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ON A lVIETHOD TO OBTAIN A GREEN'S FUNCTION FOR A 
lVIULTI-LAYERED HALF SPACE 

By 1. HERRERA 

ABSTRACT 

In this paper the surface wave terms of the Green's function for a two-dimensional multi
layered half space are obtained. The method used is new and remarkable by its simplicity. It 
is based on the integral representation theorems for elastodynamics. The orthogonality proper
ties of surface waves are generalized to include not only Love waves but Rayleigh waves as 
well. 

INTRODUCTION 

The Green's function technique (Knopoff 1956 & de Hoop 1958) has recently 
come to to playa central role in the theory of elastic wave transmission (Hudson 
and Knopoff 1964, Knopoff and Hudson 1964). On the other hand the author 
(Herrera 1964) is developing a linearized theory of wave transmission. In this 
theory, the solution to any problem is given in terms of integrals of known quant
ities by the Green's function corresponding to the region which is being perturbed. 
In many cases of geophysical interest the regíon whích is perturbed ís a multi
laye red half-space. It is therefore very important to have simple means of computing 
the Green's function for a multi-Iayered half s~ce. 

When one is concerned with problems of surface wave transmission it is usually 
enough to know the surface wave terms of the Green's function. For the three di
mensional problem, Harkrider (1964) has recently given a meth~d to obtain them. 
Here a method which is very simple, is presented for the two-dimensional problem. 
All the methods thus far used are based on the evaluation of the residues at the 
poles of the expressions giving the Green's function. The method presented here 
has a completely different basis, it is based on the Green's function representation 
theorem for elastodynamics (Knopoff, 1956, de Hoop, 1958). These theorems give 
any solution of the equations of elasticity in terms of the Green's functions. vVhen 
the Green's function is known it allows us to compute any solution in terms of the 
boundary data. It is shown here, that when the Green's function is unknown but 
some solutions are known, the integral representation theorem may be used to 
obtain information regarding the possible shape of the Green's function. In particu
lar when a surface wave solution is known, its contribution to the Green's function 
is determined directly by the integral representation theorem. 

In another papel' (Herrera 1964) and in some papers to come the author is pre
senting a linearized theory of wave transmission. The results presented here allow 
us to solve any two-dimensional problem of surface wave transmission for which 
linearized theory is applicable, because for surface waves the results of that theory 
depend only on the surface wave terms of the Green's function. 

In the process of obtaining the main result of this papel' an orthogonality property 
for surface waves is obtained which is a generalization of the known properties, 
because it includes not only Love waves but Rayleigh waves as well. 

The simplicity and ease with which the results are obtained show the power of the 
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type oí arguments used in this paper and point towards the possibility of extending 
these methods to a more general class of problems. 

THE SET OF SOLUTIONS CONSIDERED 

We shall be con cerned with the quasi-steady motion of elastic bodies which lS 

governed by 

o (la) 

(lb) 

where C,:jpq is the elasticity tensor, the other symbols having the usual meaning and 
summation convention has been adopted. We shall consider only the two-dimen
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- - --- INTERFACES BETWEEN LAYERS (PLANES OF DISCONTINUITY) 

FIG. 1. Multilayered half space and integration contour. 

sional problems, i.e., we assume that all the quantities in (1) are independent of X 2 • 

The tensor Cijpq will be assumed independent of Xl, but in general it will be as
sumed a piecewise contilluouS and differentiable function of X3 with at most a finite 
number of jump discontinuities. 

The displacements u are assumed to have continuous second derivatives except 
at pOillts where C ijpq 01' its first derivatives are discontinuous. There 

[Ui] = O (2a) 

[1'3i] = O (2b) 

where the brackets stand for the jumps when crossing the discontinuities froll1 the 
upper to the lower side. 

We shall consider only solutions of (la) in the haH space O < Xa < 00 such that 
its boundary is stress free, Le. 

l' i3 = O at X3 = O 
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and which satisfy the additional condition 

ON GREEN'S THEOREM FOR UNBOUNDED REGIONS 

Let now u and v be two solutions of (1) satisfying the conditions stated in the 
last section. Then it is easily shown (see Appendix) that if R is a bounded region 
with boundary S 

(3) 

where nj is the norn1.al vector to S. 
Apply (3) to the rectangle (figure 1) 

a < Xl b·, 

where h is any positive real number, to get 

h1{Vi Til( u) - Ui Tile v) }xl=a dX 3 

h \. b 

= 1{ViTil(U) - Ui Til(V)}Xl=bdX 3 + i {Vi Ti3(U) - Ui Ti3(V)}X3=hdx l 

where the fact that the normal stresses vanish at X3 = Ohas been used. 
We now let h ---+ 00 to get 

Since a and b are arbitrary, equatioll (4) shows that 

depends only on the couple of solutions u and v but is independent of the line of 
integration. 

