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A Perturbation Method for Elastic Wave Propagation®

1. Nonparallel Boundaries

I. HERRERA®

Institutes of Geophysics and Engineering
National University of Mexico, Mezico City

Abstract. This is the first of a series of papers in which a small-perturbation theory for
elastic wave propagation is presented. Using classical perturbation technicues, we obtain bound-
ary conditions for the perturbation of the displacement field which, by means of the integral
representation theorems of elastodynamics, permit us to express the solutions to the problems
as integrals of known quantities. In this paper the method is formulated for mediums with
boundaries which are slightly nonparallel. Tt is then applied to a study of the propagation of

Love waves through a crustal layer.

Introduction. The study of wave propagation
in elastic mediums with nonparallel houndaries
is important to geophysicists beeause knowledge
in thig field will help them to understand and
predict the seismic behavior at continental mar-
gins, mountain roots, ete.

Some progress has recently been made in this
field. Hudson and Knopoff [1964] and Knopoff
and Hudson [1964] have obtained approximate
solutions to several problems of this type using
a method based on a representation theorem
for elastic wave propagation. Although some
other techniques have been used in dealing with
problems of this kind [Kane and Spence, 1963 ],
the method based on the representation theorem
seems to be the most promising because these
representation theorems reduce the problems of
wave propagation to guadratures when the
Green’s functions corresponding to the given
regions and boundary conditions are known.
However, as is usual when applying Green’s
function techniques, the problem is then to find
the Green’s functions suitable for the given re-
gions because they are known only for some
simple types of regions.

In geophysics we frequently encounter regions
which are close to some simple type of region
such as a layered half-space, for which the
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Treen’s function is known. It is therefore natural

to attempt to solve the problem using classical
perturbation methods which will permit trans-
forming the given region into one for which the
Green’s function is known.

In this paper, using the representation theo-
rems given by Knopoff [1956] and de Hoop
[1958] and classical perturbation techniques, we
formulate an approximate method of solution
which is applicable to a great variety of prob-
lems of practieal interest. The representation
theorems mentioned above are extended to cases
where the displacements and stresses are dis-
continuous. The method is then applied to a
study of the transmission of Love waves through
a crustal layer of variable thickness.

Symbols.

i, 3, k, p, q, indices whose range is 1, 2, 3 unless
otherwise stated, and for which
the summation convention holds
(2 1s also used for the square root
of —1, but in every case the
meaning is clear from the context).

n, m, indices whose range is not necessarily 1, 2,
3 and for which the summation
convention does not hold.

¢, perturbation parameter.

b'q = (z1, Tq, x3), Cartesian coordinates
of a point.

£ = (&, &, £;), Cartesian coordinates
of a point.

u(x, € = (w1, us; us), displaccment field
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Fig. 1. Half-space with overlying layer.

corresponding to the value € of the
perturbation parameter.

u(x) = u(x, 0), unperturbed solution.

ui(x) = Ju/de(x, 0).

w, angular frequency of solutions of the form
U;eT e,

74 (1) = Cijpe 0u,/0x, stress associated
with u.

T:i0 = 74(u°).

Tiit = 7;;{ul).

Ciines elasticity tensor (for isotropic material
Ciim = >\5i1’ 6zra + ﬂ(aip Biq +
8 0id)).

0.5, Kronecker’s delta.

8(x), Dirac’s delta function.

1, N, Lamé constants (u, M\ in Ry, ga, Az in R,).

p, density of the material (p; in Ry, p» in R,).

S, free surface of the unperturbed region.

83, interface of the unperturbed region.

Ry, layer bounded by S, and S..

R, half-space bounded by S.,.

H, depth of the interface for the unperturbed
region,

T, hs, functions of z, and x; giving the shape of
the boundaries.

AH = (hy — h) e

[ ], jump discontinuity at the interface (value
at I2; minus value at R)).

his = 0h;/dz;(i, § = 1, 2).

n;, unit vector normal to the boundaries.

my D = vectors normal to the free surface
and interface (j = 1, 2).
Gi(x, &) = (G, Gy, Gis), Green’s function

with singularity at £ and for which
the concentrated force is in the
k direction.

