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Abstract. A perturbation method to treat small inhomogeneities is developed. By means
of the integral representation theorems of elastodynamics the solutions are expressed as
quadratures of known quantities. The method is first presented for mediums which deviate
slightly from homogeneity in a large region and then is modified to treat mediums with large
deviations from homogeneity in a thin region. The method is suitable for treating dikes,
lenses, and other geological formations. Numerical computations are carried out for the scat-

tering of Love waves by a dike,

Introduction. Knopoff [1956] and de Hoop
[1958] have recently discussed integral repre-
sentation theorems for elastodynamics. These
theorems are very important in connection with
problems on elastic wave transmission because
they reduce these problems to quadratures when
the corresponding Green’s funections are known
and because they are very suitable for obtaining
approximate solutions of any order using classi-
cal perturbation methods [Herrera, 1964a].

The basie ideas of the method are applicable
to any problem formulated in a region (called
the perturbed region) whose geometry and
physieal properties deviate only slightly from
those of a second region (called the unperturbed
region) for which (a) the corresponding Green's
function i1s known and (b) the solution to the
problem is known.

This type of problem is of great interest in
geophysics [Hudson and Knopoff, 1964; Knop-
off and Hudson, 1964a, b; De Noyer, 1961; Mal,
1962a, b; Obukhov, 1963] and in some other
fields such as engineering. Because of this in-
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Physics, University of California, Los Angeles.

terest one of the authors intiated a program of
research whose aim is to explore the possibili-
ties of the integral representation theorems of
elastodynamics when they are used together
with classical perturbation methods.

In paper 1 of this series [Herrera, 1964a] the
method was formulated for some problems in
which the geometry of the region is perturbed.
Specifically, it was formulated for problems in-
volving a multilayered half-space with non-
parallel boundaries.

In this paper the method is formulated for
problems in which the physical properties of the
materials are perturbed. Sinee in many cases the
Green’s function is known when the material is
homogeneous, perturbation methods can be ap-
plied when the given medium deviates slightly
from homogeneity. Here again the slight devia-
tion from homogeneity may be interpreted in
more than one way. On one hand, the phyvsieal
properties (elastic tensor and density) of the
perturbed region can differ by small amounts in
a large region from the elastic properties of the
unperturbed region. On the other hand, the
elastic properties of the perturbed region may
differ by a large amount i a small region from
the elastic properties of the unperturbed medium.
The first possibility leads to problems for which
perturbation methods have already been used in
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the solution of some problems [Knopoff and
Hudson, 1964b; Karal and Keller, 1964]. The
second possibility leads to problems for which
the formulation of perturbation methods is con-
siderably complicated.

Both possibilities can be treated by methods
which are being developed in the present series.
The first type of perturbation, which leads to
body force terms in the partial differential equa-
tions governing the motion, is well known, and
therefore it is only discussed briefly. It is shown
that in order to account for the boundary condi-
tions at the interfaces some terms must be added
to those previously mentioned in the literature.
The second type of perturbation is developed in
greater detail, because apparently it had not
been discussed previously. It is presented for
problems in which the elastic properties of the
medium are perturbed in a thin region by
amounts which are not necessarily small. The
analysis in this case is considerably more com-
plicated. In this paper it is developed only for
SH waves. The geophysical interest of the pres-
ent work lies in the fact that lenses, dikes, and
many other geological formations may be in-
cluded within the type of thin inhomogeneities
treated here.

To illustrate the method, the scattering of
Love waves by a dike is treated numerically.

Notation. Throughout this work boldface
type symbols indicate vectors. The character of
the integral (surface integral S or volume in-
tegral R) is indicated by a subindex below the
integral sign. The symbols most often used are

o= p/u
A, = A,

A,.., amplitude of the perturbation in the nth
mode for incident Love waves in the mth
mode.

B, B, shear wave velocities in the layer and
half-space, respectively.

