter as quasilinear: It shall be assumed 
that under an external force which varies in proportion to sin wl t, where w 1 
is the undamped natural circular frequency of the linear system and t = time, 

9 Berg, F. V., "Finding System Properties from Experimentally Observed Modes 
oí Vibration," Primeras Jornadas Argentinas de Ingenieria Antisismicá, San Juan, 
Argentina, April, 1962. 

10 Tananbashi, R., and Kaneta, K., "On the Relation Between the Restoring Force 
Characteristics of Structures and the Pattern of Earthquake Ground Motion," Proceed­
ings of Japan, Natl. Symposium on Earthquake Engineering, Tokyo, Japan, 1962. 

1I Jennings, P. C., "Periodic Response of a General Yielding Structure," Journal 
of the Engineering Mechanics Division, ASCE, Vol. 90, No. EM2, Proc. Paper 3871, 
April, 1964, pp. 131-166. 
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FIG. l.-GENERAL LOAD-DEFORMATION RELATIONSHIP 

p 

x 

FIG. 2.-CALCULATION OF ENERGY DISSIPATED PER CYCLE 
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the response of the nonlinear system is proportional to sin w 1 (t - tI), in 
which tI is a time shift. 

In steady state harmonic oscillations of frequency Cll 1 the energy absorbed 
per cycle by a viscously damped linear system is12 

2 ~-
W=21Ttx w vKM • • • • . . . . • . • • .. (3)

1 

in which t; is its percentage of damping, x its maximum displacement, K the 
stiffness, and M the mass. The equivaler'lt stiffness and viscous damping of 
the nonlinear system may be defined in a variety of ways. The equivalent 
stiffness will be defined in such a manner that the corresponding load­
deformation relation of the linear system, under static loading, pass through 
the extreme points of the load-deformation graph of the nonlinear system. 
The equivalent viscous damping is such that it minimizes the mean squared 
error deficiency term in the equation of motion' when a solution of the form 
x cos w t is assumed. Then, the absorbed energy may be put in the form 

W = 2 1T t x P • • • • • • . • . • • • • . • • •• (4) 

when w 12 == K/M, because K = pi x. 
The foregoing definition of equivalent viscous damping implies that the 

energy 10st per cycle by the linear system equals the energy 10st per cycle 
by the nonlinear one. Now, w12 = K/M so that the absorbed energy may be 
put in the form of Eq. 4. 

The last expression for W a1so gives the energy' 10st per unit volume in a 
constant-Q viscoelastic solid (one having the same degree of damping at aH 
frequencies of vibration) if P is replaced with stress and x with strain. The 
generalization' from sing1e-degree systems to viscoe~astic materia1s will be 
treated 1ater more fully. 

In the nonlinear system the energy 10st per cycle will be the hysteresis 
area. Under the assumptions made this area is eight times the shaded·area 
in Fig. 2, or 

x 
W = 8 I P(x') dx' - 4 Px . . . . . . . . . . . . .. (5) 

O 

Equating both expressions yie1ds 

x 
(2 + 1T t) xp(x) = 4 JO p(x') dx' •••••.••••••• (6) 

, 
Differentiatingwith respect to x, a differentialequation results whose solution 
is 

P = A x a • • • • • • • • • • • • • • • • • • •• (7) 

12 Timoshenko, S., "Vibration Problems in Engineering," D. Van Nostrand Co. 
Ine., New York, N. Y., 1956, 3rd Edition. 
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in which A is a constantand 

2 - 1T ta = ~ ( ) 2+1T!;; ••••••••••••••••••• 

This expression has meaning only if t./ 0.636. To obviate difficulties that 
occur when a is not equal to the ratio of two odd integers~ Eq. 7 should be 
read 

¡ p 1= A bda; ,sig P := sig x • (9) 

When a is near unity Eq. 7 may be approximated by 

P ~ A x (1 - t3 log x) . . . . . . (lO) 

in which (3 = 1 - a. In viewof this equation it is clear that when (3 is small 
the force-deformation relation is nearly linear for a wide range of x. 

The solution is independent of M, while the equivalent stiffness and A are 
related by· 

l-a
A = K x . . . . • . . • . • • • . . • • •. (11) 

Fig. 3 shows hysteresis loops for various percentages of damping. Very 
accurate measurements taken in a large triaxial machine show that confined 
sands, gravels, and broken rock behave as described by Eqs. 1,2 and 7 almost 
up to failure if P is replaced with stress .and x with unit strain. 13 (Of course 
the origin corresponds to a finite axial compression for these materials.) 
Marsal has deduced Eq. 7 f:I;om statistical mechanics of cohesionless granu­
lar materials. 13 

It is not difficult to show that whenever hysteretic behavior arises entirely 
from Coulomb friction between constituent porti9ITs of a material or structure 
the overall stress -strain or force -deformation unloading and re loading curves 
follow Masing's criterion and can be constructed from the curve for first 
loading,. as described in this paper, provided the behavior of indivi,dual con­
sistuent elements is linearly elastic; these elements may be soíl grains, 
crystals, or structural members with Coulomb friction at their connections. 