I. HERRERA

= Green’s function (singularity at &)
for SH waves.

B(x, ¥), body wave terms in G(x, ¥).

v(x, €), displacement field for SH waves in the

perturbed region corresponding to

the parameter e.

G@x, B,

1°(X) = p(x, 0), unperturbed SH waves.
v1(x) = dv/de(x, 0).
1,9(%) = f.(x3) e Love wave in the nth
mode.
2 cos 0,23

(F'(k,) cos a,H)"?
if 0 S I3 S h.

fn(x:i) =
2(003 crnH)”2 g0 el
F'(k,)
if H < z,.
o-n2 = (plwfl/”l) - knz; Ty Z 0-
(07,1)2 = knz - (Pzw2/ﬂ2)} anl Z O'
F(k,) = 2uy0,” cos o, H — 2u,0, sin o, H.

k., nth zero of F(k,).

ev,1(X), perturbation when the unperturbed dis-
placement field is v,°.

B,(x), body wave terms in »,1(x).

(¥, transmission coefficient for the mth mode
when the incoming wave is in the
nth mode.

C.a®, reflection coefficient for the mth mode
when the incoming wave is in the
nth mode.

: TR > g,
Gal®) =§fm<sa)‘{e tome

e i 1 <&

Uz, cOMponent in the nth mode of the perturbed
SH wave.
N, number of parallel boundaries.

Perturbation method. The method to be de-
scribed is applicable to any problem formulated
in a region which deviates only slightly from
another region, for which (a) the corresponding
Green’s function is known and (b) the solution
to the problem is known.

However, for simplicity, the method is ex-
plamed only in connection with problems of
elastic wave transmission in a homogeneous half-
space with an overlying layer of different ma-
terial, as shown in Figure 1. The extension of
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the results to a multilayered medium 1s straight-
forward.

Assume that the displacements u.° correspond-
ing to some type of wave transmitted in that
region are known. That is, u,° satisfies the equa-
tions of elasticity in medium 1 and 2 together
with the boundary conditions

0

Tiz = 0

0] _
ral = 0 } 2, = I
[uiO] =0

We are interested, however, in finding the
solution to the same problem when the upper
surface is given by

Iy = fhl(xn xz)

and the interface 1s

Ty = H + Ehg(l}l, 5[:2)

where b, and &, are bounded functions and e is
a small number. If we let € be arbitrary we are
led to a family of problems whose solutions will
be represented by u.(x, €¢) and 7,(x, ¢). When
these funetions have continuous derivatives with
respect 10 ¢,

wl®, & R ux, 0) + ¢ 52 (x, 0

= u,°(x) + ew'(x) (1)

for sufficiently small e.

Sinee u,’(x) is known, our goal will be to de-
termine u,'(x). To this end we establish the
boundary conditions which it satisfies.

Now

m; V1 (20, T2y €hyy € = 0 2
m; P11 =0 T, = H + ehy (3)
[u,] = 0 3 = H + eh,y
where
7Tli(1') — Ehi,j = 6-3—21 1:’ ] = 1’ 2
| ’ (4
ma(l) — _1

are vectors normal to the boundaries and the

summation convention has been adopted.
When using perturbation techniques to obtain

the boundary conditions for the perturbation,
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one usually expands in power series with respect
to ¢ the unperturbed boundary conditions, ie.
(2) and (3), and neglects terms of order € or
higher in the equation so obtained. This is
equivalent to taking the derivative with respect
to € of the unperturbed boundary conditions
and setting € = 0 in the resulting equation. The
latter procedure, however, must be preferred be-
cause, first, it avoids many cumbersome manipu-
lations and, second, it is more sound theoreti-
cally since only continuous first-order derivatives
with respect to e of the quantities involved are
assumed. Since this point of view is unconven-
tional we shall discuss the method of obtaining
the perturbed boundary conditions in detail.

