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RESPONSE SPECTRA ON STRATIFIED SOIL
By Ismael Herrera and Emilio Rosenblusth®
. > . .

Paper concerns the probability distribution of spectral responses of
viscously damped single~degree systems resting on stratified viscoelastic
soll, The soil is assumed to rest on a viscoelastic homogeneous half space
of rock. Motion arriving at the rock-soil interface is idealized as a sta-
tionary Gaussian process. The transfer function for the soil formation is
treated independently for each vibration frequency of interest, in oxder to
allow for dependence of viscoelastic parameters on the wave frequencys this
is accomplished through use of a matrix formulation. Certein additional ap-
proximate results are included.
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t tion

The steady-state one-dimensional vibrations of stratified soil, ideal-
ized as viscoelastic, and the deterministic response of undamped simple
structures resting on the soil have received attention (e.g. Refs. 1-4),

This is true also of structural responses to a wave arriving at the base of
the soil formation as a single pulse(5). On the other hand, studies have
been made of the distribution of spectral responses to ground motion applied
directly to the base of a simple structure and idealized as white noise(6) or
as a stationary Gaussian process(7-10). The present paper strives to estab-
lish an approximate solution for the probability distribution of spectral re-
sponses on soft ground when the disturbance arriving at the rock surface from
below is idealized as a stationary Gau:sian process. The work is kept within
the framework of one~-dimensional wave transmission and linear behavior of
both the soil and the simple structure.

In the present study advantage will be taken of the fact that a station-
ary Gaussian process filtered through a linear system gives rise to a motion
which is itself a stationary Gaussian process. This type of random wotion
has received considerable attention; hence, the assumption will be adopted
that the motion arriving at the rock surface from below belongs to this kind
of process. hccordingly. a brief discussion is presented of the probability
distribution of spectral responses to Gaussian processes, beginning with the
case of a white-noise disturbance.

Distribution of Responses to Gaussian Processes

Consider a viscously damped linear system with a sinjle degree of free-
dom whose base is subjected to the accelerogram Xy(t). If the system starts
from rest we may write

a(t) = %Mg oy

where q is a structural response (such as absolute acceleration or displace-
ment relative to the ground, Wq is the system's basic solution, weighting
function, or transfer function for response q (that is, ¥q(t) =,q(t) when

= 5(t) and o is Dirac's delta function), and a¥p signigies Sgp @(7)
Pt - 1) dt. Since ¥y (t) = 0 for t < 0, the lower limit of integration may
be replaced with zero. Response spectra are plots of Q = max |q(t)| as func-
tions of natural period or frequency and it is our aim to calculate the
probability distributions of various types of spectral ordinates Q. In par=-
ticular, ¥ = exp(~ht) sin wit, where y = x - x5, x = absolute displacement
of the system, h = fuy, f = percentage of critical damping, and wp and ayy =
respectively, undamped and dauped natural circular frequencies.

The "response"
r= g2+ ¢ + nyp2]/? 2)

is of special interest. The time derivative at r2/2 is the energy fed to the
system per unit time und unit mass, relative to the energy it would be fed
were its mass rigidly fixed to the ground.
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First let ¥ be white Gaussian noise of uniform intensity per unit time
in the interval O ¢ t € s where s is the earthquake duration, and !0 = 0 out~
side this interval. In other words, ¥ is a stationary Gaussian process de-
fined by g(t,t=7) = a2 5(t) if 0 <t - v € t € s and g(t,t-7) =0 if t € v or
t >s, a is a constant, and g is the autocorrelation function E[R;(t) Rp(t -
©) Let R = R(h) = max r(h, t). Subject to the condition 2m/w << s the fol-
lowing points have been proved(6).

1. E[R(Oﬂ is proportional to asl/z.

2. E[R()] = B(hs) E[R(Oﬂ; B can be computed from an infinite series or
obtained from available graphs(6) or, with a maximum error of about 4 per=
cent, from the expression

1/2
B 1o [0.424 + In(2hs + 1 78)]]
2hs ) *

(6) or from p = (1 + 0.6hs)~0+45(11), The relation B = [1 = exp(-2hs)]1/2
(2hs)~1/2 has also been proposed(10,12) but it does not furnish the ratio of
expectations of R(h) to R(0) but the limit of the ratio of these responses
when they are both associated with the same probability of being exceeded and

that munhahilitw +ande A 2ara
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it

3. The distribution of R/E[R]depends solely on hs.

The quantities wR, R, and R/w may be called, respectively, pseudoaccel-
eration, pseudovelocity, and pseudodisplacement. It is easily seen that
these quantities are never smaller than max|%#|, max|y|, and max]y|.