Such is very nearly the case with a sphere pressed against a flat surface, 
for example, and subjected to tangential forces if the material of which the 
sphere is made has negligible internal damping as compared with the hyster­
etic damping due to sliding at the surfaces of contacto Since the contact­
stress distribution i~ nonuniform and the contact pressure ís radially 
symmetric, slidíng takes place along an annulus if the tangential forces applíed 
are smaller than the m,>rm,al .force times the coefficíent of friction. A theory 
describing this phenomé'non is available14 and has been well substantiated 
by tests with a steel possessing negligible internal damping.15 

Force-displacement curves for a steady-state harmonic disturbance do 
show the type of hysteretic damping anticipated but the shape of these curves 

13 Marsal, R. J., Report to the Inst. of Engrg. Natl. Univ. of Mexico, Mexico City, 
Mexico, 1963. 

14 Mindlin, R. D., and Dresceiwicz, H., "Elastic Spheres in Contact under Varying 
Oblique Forces," Journal of Applied Mechanics, Vol. 20, 1953. 

15 Goodman, L. E., and Brown, C. B., "Energy Dissipation in Contact Friction: 
Constant Normal and Cyclic TangentialLoading," Journal of Applied Mechanics, Vol. 
29, 1962. 
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differs from the exponential relationship involved in Eq. 7. The energy dis­
sipated per cycle in those tests, divided by the product Px, increases rapidly 
with the amplitude of oscillation in accordance with the theoretical predic­
tion14 while it would be independent of the amplitude if Eq. 7 were applicable. 
In similar tests with glass spheres the dependence of W / Px on P was less 
pronounced, apparently due to the influence of internal damping15 but it cannot 
be stated that Eq. 7 described these phenomena adequately. 

Under other conditions certain experíments have substantiated a specific 
damping function of the exponential type for sorne materials. 16 Other test 
results3,4,5,6,7 lend support to theassumption that under a ~ide range of 
parameters many materíals exhibit a behavior that is adequately described 
by the stress-strain curves' treated in this papero A much wider class of 
materials, including granular soils, have a different stress -strain curve on 
first loading and have a different behavior in what concerns darnping, but their 
unloading and reloading curves can still be contracted satisfactorily in ac­
cordance with the same rules. . 

The infinite slope of the p(x) curve at x =O is objectionable on many counts, 
includingthe infinite velocity of smallamplitude waves that it implies. Clear­
ly, Eq. 7 can only be accepted as an idealization valid within a certain range 
of variables and for the calculation of certain phenomena. lf the p(x) curve 
is changed in the neighborhood of the origin, say in the interval Ixl ~ Xl, t is 
still found to be independent of Wl and of the arriplitude for amplitudes greater 

. than Xl if Eq. 7 is retained for Ix 1> Xl. Smaller degrees of damping are 
found at smaller amplitudes. 

It is of interest to write explicit formulas for the case of free vibration. 
Let the system be given a deformation xO(> O) and released. Eqs. 1 and 7 
state that its equation of motion will be 

l-a ( 
\. 

aM x= Po - 2 A x - x) . . . •• (12)
o 

Let y = xO - x and integrate between ze~o and sorne value of y 

.2M (13)- Y 

The system reverses its direction of motion when y = O and y = y 1, say. Let 
PI denote the corresponding spring force. Then 

l-a )-1 a )Po = 2 A(l + a y 1 ..........•... (14 


But according to Eq. ,1 

1 -a a )
P 1 Po - 2 A Y 1 = - a Po ........... (15 


Inductively, then, the ~th reverse in motion takes place when the spring force 
is 

16 Lazan, B. J., "Damping and Resonant Fatigue Behaviour of Materials, Conf. on 
Fatigue of Metals, Institution of Mech. Engrs. and Amer. Soco of Mech. Engr., 1956. 
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P = (- a)n P (16)
n O 

This res\l.lt should be compared with that of a quasilinear treatment, ac­
cording to which the deformations as well as the spring forces in successive 

half cycles are in the ratio. -exp [-17 t, (1 _t, 2i /2
] ratherthan in the ratio -a. 

The two ratios are nearly equal when t, < < 1, as they differ only by terms of 
the order of t,3. For?; = 0.1 for example, the viscous-damping decrement 
ratio is 0.731 while a 0.7285. 

Now, from Eq. 14 

l1/a 
y =[(1 + a) PQ

1 21-aAJ 

(17) 

so that the deformation at the nth reverse in motion is 

l/a n-1 I nJ 
x = x [1 _ 2 (1 + a) ¿ (-a 1 a) (18) 

n O 2 i O 

Hence, when the system comes to rest it has a permanent deformation 

(19)x"" = X o ~ - 2 1 
'N ~ 1·1a+a 

For ~ < < 1 Eq. 19 gives 

With t = 0.0425, a =7/8, the asymptotic expression gives xooI xo 0.00030 
while the exact value is 0.00036. 