Taking the derivative of (2) with respect to e,
we get for arbitrary e

om,"

(1 OTi; 7,5 drk}
m N o T T, = 0

axk df ) de
Xy = Ehl
Now, from (2) it follows that

dx
';i";)ﬁ = fy s
and from (4), since A, is independent of e

(D

dm,
e T by, 1=1,2
dmg(” — 0

de

Therefore

(1) a‘r,-,- (91',',-}
: . );
i { de - h oz,

'+' hl.lTil + hl‘zT,'Q = () Ty = éhl
Setting e — 0 in this equation vields
9 ;-0
Tfal = h1.17'i10 + hl,QTiQ(] — hy % z; =0
2
(5)

In a similar manner, from (3) it follows that

0
[ris'] = [hZ,JTiIO + By oo1ie’ — hy 9733 :‘
dzs
©=H (6
1o au,»O:I ~
[ui] - hg[axa 223 — H
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Since the equations of elasticity are linear, the
u* also satisfy them.

Now the shape of the boundaries k, and hs, the
unperturbed solution #,°, and the corresponding
stresses are known. Therefore (5) and (6) give
the stresses at the free surface and the discon-
tinuity jumps of the displacements and stresses
at the interface in terms of known quantities.
Thus the problem of finding u,* has been re-
duced to finding a solution of the equations of
elasticity meeting the boundary conditions given
by (5) and (6) and satisfying appropriate con-
ditions at infinity. This problem will be solved
in the following section by means of the repre-
sentation theorems mentioned previously.

Representation theorem. The representation
theorems given by de Hoop [1958] are restricted
to homogeneous regions. However, Hudson and
Knopoff {1964] have shown how these theorems
can be extended to regions which are made of
several homogeneous subregions. Since, accord-
ing to (6), the solution we are looking for has
prescribed jump discontinuities at the interface,
1t 1s convenient to extend the representation the-
orem to cover this case. The representation
theorem for quasi-steady motions of the form

w(x)e ™ is

u(x) = fs {sz‘(f, x)7;;(u)

— u(E7::(G)n; dS (7)

where S 1s the boundary of the region considered,
whieh is assumed bounded.
We choose G, satis{ying

)

5 TG + p’Gu(x, B)

= ‘“6;k5(I1 - 51)5(352 - 52)5(333 - 53)

where conditions equivalent to continuity of
the stress and displacement are applied at the
interface, i.e.,
iG] =0 .
nJ[T ?( fv)] .’E3 e II (8)
[Gi] = 0

We now apply (7) to region R, (Figure 1) to
get

f {Gkirii(u} — uiTiJ'(Gk)}n'i dS
81+ 8,
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_{uk(x) if xeR,
0 if xeR,

and then apply (7) to region R, to get

(9).

fg {GkiTij(u) - u{Tl'j(Gk)}nj dS

_ { 0 if xek,
u(x) if xeR,

In these equations we have deleted the con-
tribution coming from the surface integral over
that part of a sphere necessary to close the
boundary; this is valid only for a restricted
class of functions and only when the Green's
function is econveniently chosen. A detailed dis-
cussion of the conditions under which the repre-
sentation theorems can he extended to un-
bounded regions has bheen given by Herrera
[1964a] for two-dimensional problems.

Adding (9) and (10) we get

(10)

u(x) = f {Gritii(w) — uiTif(Gk)}ni ds

81

+ < { Gl ()] — (G [u;]}n; 48 (11)
where the normal vector must be taken point-
ing upward in both integrals.

If we choose the Green’s funetion G, in such
a way that 5, 7,(G,) = 0 on S,, then

uk(X) = f Gki’r,-,-(u)ﬂ-,- dS
Sy

+ . {Grilr;@] — 7,(G)w]n; dS (12)

Equation 12 now yields the desired solution
when (), is known because n; =, (¢’) at x, =
0 and n;[7,;(u’)] and [%,'] at &, = H are given
by (5) and (6), respectively.

Two-dimensional problems. It has been
shown that (12} is valid for problems of surface
wave transmission when the Green’s function is
properly chosen [Herrera, 1964a].