Now consider an carthqucke accelerogram X,(t) of duration s and let
62(w) denote the accelerogram's power spectral density:

62(w) = 2T |F(w)| 2
Here F(w) is the Fourier trensform of ﬂoz
® e s s
Flw) = §_ %o(t) e Wt gy = §o do(t) e 1t g¢

It was assumed in ef. 6 that, for any response, E[Q(k,agﬂ/E[Q(O,@gﬂ could be
taken equal to P(hs) as obtained for a white-noise disturbance of some equiva-
lent duration and that the probability distribution of Q/E[Q]would be the
same for actual ecrthquekes as for white motions. It has been shown that
these approximations are valid provided the ground motion is nearly Gaussian,
its duration considerably exceeds the structure's natural period, this period
is much larger than the correlation tiwe of the ground motion, and G2() is
sufficiently smooth(9). (Nesr 2m/uy = O, for example, the approximation
breaks down if q stands for ¥; indeed, (@) = 0 so that, if §# O, this ap-
proximation predicts ¥ = C and hence ¥, = 0 at oy = o.)

"~ A method has also been ceveloped to pay due consideration to the shape
of the power spectrum when the latter is not sufficiently smooth znd it is
desired to calculate E[R(j¢q0ﬂ; the assumption thet the distribution of R/E[R]
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is the same as for white noise still holds provided the other conditions
quoted above are met, so that it suffices to calculate E[R}. The approach can
be generalized to responses other than R by combining the reasonings in Refs.
7 and 9, and will be presented here in this more general version.

Clearly, for any ground motion of duration s, E[ﬂg(tﬂ = 0, since x,(0) =
x.(s) = 0. A Gaussian process of infinite duration is conceivable, such that
ils power spectral density be the same as for the earthquake in question.

For this new motion let g(t,,t5) = E[%;(ty) ko(tzﬂ denote the accelerogram's
autocorrelation function. &OW consider the case when the Gaussian motion is
stationary, that is, g(t,t=7) = g(v) depends only on 7 for all t. For the
new motion,

® e
G20 = §_ #l0) eI gy (3)
(see Refs. 7 and 13%15 for example). &lso,
33
2 2
Elq2G)] = §_ [Fq@|? 6% do )]
where Fq is the Fourier transform of the bzsic solution for response q:

Fql@) = §o ¥g(t) 7ot gt (5)

Evaluation of E{Q(abﬂ. when 29 stands for & stationary motion of infi-
nite duration, is meaningless, as for such motions this expectation is infi-
nite. In the case of an actual earthquake, if ¢ # O and if s greatly exceeds
both the structure's natural period and the ground motion's correlation time,
then for most values of t > O we shall find the distribution of q almost
identical with that of the response to a stationary Gaussian process of infi-
nite duration. If Y regard E[Q]as a function of gy it will be nearly pro-
portional to (E[q2P!/2. Hence Tajimi's method, which evaluates E|Q]from

Eloeg)] _[E[Rwn)] /2
Eft@] | I3 626 do

If Qluy,) stands for the system's maximum absolute acceleration, velocity, or
displacement, Q(m) represents the maximum ground acceleration, and so on.
The method probably gives good results when f is not excessively small but
cannot be used when § = 0, since in that cese E[qzﬁqaﬂ = 0.

The following argument lends to a method for calculating E[Q(abﬂ that
does not break down when § tends to zero. Under tihe conditions described
above, the probability distribution of q, without absorbing barriers, tends
to become Gaussian with zero mean and therefore to be defined by a single
parameter, which is a function of the ground motion. Consequently the dis-
tribution of q unormalized in terms of this porameter will be independent of
the ground motion, the some will be true of the distribution of @, and since
(E[q2pl/2 as well as u[Q]will be proportional to that parameter we may use
the responses to a perticular set of random motions -- to white noise in par-
ticular -~ as basis of comparison and write
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® /2 (5
Efewy)] = Splfq@|? ¥ "‘”] [T, @)}

2 a
S:[Fq(m)‘ o

where E[Q,] is the expected value of Q as response to a white disturbance
for which G(w) = a.

For design purposes the response q = ¥ is of special interest. It is
easily shown(7,10) that :

- 1 - 2ifayuwg
2O = T 22 + 21ty
1 + 43202/g2
(1 - wP/ug®)2 + 432 /ug?

Also(6), save for very large aglwgs >> 1), E[V] is practically equal to E[g],
where Vuy = max | #(t)| may be called a spectral pseudovelocity and E[Raaqﬁ =
1.174 a(ns)lyz. Hence, again save for very large up, E[V@y)] will be given
by Eq. 6 with F_ = Fy and E[Q, ()] /a = 1.174(ms)1/2 times a reduction fac-
tor, P, that depends on wb;s(g). Notice that when §— O the bracketed quan-
tity in Eq. 6 tends to G(w).