Ciipe, elasticity tensor (for isotropic material
Ciive = Nijdpe T+ B(0:50i¢ + 812:0)).

C% ey Clijngs superindices 0 and 1 refer to the
unperturbed material and perturbation,
respectively.

4(x), Dirac’s delta function.

8:j, Kronecker’s delta.

D, depth of the inhomogeneity.

e, unit normal vector to the skeleton.

¢, perturbation parameter.

f, body forces.

G(x, P, Green’s function (singularity at £)
for SH waves.

Gi(x, ) = (Gu, Giz, Gua), Green’s function
with singularity at ¥ and for which the
concentrated force is in the k direction.

G, G°, Green’s functions for the unper-
turbed medium.

g;, coordinates of the points on the skeleton.

hi, ke, function describing the shape of the
boundaries of the thin inhomogeneity.

H, layer thickness.

i, i, k, p, g, indices whose range is 1, 2, 3 and
for which summation convention holds (7 is
also used for the square root of —1, but in
every case the meaning is clear from the
context).

k., wave number of the incident Love waves
in the mth mode.

L) = 8/0x;(Cijpe OUp/0z,) + posiis.

Lo, L, the superindices mean that the corre-
sponding superindices must be added on
Ciipe and p in the expression for L.

N\, u, Lamé’s constants of the perturbed
medium.

m, n, indices whose range is not necessarily
1, 2, 3 and for which the summation con-
vention does not hold.

n, unit normal vector.

d/dn = n, 8/0z;.

w, angular frequency of solutions of the form
ue—iwt_

r= (Wp/pp°) — 1.

p, density of the perturbed medium.

p1, M1} Pa, Mz, density and rigidity in the layer
and half-space, respectively.

R, region where the elastic properties of the
medium have been perturbed.

8y, 8, parameters labeling the points of the
skeleton.

s, length of the skeleton.

/s, derivative with respect to length.

8., skeleton of the thin inhomogeneity.

S, surface containing all the discontinuity
surfaces of the perturbations of the elastic
parameters (when SH waves are discussed
it is used for the boundary of E.).

73i(0) = Cijpe O1tp/02,.

u(x), v(x) = (U, uy, us), (1, vz, v5), displace-
ment field corresponding to the exact solu-
tion outside and inside the inhomogeneity,
respectively.
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u, v, displacement field outside and inside
the inhomogeneity, respectively, for Love
waves.

w9, uy, +- -+ superindices 0 and 1 refer to un-
perturbed solution and perturbation, respee-
tively.

X, £ = (3, Ty 23), ({1, §2 $3), Cartesian coordi-
nates of a point.

[ ], jump discontinuity across a surface. (The:

normal vector points toward the negative
side of the surface, and the jurp is defined
as the value on the positive side minus the
value on the negative side).

Representation theorems. We shall be con-
cerned with the quasi-steady motion of elastic
bodies which is governed by

d7.;/9x; + p’u; = —1; (1a)

where

1. = Ciipaduy/9z, (1)

and summation convention is understood.

The representation theorem that will be used
in this work is [Knopoff, 1956; de Hoop, 1958;
Herrera, 1964a, b]

w = [ 106t 0
+ [S {Gki(zx X)Tu(“) - uiTii(Gk)}ni d&

+ [ 160 Dlr@] — [lra(Gn, dE
5 (20)

where the tensor Green’s function Gi.(¥, X)
satisfies, for fixed x and k,

5
(e

= —5;k5(-751 — &, s — &2, X3 — 53} (Zb)

and vields displacements and normal stresses
which are continuous across any interface, B is
a bounded region, S its boundary, and S, are all
the surfaces lving in the interior of B across
which the normal stresses =,;n; and the displace-
ments have jump discontinuities. Under some
conditions the representation theorems can be
extended to unbounded regions. In the problems
of seattering that we are going to consider, (2) is

aG’.“I' 2
iiva c'ifq) + po Gki(zs x)
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applicable in unbounded regions to the scattered
field, i.e. to the perturbation of the displacement
field [Herrera, 1964c]. (This is so only if the
Green’s function is the Green’s function for out-
ward radiation).