Integrating Eq. 13 and writing P n for PO, the !!th half period of free vibra­
tions is found to be 

T 
n . . .. (21)2= 

Through a suitable change of variables it is easily shown that 

T 
n (ni 2) (l/a-1)T = a ............ . . • .. (22) 
O 

http:res\l.lt
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Combining with Eq. 16 it is seen that when oscillations have damped down 
to the extent that the absolutevalue of the spring force has decreased from 
Po to P, the natural halfp~riodhas decreasedin the ratio (pipo) (1/2)(1/a-1). 
If fQr example, pi Po = 1/ 2 and t; = 0.1, the half period of free vibrations has 
decreased toO.88 of its original value, whíle with ?; = 0.02 it decreases to 
0.978 of the original periodo 
From Eq. 22 the time required for the structur~ to come to rest is 

(n/2)(1/ a-1)a 
n = 1 

TO 
2=----¡-:-...,-:-;,...-;--;--.... (23)1 _ a(1/2)(1/a-l) ................ . 


When t; 1 Eq. 23 may be written 

(24) 

If!; = 0.1 for example, Eq. 23 gives t 8.8 TO whereas the asymptotic ap­
proximation gives t = 10.1 TO' With?; = 0.02, t 254 TO. 

GENERALIZATIONS 

It is easíly shown that the conclusions derived ~erein apply also to multi­
degree systems provided all the corresponding spring elements have the 
same parameter a and provided the system possesses natural modes of vi­
bration in the usual or classical sense. 

The results presented also apply to the uniaxial vibrations of continuous 
media of materials whose behavior is apparent1y viscoelastic with a percentage 
.of damping independent of vibration. In adapting the expressions derived to 
these media, P must be replaced with the generalized force for which the 
medium vibrates uniaxially (torque or longitudinal force in the case of slender 
bars, shear in a hqrizontally stratified semispace, etc.), x will represent the 
corresponding generalized deformation, K the stiffness or appropriated 
modulus, and A a constant having the proper dimensions. The equivalence 
does not then require that the forced vibrations take place in one of the natural 
modes of the system. 

The assumption of slightly nonlinear behavior has the advantage over the 
linear treatment with a creep function 1/ t that it dispenses with the spurious 
strains which the latter introduces for negative time, besides being in better 
accord with experimental evidence for several materials. Such uniaxial vi­
brations occur in the longitudinal oscillations and torsion of slender bars and 
in the transverse oscillations of taut strings, shear beams, and stratified soíl 
formations. 

Finally, the same results apply to the three -dimensional vibrations of any 
continuous system, in that the steady-state behavior of a constant-Q linearly 
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viscoelastic material is similar to that of a mi1dly nonlinéar one having a 
tensorial stress-strain relation given by Eqs. 1, 2, 7 and, 8 with the proper 
substitutions in nomenclature. 

CONC LUSIONS 

Thefollowing point has been proved herein. 
Let , < < 1 and a := (2 - 1Tt) / (2 + 17 t). Consider a sy stem formed by a number 

of rigid masses interconnected.by ,springs whoSJ~ load-,deformation law on 
first loading is P =F{x) = A xa. Each spring may have different A but they 
all have the same a. On unloading the law is given by Eq. ¡ andon reloading 
it is given by Eq. 2, but if the unloading or the reloading 'curvf! intersects that 
from an earlier cycle in the same sense, the p(x) curve follows the one of the 
earlier cycle. Define equivalent stiffnf!ss .a~. the ratio of m.aximum spring 
force to maximum deformation. Then this system, when subjected to steady­
state forced vibrations, behav~s in neatly linear tnanner with an equivalent 
viscous damping equal to t in aH its natural mQcte:s \udependently of the natural 
frequency in question and of the amplitude of vibration. Moreover, no other 
type of function F satisfies these t'riteria. . . 

Generalization of these results to cbntinuous media of constant -Q materials 
under steady -state vibrations of arbitrary frequeney shows that the nonlinear 
treatment yields essentially the same behavior as the assumption of linear 
viseoelastic behavior with creep function 1/ t but dispenses with ineonsist­
eneies that the latter introduces for t < O. 

It has also been shown that the periods of successive cyeles in free vibra­
tion are progressively shorter and the process ends after a finite length of 
time, leaving a permanent deformation. For t< < 1, t{1e permanent deformation 
is approximately equalto the initial deflection times (7T ~ /2)3 and the duration 
of motion is approximately (17 t) -2 times the initial periodo 
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APPENDIX. -NOTATION 

The following letter symbols have been adopted for use in this paper: 

A = constant in Eq. 3 (kg cm -(
1

); 

e dashpot constant (kg cm- 1 sed; 

e base of natural logarithms (dimensionless); 

http:interconnected.by
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F = funcHon of deformqJion (kg); 


i ::: -integer (dimensionless); 


K = stiffness (kg cm- 1); 


M = mass (kg cm- 1 sec2); 


n = integer (dimensionless); 


P = force (kg) or :generalized force; 

, ' " 

T = initialnatural period oí vibration (sec); 

a 

1 


T = superscript signifying transposed; 


t = time (sec); 


W = energy lostper cycle of forced vibrations; 


x = d~formation (cm) or generalized deformation; 


=:; exponent in Eq. 3 (dimensionless); 


i; = damping expressed as a fraction of critical (dimensionless); and 


w _"o natural circularfrequency (sec~ 1). 