\F”(m)\z = N

The above derivations are not limited to simple stzuctures. Eq. 6 for
example, is valid when q denotes the response in any generalized coordinate
of a linear multidegree system. Further, xy may be a column vector repre-
senting the set of static displacements induced in the system by the multi-
degree~of-freedom base motion, in which case a basic solution ¥ becomes a
square matrix which premultiplies %y in the integrand of Eq. 1, and the
Fourier transform of ¥ is also a square matrix.

Distribution of Responses on Soft Ground

Consider a horizontally homogencous, stratified, viscoclastic soil rest-
ing on a semispace of homogeneous viscoelastic rock (Fig. 1). Assume that
an ascending horizontal wave® arrives at the rock surface and is such that
as t approaches zero the wave accelerations for negative t approach d(t);
this wave will produce an acceleration ¥)(t) at the ground surface. Now let
the arriving waves give a random motion at the interface, with power spec-
tral density Gozﬁn). In the case of interest Gy = G/2. It is known that
filtering a random motion through a linear system transform the power spec-
tral density of the incoming motion into

62 = |F |2 62w | (®

where F}(w) is the Fourier transform of the transfer function, and that if
the incoming process was Gaussian so will the outgoing motion. Consequently
the ground motion in the case which interest us will be Gaussian and may be

R We shall not distinguish between P and S waves, as they are transmit-
ted according to equations that are formally identical.
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obtained by setting Fy{w) equal to tiie Fourier trrnsfom of the V function
for ¥ in Iq. C. Com%ining tiiis result with q. 6 we may write

CO . /2 q-
§oo 1FqED] 217y (0] 2 6,2 @) dw /2 Tp ()] ©
d

Ely (o)) =
u[ 1 )Q] S‘ZIFq(CO)' 2 o

The eartliquake duration to use in calculating E[Qa]is that of the incoming
motion at the rock surface. The numerator inside the braclkets of Tg. 9 may
be_interpreted as the product of |F {2 and the filtered spectral density,
514, or as the product of a new transfer function, |Fq!2 |F1}2 = |FqF1| '
which combines filtering from the interface to the jround surface and from
tinis to the structural response in question.

The problem of determining the effects of _soft scvil on response spectra

s

reduces therefore to that of valuating iFl(aﬁI—. This couid be done by com-
puting the transfer function and finding its Fourier transform. But we shall
find it more convenient to calculate the Fourier transfora directly as a re-
sult of a study of steady-state haruonic oscillations, especially since the

soil's viscoelastic parsueters wmust ordinarily be regarded as functions of w.

Squivalence of the responses under a Dirac-delta excitation and in
steady state may be shown as follows. Consider two linear systems in series,
witich are defined by the relations

R (t) = 2% (10)
T
q(t) = 21 ‘{"q _ (1)

where x, is the wotion imposed at the base of the first system, xj the dis-
placement at the base of the sccond one, and q the response of the second
system. First let %, = 0(t). From Eq. 10, ¥ = ¥;(t) and from 11, ¢ =
V¥ . Secondly consider the disturbance ¥ = ¥(t). Eq. 10 yields ¥ =

] 3W1. but in view of the possibility of setting the lower limit of integra-
tion equal to zero in the convolution, this is the seme as V(¥ . Thus, the
response of system 2 to a unit acceleration pulse applied at tle base of sys-
tem 1 is the ssme as the accelerogram of 1 as response to the disturbance de-
fined by the transfer function of 2. (Tiis reciprocal relation can be ex~
tended to the case wien Xge X1e and ¢ are column vectors and the V's are
square matrices.)

The amplitude of the acceleration response of an undaiped simpie system
with natural circular froquency o to a ground motion is equal to o times the
Fourier transform of the motion's accelerorgram, since the transfer function
for acceleration is then « sin wt. If the system rests on soft ground, the
amplitude of its acceleration response to an ascending wave that arrives at
the rock surface with zn accelervogram o(t) will be ®|F3|. The amplitude of
its accelerztion response to the same wave, were the system to rest on rock
and were tlie soil absent, would be 2». (The factor 2 stems from the reflec-
tion of the pulse at a frce surface.) The ratio of anplitudes is the magni=-
fication factor for an undauped simple system’s xesponse to a unit pulse:
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Bw) = |Fpl/2 (12)

Equation 12 exactly supplies the magnification factors for undamped re-
Sidual spectrcl ordinates of the ground motion resulting from the arrival of
waves of arbitrary shape, since these spectra coincide with the Fourier spec-
tra. Residual spectra provide a lower bound to the response spectra, since
the latter represent maximum numericzl values of resjponses, which are a2t
least equal to the amplitudes of resicual vibrations. In general, peaks in
both types of spectrum nearly coincide(16); this is due to the fact that ex-
ceptionally high responses are almost always associated with contribution of
the entire ground motion and, in conservative systems, they are therefore
bound to occur near the end of the earthquazke or after its cessation.