For SH waves, equation 12, when applied to
the perturbation v’, reduces to

1 _QQ 1 Q?)_l
v = f {" og, [V G[“ aeg]} a5

—f & o ag (13)
g Pee T
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——— _ 5 -X,
RI H
s
h,
R, 2
'
x!

Fig. 2. Crustal layer of variable thickness.

The boundary values are given by (5) and
(6), which in this case reduce to
8%°
6:532

ICUAN NN S

23 = 0 (14)

z, = H (15)

where the primes denote first derivatives with
respect to z,.

Transmission of Love waves through a crustal
layer of variable thickness. To illustrate the
method explained above, we now study a prob-
lem of great geophysical interest, namely the
effect of changes of the thickness of the crustal
iayer in mountainous regions on the transmis-
stong of Love waves.

We idealize the configuration of the crustal
layer in the manner shown in Figure 2.

If the incoming wave is a Love wave in the
nth mode, then

2,°(x) = f.(zde "™ (16)
because in this manner
f nu'fnfm de = b n,m=1, 2. - (17)

Equation 17 may be obtained by observing that
the f, are orthogonal [Herrera, 19645], and then
by direct computation of the norm of these
functions. It must be recalled that p = p, if
0 <z < Handp=pmif 2, > H.

The Green’s function to be used depends on
the conditions at —oo and +ceo [Herrera,
1964a]. Suppose that at —oo only the advane-
ing Love waves were specified and they were
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given by (16) and at -+ o it was stated that no
receding Love waves were incoming; then the
conditions for the perturbation v* would be that
at —co no advancing Love waves be incoming
and that at 4 0 no receding Love waves be in-
coming. For such a problem (13) holds only if
the Green’s function @ is defined by

6x, B = Blx, ) + 5 2 1)z
if x > £1

.{e”cn(tl_fl) .
e T g < f

The Green’s function given by (18) may be
obtained by multiplying Sezawa’s [1935] source
solution by the normalizing factor p/4. It has
been used by Knopoff and Hudson in similar
problems. The terms corresponding to body
waves are represented by B.

The solution given by (13) may be written in
the form

v, (%) =

(18)

B, + Z Crn” (1) fn(z5)e ™™™
+ Z C o (1) fma)e " (19)

where v,! is the perturbation of an advancing
wave in the nth mode, C,.," and C,.* are the
transmission and reflexion coefficients, respec-
tively, for Love waves (they depend on z,), and
B,* are terms corresponding to body waves.

It must be observed that (19) does not define
the coefficients Cn.’ and C,..* in a unique man-
ner. To define them uniquely, we adopt here the
definition given previously [Herrera, 1964a]. In
the same paper it was shown that the deriva-
tives dCma'/dz; and dCn."/dz, are independent
of the conditions at infinity and that they can be
obtained from the integral representation the-
orem. Indeed, when we substitute (18) into (13)
we obtain

b

3G, [ as N
/. i“ s '] = Gal w5 | s
'
—- | G, — d§,
L, kT (20
Con (1)) = f m {u %%ﬂ [+'] — Gm[u %’éﬂ} dk,

® 1
p— Ll [LGm 653 dE]

CmnT(xl)
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where itself. For m = = the form of the results is
ot especially simple:
z e g g >
Gm(‘f = -2_ (ES){ ! sl 4ac T i
A m <k T = g e~ hue (0
z 2

and it is understood that & — H and & = 0 in
the first and second terms, respectively, of the
right-hand members.