Small inhomogeneities. In this section we
consider a medium whose physical properties
differ slightly from the properties of the unper-
turbed medium in a region R, which is not
necessarily small.

More precisely we assume that

C?J'Da + GC:-,-W (3(1)
P+ e’ (3d)

where p° and C°,, are the density and elastic
tensor when there is no perturbation, ¢ is a
small number, and p* and €74, are continuously
differentiable functions of position.

Tt is well known [Knopoff and Hudson, 1964b;
Karal and Keller, 1964] that an approximation
to the solution for the perturbed medium may
be obtained by perturbing the differential equa-
tions

Ciizzq =

p =

dr:;/dz; + pw'u; = 0 (4)

Indeed, substituting (3) into (4), using (15),
we obtain

0u,,

o ) 05 _
ozx; <C””" dz, Toowu =

where

—eLi(w)  (5)

_ 9 Iy 2
Li(u) - Az (Cifva 6Iq) + po U (6)

1

and the superindex has obvious meaning.
Now

U; = uio + uil (7
where the unperturbed solution u° is such that
LW =0 (®

and u® is the perturbation. Subtracting (8)
from (5), using (6) and (7), we get

Lao(ul) = —GLi](uO) - GLil(ul) (9)

This equation may be interpreted as the equa-
tion of elasticity (1a) with body forces, eL;*(u®) -4
eL;Y{u1).
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Using the representation theorem (2), it fol-

lows that

Lil(uo) GkiO(Er x) d§

R,

u (X)) = €

+ € L'(u")G, (&, x) d& (10)
R

where G,° is the tensor Green’s funetion for the
unperturbed medium. This is an integral equa-
tion for ul. Since u! = 0 when € = 0, it is plausible
to assume that the perturbation u! together with
its partial derivatives are O(e). Then (10) may
be written as

. L") G (&, x) dE + O(€)
(11)

which gives u! in terms of known quantities
except by terms O(e?); i.e., (11) gives a first-
order approximation for ul.

Contribution of interfaces. Equation 11 allows
us to compute the perturbation u! when C9;,,,
Cliipey 0° and p! are continuously differentiable.

In this section we explain the modifications
that must be made in the previous analysis to
include cases in which C'j,, and p' are only
piecewise continuous differentiable functions of
position, but €°;;,, and p® are still continuously
differentiable. This is the case when the inhomo-
geneity is separated from the rest of the material
by an interface, because across this interface the
properties of the material jump abruptly and
therefore C;;,, and p! are discontinuous there.
An important example of this situation is one
for which Ct;;,, and p' are constant in R; and
vanish outside R;.

At interfaces, continuity of the displacements
and normal stresses is required

u (%) = e

[w.] = 0} at interfaces (12)
ni[r(w)] = 0
Therefore, by (7) and (3a)
[,'] = —[«,") = 0 (13a)

0 a’“1n]:| o [ 1 @{gjl
nic ijpa[azq - €n; C iipq a.’l?,‘

1
O, ] (13h)

1Ipq aa:q

_ 1 (91&,,0 1
- —en,-[C i:'m] dr —eny c
q
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Therefore, the perturbation u! satisfies (9) and
at the interfaces has continuous displacements
and a jump discontinuity in the normal stresses
given by (13bh). Applving the representation
theorem (2), we obtain

wi@) = ¢ f LI ()G (5, %) dE

ot
il-f; dE

— € [ le_”(f’ x)n’i[cliilw
Js, 9z,

+ € L[’(UI)GH”(EI x) dE

Ry

GA-:‘ (E! x)ﬂ,'[jc iipe a.lfq } df (14)

— ¢
S
where S, is a surface which contains all the
diseontinuity surfaces of the density and clastic
tensor.
This is again an integral equation for ul
If ut and its partial derivatives are O(e),

WMa) = ¢ [ L @)G(E, %) dk

n
u,
dx,

¥ + O()
(15)

which gives u! in terms of known quantitics
except by terms O(e?).