Multiplying the magnification factor for residual spectra by the un-
damped response spectral ordinates for the free surface of rock may be ex-
pected to give a good approximation to the corresponding ordinates on soft
ground. It is certainly acceptable for motions of short duration, compared
with the structure's nstural period, since the maximum response occurs then
after the ground motion has ceased. It also tends to become acceptable if
the ground motion approaches a stationary stochastic process. For transient
disturbances the approximation will always overestimate spectral ordinates on
soft ground in the neighborhood of those values of w for which the computed
magnification factor is 2 maximum, since the residual spectrum gives full
magnification to all successive reflections while the maximum respohse may
occur at a finite time, giving smaller magnification. The same cannot be
stated about ordinates that correspond to values of w outside these bands.

Magnificotion factors for § = G, as computed from the ratio of E[Q]to
E[Qo]obtained from Eqs. 9 and 6, coincide with those for residual spectra.

Calculation of Magnification Factors

Witl: reference to Fig. 1, the equilibrium equation that governs one-di-
mensional motion of the ground is

2
eXx (13) -

oa
at2

oz P

where the stress g(t) is some functionzl of the strain &(t) = 8x/8z, and p is
the density. If € is of the form € = § exp(iwt), with ¥ independent of t,
and if the stress-strain relation is linear then ¢ = ¢ exp(iwt) where 7 =

(1 + ja)pE. Here p and a are real functions of w anc independent of t.

Under these conditions, for steady-state hammonic disturbance Eq. 13 re-
duces to :

a1+ ia)gég + %g X=0

at each of the homogeneous layers, where x = X exp(int) and v = p/p (a real
function of w).

With the notztion and sign convention of Fig. 1, motion in the nth layer
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has for solution the expression
X, (2,1} = a,; cos m, + by, sin 7y,

whexe 11, =V 2z, »h = o + i0)~1/2 vh‘l. z, is measured downward from the
top of the layer, and the square root is taken such that the real part of Vp
be positive. The functions of w, Yne and ay characterize the material in
the homogeneous layer in question.

Continuity of displacement and stress at interxfaces requires that

8n+] = @, €08 Ay + by sin Ay

b.,p ¢ k,(-a, sin Xy + b, cos Xy)
where A, = VﬁHﬁ,
Po¥g (1 * day 172

kn Pn+1Vn+l 1 + daps

and H = thickness of gth layer. The ground surface must be stress free.
Hen ce, bl = 0,

The above solution applies to % as well as to x; hence, the waves and
responses will be treated as though their displacements were the accelera-
tions mentioned in the previous section. Thus, at the rock surface the in-
coming wave, which is the real part of (1/2)(aN + bN/i) exp(iwt), is stipu-
lated as sin wt, that is, as the real part of =i exp(iwt). Therefore,

ay - iby = - 21 (14)
Now define the matrix

cos Ap sin A l

Tﬁ =
' -kn sin An ky cos A
so that
ay 8,
= TN_I TN_Z cee Tl
bN bl
With the additional definition
E’ £ TN_I TN-z sew Tl
éz 0
we obtain
a.
N -
= g §
1
by

because by = 0, Therefore Eq. Lg/gsgﬁges to al(ﬁl- i) = - 2, or ay =
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2/|%, + i%}| . Tie steady~stute ground-surface motion is the real part of aj
exp(fwt), whose amplitude is the Fourier amplitude spectrum, 2/|§1 + 132}.
and the magnification factor sought, according to Eq. 12, is

B (15)

) = e —
&1 + 15,

When the soil's internal damping is neglected, Ay and k, become real
and Eq. 15 may be interpreted in the following way. Vector ® is found by
taking the unit vector along an arbitrary €) direction, rotating it through
an angle Xj, amplifying (or contracting) it, in proportion to kj in the di-
rection éz. perpendicular to 51. rotating the resulting vector through an
angle N\,, and so on, N-1 times (Fig. 2). The magnification factor B equals
the reciprocal of the vector's amplitude at the end of the process. This
interpretation leads to Takahasi's(2) graphical solution.