We next compute this integral for the case in which u and vare surface waves. 
Thus, assume u and vare of the form 

_ U (n) ( ) iknXl. _ U (m) ( ) ikmXl
Ui (X ) - i X3 e ) Vi (X ) - i X3 e 

where U/ n) and U/m) are function of X3 only. Then by virtue of (lb) 

T (n) iknXle)U =Tij ij e 

_ T(m) ik,nXl 
Tij ( V ) - ij e 

http:norn1.al
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where T~j) and T~j) are ol1ly functions of X;¡ • Therefore 

N ow the integrals of the first and second members are independent of Xl • Therefore, 
fol' surface waves, 

¡<I> {Vi Tij(U) - Ui Tij(v)}nj dx3 

(6) 
-- ¡<I> {u}m')T~.~} V (n}T(m) d

• ., - í íj nj X3 

The representation theorems for elastodynamics given by de Hoop (1958) have 
been extended by H udson and Knopoff (1964) to cover the case oí a multilayered 
medium. The extension of this theorem to a medium with not-necessarily homoge
neous layers is straightforward (assuming the existence of the Green's function) 
and a proof is given in the Appendix. 1t is 

(7) 

where G k is the tensor Green's function G k \.- (Gkl , Gk2 , Gk3 ) which satisfies for 
every k, the equation 

(8) 

together with the continuity conditions (2) at the interfaces. 
It is important for the discussion which follows to have information regarding the 

behavior of G k as Xl ~ ± oo. It is general1y thought (although it apparently has 
never been proved) that the displacements due to a source in a multilayered half 
space tend to a linear combination of surface waves as Xl ± oo. 

l\1ore precisely, we shall assume that if the source is located somewhere in the 
X3-axis then 

í'" v(n) iknXl + '" b 'U- (n) -i knXl • Xl> OL..t ank e L..t nk e ,
J n n 

Bk(x, 0, ~3) + I '" e ven) iknXl + '" d V- (n) -iknXI. 

l
L..t nk e L..t nk e ) Xl < O 
n n 

where Bk(x, 0, ~3) stands for body waves which are assumed such that they, together 
with their derivatives, tend to zero uniformly as Xl ~ ± 00 and the surface waves 
have been represented by 

V.(n) ( X3• ) iknx¡e 

and Ü(n) is the complex conjugate of v(n), ank , bnk , Cnk, and dnk are coefficients 
which are functions of the depth ~3 of the source and the sum extends over all possible 
surface wave solutions (Rayleigh and Love wave solutions). It is assumed 
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aboye that k n > O. Observe that if U(n)eiknXl is a surface wave, then its 
complex conjugate Ü( n)e-ik"Xl is also a surface wave in view of the fact that (1) is a 
linear equation with real coefficients and the boundary conditions are homogeneous 
and therefore, given any solution, its complex conjugate is also a solution. However, 
the first represents a wave moving towards the right while the second represents a 
wave moving towards the left. 

Now 

"b U- Cn) -iknx] +" U( n) ik"XlL.. nk e L.. Cnk e 
n n 

is a linear cOlnbination of solutions and therefore it is a regular solution in the whole 
half space we are considering. Thus, if we subtract this from G k , we shall obtain a 
new function which will be itself a Green's function fol' the haH space. This permits 
us to modify the definition of the Green's function G k to be 

r" JI UCn) ik"Xl. > OL.. ¿link e , Xl 
I n 

= Bk(x, O, b) + 'ji" _() 'k (9) 
L.. CnkU n e-"nXl ; Xl < O 

I, n 

where 

Ank = ank - Cnk; Cnk \: dn/c - bnk • 

This Green's function that we shall call the syn1l11etric Green's function, has the 
advantage of being more symmetrical because to the right of thé source there are 
only advancing surface waves and to the left there are only receding surface waves. 

Let now Uk(Xl , X3) be a surface wave and apply (7) in the rectangle shown in 
figure 1 for which a < O < b and such that contains the point (O, X3) in its interior. 
Repeating the reasoning that led previously to equation (4») we obtain now 

im 

Uk(O, X3) = {Glci(b, ~3; O, X3)T11(U) - 'UiTil(Gk)} d~3 
(lO) 

- 1«> {GkiCa, 6, O, X3)Til( u) - Ui Til( Gk)} d~3 

Because of (9) we can write 

Uk(O, X3) = 100 {Bki(b, ~3 ; o, X3)r1'l( u) 