Equation 15 shows that the interfaces give
rise to contributions O(e) which cannot be
neglected in a first-order theory, a fact which
apparently had not been pointed out previously.

Thin inhomogeneities. In this section we con-
sider cases in which the perturbation of the
elastic properties is not small; Le., the density
and elastic tensor will not be given by (3),
but instead by

Ciinq = Cl)iina + Cliim (16&)
p=p" 4 p (16b)

and for simplicity we restrict attention to the
case where all the clastic properties are constant.
The perturbed region, on the other hand, will
be assumed to be thin; more precisely, we assume
that pt, C;,, are constant inside and zero out-
side a bounded region R, which is thin in the
sense that its boundaries (Figure 1) admit of a
parametric representation of the form

— € f Gm({, x)ni[(/y:'i:m ]
S

(17q)
(17b)

v = gsy, 82) + ehulsi, s2)ei(51, 52)

r; = Q:‘(Su 32) - fhz(sl, 32)‘3:'(.3“ 32)
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X

t

Fig. 1. Thin inhomogeneity.

where the equation

(18)

represents a surface that will be called the
‘skeleton’ of the inhomogeneity, e is a unit
normal vector to the skeleton, 2, and A, are two
functions describing the shape of the boundaries,
and e is the perturbation parameter.

The obvious procedure is to repeat the analysis
which led to (14), to obtain

xr; = 94(31, 85)

W = [ L6 )

- Gksﬂ(f» X)"i[clﬁpq] = d¥

Ju
S, dx,
+ Lil(u])Ghn(iy x) d¥
R,

1
du,

- j:q‘ Gki (Ey x)n,»|:C iipg asq} di (19)

Here the normal vector n to the interface is
assumed to point outward with respect to the
inhomogeneity.

We would like to be able to show that the
third and fourth integrals in (19) are O(e).
However, this is not so. For the third integral
the natural reasoning would be to say that since
L;1(w) is O(e) and the volume of integration is
O(e€) (because the region is thin) it follows that
the third integral is O(e?). But unfortunately
L (uY) is not O(e) because the derivatives of u!
are not O(e) in the interior of R:. This may be
most easily seen in the case of SH waves. In
this case only one of the displacement components
does not vanish (e.g., us) and all quantities
involved are independent of x,. In what follows
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it is convenient to represent by wu this non-
vanishing component of the displacement out-
side and by » the same component inside the
region K. With this notation the continuity of
normal stresses at the interfaces is

(" + udv/on = pou/on
But for the unperturbed solution

' /on = an'/dn

s0 that
N R
am W+ uoan u+ ko

Therefore both
[’/ + w)lou' fon

cannot be O(€) because u' is not small, and
consequently

[/ + u)lou’/on

'/ on;

is O(1).

All this shows that the method must be
modified and these points carefully taken into
account.

For simplicity we shall restrict our discussion
to SH waves.

SH waves. With the notation introduced in
the last section, equation 4 is

' u/dr0x; + plwlu = 0 (21a)

and
ud’v/dz,8z; + pw'v = 0 (21b)
The boundary conditions at the interfaces are
(22a)

(22b)

v = U
(1" + u)ov/on = u'du/on

[t is convenient to introduce the parameter r,
defined by~

(14 e/’

Since w* and ¢° satisfy (21a) it follows from
(21) that

wou'/ox 0z, + plw'ut =0

p/u =

(23a)
and
(23b)

0 21 0 2
p’d%' /az.0z;, + pwy = —rpwv
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On the other hand, the unperturbed solution
and its normal derivative are continuous across
the interfaces, ie.,