In the case of a single undamped homogeneous layer Eq. 15 may be writ-
ten in the well-known form

B = (kl2 sin2 Mt cos2 )\1)-1/2
where k) = (plvl/pzvz) and Ay = wHy /vy .

Agglication

The methods described in this paper are applied to the example in Fig.
3. The power spectral density for the motion on rock, were the soil absent,
might be assumed given by the expression

200) = ___a_z_(LL_%IL%&gZ&_Z)__z
6@ 1 - w2/c2)« + (2buyc) L

which has been proposed by Tajimi(7) on the basis of work by Kanai(4). The
constants in this expression have been taken as az::SOQ/b. b2 = 0.20S, and
¢2 = 242 sec~2 which are representative for earthquakes on hard ground in
the west coast of the U.5.(10), with s = 20 sec. However, according to Eq.
6, when § = 0 E[G(w)] is proportional to G(x) and, if Eq. 16 is taken to give
the square of a quantity proportional to the expected acceleration of spec-
trum on rock, it fails to satisfy the obvious requirement that -l E[QQID re-
main finite as w tends to zerc. Consequently Eq. 16 will be replaced with

209 = (2abgy/c) 2
6 20« Tl R Gy aw

which is consistent with the expression for expected acceleration spectra
proposed in Ref. 17, (It should not be construed from the above remarks
that Eq. 17 more closely represents the power spectral density of actuel,
earthquake motions on fimm ground than does Eq. 16. The opposite is the
case. But the approximations involved in Eq. 6 lead to the necessity of
using a fictitious spectral density that will give the correct expected ac-
celeration spectra for zero damping.)
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With these data, E[Vo(up, O),B E[Volwo, O], and E[vglug, §)], § = 0.05,
were calculzted through numerical integration using Eqs. 6 and 7; here Vg is
a spectral pseudoveloclty in the sense that ayVg = max|®(t)]. = Results are
shown in Fig. 4. It is seen that B E[Vg(uy, 0)] = E [V (. f)] except for
relatively small values of 2m/ug.

Next the theory on multiple wave reflection was used to compute B(w).
The product Bluy) E[Vglwg, 0)]= E{v](ay, 0)] is shown in Fig. 5. Also shown
are the curves for B E[V] (u, 0)] and E[Vi(og, § ). the latter ohtained from Eq.
9. Comperison of these two curves evaluates the assumption that the reduc-
tion factor 3 (for responses to white noise) applies to the motion at the
ground surface. It is seen tihat the assumption holds for relatively long
natural periods but is untenable in the rest of the expected spectrum, es-
pecially in intervals of pronounced curvature.

Concluding Remarks

The assumption that earthquakes are stationary Gaussian processes is
fruitful in that it permits establishing methods based on the premise that
expected response spectra (spectra of maximum numerical value of responses)
are proportional to the square root of the expected squared response at any
given instant. The idealization precludes direct calculztion of expected re-
sponse spectra, as these are infinite for stationary random processes of in-
finite duration. The central portion of the present work makes use of this
premise and supplements it with knuwn approx1mate results for the distribu-

A mnAS e £l S A.
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tion of spectral responses to s

Cther approximate treatments are also considered, such as the assumption
that aagnification factors for residual spectra should be applicable to re-
sponse spectra; this particular assumption is of intexest because of its sim~
plicity, as the magnification factors are easily found from the Fourier
transforin of tiie soil's transfer function, and they apply rigorously to the
residual spectra of arbitrary ground motions. It is concluded that the ap~
proximation is not altogether sstisfzctory throughout the range of interest
in spectra. It is found that eifects of the structure's damping cre particu-
larly pronounced near the locally dominant periods of the ground.

The most drastic assumptions made in this study concern the onc-dimen-
sional nature of the ground motion and the linear behavior of the soil. The
first assumption is to a large extent justified by Snell's law when the soil
is stratified nearly parzllel to the ground surface. Under these conditions
5~ and P-wave motion are, respectively, nearly parallel and normal to the
surface. Unevenness of this surface and of interfzces as well as small hori-
zontal heterogeneity of stratz can probably be taken into account, approxi-
mately, through an increase in the soil's equivalent 1nternal damping by
some increasing function of the wave frequency.

The assumption of linear behavior is acceptable up to a certain earth-
quake intensity. Tiis upper limit is a function of local conditions. It is
quite high for most cohesive soils but aliiost zero for noncohesive ones, ex-
cept wlien they axe effectively confined by cohesive materials. Owing to this
limitation the linear theory of multiple wave-reflection has received little
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credit in extensive areas of the world while it is of much use for the de-
sign of buildings on soft lacustrine clay and other cohesive formations.
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