From (20) it follows that

ac,.” 3G, [ av’} v’
dre = Fag BT Gal kg | sGn gy
(21)
ac,.® 20G., [ évil o'
dr = TR g W Galpge [T uGa g
Using (14) and (15) we get
denT ,Lh i{kntkm)zs
-_E;_l—- = 21 Ia-ﬂ fn(())fm(()) * F
ik . )
- '—"2'?' {#10'; + uso, ?
hl T{kn+hkm)zy
= nkfa(0)f(0)e -
denR . ﬂ"_ i{kn—km)za
dxl - lula-‘n fﬂ O)fm(o)
h
122 {:u'lo-n + u26n,2

h'

+ 2 ik fu(0)F,.(0)e" T Ty (Hz

2

Observe that if g(z,) = re*’, where r and 4
are real valued functions of x,,

i (kmai—wt) {(kmzyi+8-wt)

g{x)e = re
represents a wave whose wave number is k,, -+

d8/dz, and whose rate of inerease of amplitude
with distance is dr/dz,. But

1dg 1dr . df
g dx; T ordx ldxl

Therefore, for m 4 n, the real part and imagi-
nary part of (dC,./dz.)/Can have a direct
physical interpretation, the real part giving the
rate of inerease of the log of the amplitude and
the imaginary part plus %, giving the wave
number.

One of the most interesting things to look at
is the perturbation suffered by the nth mode

+ %fn2(0){#1h1' + (uy — pi)hy cos® o H}
(23)

Let v,, be the component in the nth mode of
perturbed wave, so that, by virtue of (16),

n(X) = {1 + €Co."(2:)} fulma)e ™™

Therefore, if we negleet terms O(¢*), we find
that ¢ multiplied by the real and imaginary
part of (23) gives, respectively, the rate of in-

+ f (s — ul)crn’am’}fn(ﬂ)fm(H)e"(k"”""”‘

hz (uy — p)kaf( D (H)e' (et km)zy

(22)

+ 2 Gy ul)a;am'}f,,(mfm(fz)e*“‘”*’“"*”'
1

”l)kﬂfn(H)fm(H)ei (kn—km)rs

crease of the log of the amplitude and the in-
crease in the wave number. Thus at any point
the wave number is

2(h2 —_ h1)#10'1;2 ¢
F'(k,) cos g, H

and the amplitude is

k. +

Aurhy F( v — w)h, cos’ crnHl)fn(za)

where we have integrated the real part in (23)
from —oo to z,, assuming that A, and hs = 0
as x, = —oo. The factor f,(x;) is introduced in
order to obtain the amplitude at any level z..
The perturbation in the wave number is pre-
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cisely the same as that which is obtained by
taking the derivative with respect to H of k,
using the condition

uyo, sin o, H = F(k,)/2 = 0

and multiplying this derivative by AH.

Thus to this order of approximation the pre-
dicted velocity is the same as the velocity of a
wave traveling in its nth mode from —oo to
+e0 in a medium with an upper layer whose
thickness is H + AH, an approximation which
has been extensively used. However, we are now
in a position to prediet the amplitude as well.
If we normalize the incoming wave so that it
has unit amplitude on the free surface, the
amplitude on the free surface of the perturbed
wave will be given by

e, cos o, H —

2k.e
F'(k,) cos o H

{mhy + (2 — pdhe cos’o,H}

so that it depends only on the change in height
of the free surface and interface at the point of
cbservation, a fact that may be useful when
determining the thickness of the crustal layer.
Conclusion. The method presented here has
been for a medium having only one interface,
but its extension to more than one interface 1s
obvious. As a matter of fact, the only change in
the results will be that every interface will give
rise to additional jump contributions, so that
instead of only one integral over the interface
we shall have a sum of integrals over the in-
terfaces. Thus (12) must be replaced by

1+

uk(x) = GHT,','(U)n,' ds

81

+ z f {er‘["'é.-'(.u)]n -

n=2 Y8y,

7:1(Gu) [uilayn; dS
and the jumps are given by

[Tis]n = [hn.lTilo + hn,27i20 — h, 61'1-30/6333],,
[u,-l] = —hn[au;/6x3],,

where the subscript m refers to the interface
number and it is assumed that n = 2, © * -,
N; ie., there are N — 1 interfaces.
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Thus w, is given in terms of integrals of known
quantities by the appropriate Green’s functions,
and methods are available to obtain the latter
[Harkrider, 1964; Herrera, 19640].

By repeated derivation of the boundary con-
ditions with respect to e the method may be
extended to obtain higher-order perturbations.
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