0 0
v o= U

°/on = ou’/on
Hence, by virtue of (22),

o = o' at the interfaces (24a)
u’(3'/on — du'/an)
= —u'dy/dn at the interfaces (24b)

The representation theorem (2a) can now be
used, taking into account (23) and (24). For
points x outside R, we obtain

W(x) = rty’ f (B (E, 3) dE

-0 [ e @a

The last term in (23) is still not in the most
convenient form. Using Green’s second identity
we can write

OQE_ _f {0 8%
fs.Gand‘f‘ o |0 3 o,

3G
T a:;}dH Vo

Since x is outside R: by virtue of (2b} we have
P@/oE0E + (0/1W)’G =0 in R
Using this fact and (215), we can transform (26)

into
(ﬁ ~ —) G dE
Ry \M M

4“‘[ v'"“'df

When this result is substituted into (25), we get

(25)

Eles

(26)

@ dv _
Sy 0 di

W) = (1 + ' [ (O6°E B a

G°

1

— - d
N fs, v an £
where we have written

a=p/u (28)

(27)
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The case we are treating is two dimensional.
Therefore the boundaries of the inhomogeneities
are not surfaces but only lines. Thus equations
17 reduce to

gi(s) + el (s)ei(s) (290)

g:(s) — eha(s)e.(s) (299)
When the boundaries admit of this representa-
tion

T

T; =

”l(g + ehye) = vl(g — ehye)

+ e(h + hz)e. (g — eh,e) + O(<) (30)
We have seen prevxously that both
L

_c')—?; an on

cannot be O(e). However, ' = 0 whene = 0
because € = 0 corresponds to the unperturbec
medium. This in turn implies, provided that the
limit with respect to ¢ commutes with the deriv-
atives, that
'

lim - 0 at the interfaces

e—0
It is therefore plausible to assume dw'/dn to be
O(¢). I this is done, (20) becomes

' _ _—”1_ au ~+ O(e) at the interface:
om 24w ‘
Therefore
o' ' 3
% o, (g — che) = —I'Fﬁ_l“_* rr (g) + O(e

And substituting in (30) yields
v'(g + he) = v'(g — he)

1 0
M aU 9
— ¢(h he) 16 T O(e
e(hy + 2)'“0_{_ T o, (g) + 0() (31
Sinee v = ¥° 4+ 2%, (31) may he used to re
duce (27). After some manipulations, in whicl
the facts that v is O(e) and that the interface
are assumed regular are used, we get

W'(x) = (1 + a)ra’p W + )Q(%, %) d

' 96"
—u [ PO a
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() 4G’

+ L h hoee; — — (€, %) d

”0_*_ [‘l S,,( l+ 2)e i as‘ aEJ (E ) E
+ 0()

where S, stands for the skeleton.

The divergence theorem may be used to reduce
the second integral in the right-hand member of
(32) into a volume integral over R,. The equa-
tion so obtained c¢an be further reduced by
means of (2b). Dividing the resulting equation
by € and letting € = 0 yields

du _ o ()
(a e)e_o(") =l

= (1 + a)p’’ L (hy + hz)quO ds

(32)

(0
+ (b + k') 96 ds
Se ds
0o 1 o 0
LK du 9@
— =5 T 1 by -+ ho)ee; —— ——.ds
p’ A+ out Js, (s 2 0f; 9&;

. R 320°
— M .. (hy + h2)u €€ oF. OF; (&, x) ds (33)

where primes stand for the derivatives with re-
speect to the parameter s (which must be taken
as the length of the skeleton) and we have writ-
ten u® for the unperturbed solution everywhere.
The first-order approximation is given by

ou

wx) = w'(%) + e(g;)g_u(x) + 0()

Complementary remarks. So far it has been
assumed that the boundary of the thin inhomo-

"/

1
X3
Fig. 2. Boundaries which do not admit of the

representation (17) are encircled. Their lengths
have to be small,

—=X

T~

~
/)

i

Y
X3

Tig. 3. Limit process by which a thin nhomo-
geneity crossing an interface may be treated as the
superposition of two inhomogeneities both of which
do not cross any interface.

geneity is represented by means of (29) every-
where. If this is not the case, but the length of
the part of the boundary where (29) does not
hold is O(e) (Figure 2), then the previous argu-
ments may be modified slightly to obtain the
linear approximation.