- 100 {Bki(a, ~3 ; o, Xa)Til( u) - Ui Til(Bk )} d~3 
(11) 

iknb d~3+ L A nk(X3) 100 {U~ n) (~3)ril( u) - Ui T~~) hl=b e 
n o 


00
"c ( ) 1 {U-Cn)( ) T- Cn )}() -ikna dt - L.. nk Xa i ~3 Tíl U - Ui il h=a e .;;3· 
n o 
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Observe now that although Gk is not a regular solution of (1) in the whole plane, 
it is a regular solution for Xl > Oand for Xl < O. On the other hand, surface waves 
are regular solutions on the whole half space and therefore Bk(x, 0, ~3) is the differ
ene e of two regular solutions so that it is regular for Xl > O and for Xl < O. This 
shows by (4) that the value of the first two integrals is not altered if we let b ----+ + 00 

and a ----+ - 00, a fact. we are going to use to show that both vanish when u is a 
surface wave. By the definition of a surface wave, I u I and I Tíj I are independent 
of Xl and they are integrable from °to oo. Thus, there is a constant lJl! > 0, such 
that 

(12) 

On the other hand, since Bk together with its derivatives tend to zero uniformly as 
Xl ----+ + 00 , for every b > °there exists a constant K (b) > 0, such that 

I Til(Bk ) I < K (13a) 

! Bki I < K (13b) 

and K (b) ----+ Oas b ----+ + 00 • 

By virtue of (12) and (13) we have that for every b > O 

O 11~ {B,;(b, ~a, O, Xa)T,,( u) - 'UiTil(B,) 1d~al < 6MK(b) 

Since the integral is independent of b and the last term in the inequality tends to 
zero as Xl ----+ + 00 , it follows that 

(14) 

In a similar manner it follows that 

(15) 

Therefore when u is a surface wave (11) reduces to 

(16) 

If in particular 

U (m) ( • ) ikmx¡
Ui ()X - i Xi} e 
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then, in view of (6) equation (16) reduces to 

3 00 

- ¿ Cmk(X3) 1 {ü/m)T~'f) - u/m)T~~)} d~3 (17) 
i=l o 

In this equation as well as in those to follow we drop summation conventioIl. 
Let us define J m by 

(18) 

then equation (17) shows that J m cannot 'vanish because U/m) is not identically 
zero. Therefore we can divide by J m to obtain 

(19a) 

In a similar manner we o btain 

(19b) 

Substituting these expressions in (9), we get \. 

/ 

¿ JI Ük(n\~3)U(n}(x3)eiknXl .if Xl > ~1 
n n 

Or more generally in view of the invariance of the equations of motion and boundary 
conditions under translations along the xl-axis 

¿ JI U(nJÜ3)Ü(n)(Xa)eikn(Xl-h) if Xl > h 
n n 

(20) 
¿ 1 U(nJ(~3)Ü(n)(x3)e-ik,,(:rl-h} if Xl < ~l 

n 

where summ.ation is not understood over repeated indices. 
Equation (20) shows that when a surface wave U/m)eikmXl is known, in order to 

determine its contribution to the Green's function it is enough to compute the 
normalizing factor 

(21) 

For Love waves 
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equation (21) adopts a fornl specially siniple 

(22) 

CONCLUSIONS 

The contribution of surface waves to the symmetríc Green's functíon has been 
obtained by a method which seems to be new and which is very simple. 1t has been 
shown that whenever a surface wave solution is known for a half space, then its 
contribution to the Green's function can be determined computing some sort of 
normalization factor given by (21). This is true regardless of the way in which the 
properties of the materials vary with depth, as long as aH the surface wave solutions 
give rise to displacements and stresses which are absolutely integrable. 
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ApPEND\lX 

Let u and v be two solutions of (1) and multiply (1) by Vi to obtain 

(Al) 

Interchange the role of u and v in this equation and subtract the resulting equation 
from (Al) to obtain 

iJ iJUp) (A2')(e
Vi iJXi iipq iJxq 

From (A2), using the fact that 

eiipq = epqij 

obtain 

and integrate over the region R whose boundary is S, to obtain, using divergence 
theorem and (Lb) 

(A3) 
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which is formula (3) of the papero In this formula set 

(A4) 

where ~ is an interior point of R, to obtain 

(A5) 

where SE is a circle of radius € around the point ~ and Gk(x, ~) are the displace
ments produced by a concentrated force of unit magnitude acting in the k-direction 
and located at the point ~, i.e. Gk(x, ~) is for every ~ a solution of (1) which ís 
regular everywhere except at the point ~ and there 

(A6) 

Observe now that since 

C .. aGleP(G )
Tij le = 13PQ a.Yq 

\. 

equation (A6) implies that the derivatives of G k are 0(1/1') and therefore G k is 
O(Ln 1'), where r V(Xl - h)2 + (X3 - ~3)2. " 

Let now € -;¡. O in equation (A5) using the above observation to get 

(A7) 

A slight modification of the aboye argument shows that if u is a solution of 

then for every interior point ~ of the regio n R, we have 
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