Indeed, (27) was obtained regardless of the
shape of R,, and therefore it will still hold. That
part of R, where (29) is applicable again gives
the terms oceurring in (33), and the subregion
where (29) does not hold will give additional
contributions according to (27). The contribu-
tion of the first integral in (27) is O{¢") because
the area of the subregion where (29) does not
hold is necessarily O(e?). Thercfore, the only
additional contribution is

1
lim (——H~ f 2" o dE)
€0 € s’ an

where & is that part of the boundary where (29)
does not hold. These contributions are concen-
trated doublets localized at corners or more
generally at points where singularities of the
boundary occur.

The discussion has been restricted to thin in-
homogeneities contained in a homogeneous ma-
terial. When the thin inhomogeneity crosses any
interface (Figure 3) scparating two materials of
different, %inds, it can be considered as the
superpositivu of two different inhomogeneities,
both of which are wholly contained in only one
medium. The resulis obtained above hold for
every one of these inhomogeneities separately.
The net result is that there are additional con-
tributions due to the interfaces.

(34
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Axl

Fig. 4. Geometry of the dike problem.

Transmission of Love waves past a dike. As
an illustration of the perturbation method we
consider the transmission of Love waves in a
single-layered half-space across a thin inhomo-
geneity whose skeleton is a vertical straight line,
extending to a depth D, less than the layer
thickness H (Figure 4). p and p are the elastie
constants inside the inhomogeneity, p, g, and ps,
p are those in the layer and the half-space, re-
spectively. Let the incident wave be represented
by [cf. Hererra, 1964a]

e—-iwlumO(x) — gm(x)e—iut = gm(x)e—iw!

— f (xs)ei(km:.—wl)
m

where
fulzs) = 2{F'(k,) cos o, H}™'?
_ L COS 03 0< 1 < H
= 2{cos a,,,H/F’(k,,,)}1/26_""'(“‘")
zs 2 H
g 12
Tm = (B_i - k"mz) Bl- = “l/pl
1

Il

w? 1/2

2 2

Um, = (km - E’E) B #2/P2
2

2 -1
A = 2¢0, {20,,1{ + (1 + g—"ﬁ) sin 20,,H}

Hk,

-2+ (- o

HERRERA AND MAL

and k.. is a oot of the dispersion equation,

F(k,) = 2u,0," coso,H

— uo,8inog,H =0 (36)

The Green's function which generates outgo-
ing Love waves in the nth mode along the posi-
tive direction of the z, axis is [ef. Herrerq,

1964a]

TG D = S 2 a®et®) (87

where £ is the source point, and g,*(x) is the
complex conjugate of g.(x). If we substitute
these expressions in (33) the perturbation Uy 2(X)
in the nth mode of the transmitted wave can be
written as

D
Unn (X) = euuo(x)(f {rpn“’:) fﬁ + (b — W)k
0
0

- E’u‘(# - #n)lcrtkrn}f'ﬂ(&‘).fﬂ(‘g:‘) d‘g';,

df,
+@—wmm~wﬂ
df,
where ¢ is the thickness of the inhomogeneity
and the last term in the right-hand member 1s a
contribution due to the sharp ending of the in-
homogeneity. Since the inhomogeneity does not
cross the interface,
b=
1}
p = M
Thus the perturbation of the wave at an arbi-
trary point to the right of the inhomogeneity is

U(X) = D U (%)
and at the free surface

W (a, 0) = 1,(0) 2 A,de’ (38)

where A, is conveniently defined and has the
following explieit form:

. (k,,H)(k,,,H)}
I

(knH)® ~ (k,H)®

-(0,,H sin 0, D cos 0,,D — 0, H sin onD cos o, D)(#— — 1>a,,H sing,D cos o, D | (39)
M1
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The total displacement at a point (z, 0), (z, >
0) on the surface can be written in the following
form

Un(z1, 0)
- [1 + ?, Z Am”e—i(km-kn)zx]um()(x]’ O) (40)

The linear approximation (neglecting body
waves) to the transmission coefficient, which is
defined as the ratio of the amplitude of the
incident and transmitted wave at every point is,
on the free surface,

To(w) = 1+ 25 Auusin (ke = ko (41)
The phase shift is given by

U (21, 0)
U (21, 0)

= D Ap cos (kn — k)2,

() = Im

(42)
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The perturbation in the wave number,

klz—df—z
" dz,

— > (kw — k) A

-sin (k,, — k)2; (43)

and, consequently, the apparent phase velocity
of waves of frequency o is

c(x) = w/{kn + kn'}

The apparent velocity as given by (44) is the
phase veloeity that would be determined if a
sequence of seismographs were placed to the
right of the dike and the records were Fourier
analyzed. It is strongly dependent on the shape
of the incoming motion, because it is the result
of superposing surface waves in different modes.

The reflection coefficient can be caleulated in
a similar manner.

Numerical calculations and discussions. Equa-
tions 38 to 44 show that the transmitted wave in
the same mode as the incident wave suffers no

(44)

3171777 T T T 1
P/p =10 pip, =1
t.2- fopipi=t pip, =]
D/H=8
I o
1.0k p/p, =10 p/p =1 _
-p/p = p/p =l
= D/H=.5
8Br -
E 7t - _—plp, =10 plp=l
E . ] ]
< ol /P/P,” pIpEl
' D/H=3
5 .
4 -
3 1
2 -
A -
0 11 R B
0 2 4q 6 8 10

mH/,B2

Fig. 5. Jump in the phase of the transmitted wave plotted against frequency for different
values of u/w, p/p1, and D/H..
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Fig. 6. Amplitude of the perturbations (4

for different frequencies, showing the effect o

(same density).

perturbation in the amplitude. However, the
observed displacement of the transmitted wave
consists of the superposition of all the perturbed
modes. Since all thesc modes differ in phase
velocity, the amplitude of the perturbed wave is
naturally a function of ®;, as is evident from the
expressions given above. The perturbation in
amplitude is greatest at points where the per-
turbed modes are in the same phase. The ex-

w

[
R

D/H

») plotted against the depth of the discontinuity

£ o discontinuity in the rigidity of the material

tremum values are
:t Z [Amn!

As a consequence of the dependence of T,, on Zy,
the transmitted and reflected waves are aug-
mented at some points and attenuated at others.
The perturbation suffered by the incident mede
itself can be written as

D

Fig. 7. Same as Figure 6, showing the effect of a density discontinuity (same rigidity).

/H—
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A6 T I T l

5 D/H=.5

A

T I T l T

s

c..vH/,B2 —

Tig. 8. Awn plotted against frequency for different values of the rigidity inside the
discontinuity (same density).

“mm](xl ] 0) = iAmmumn(xly 0)

where the real quantity 4,,, has heen oblained
by proceeding to the limit of A,., as k. = ka.
This shows that there is a sudden change in the
phase of the transmitted waves just after cross-
ing the dike. This jump in the phase has been
plotted against frequency in Figure 5 for differ-
ent, values of the parameters involved. The total
perturbation in phase consists of the superposi-
tion of this shift, which is independent of the
point of observation and other terms (given by

(42)) depending on a,. The amplitudes of the
position-dependent phase shift have been plotted
in Figures 6, 7, and 3.

The number of real roots of the frequency
equation (36) corresponding to frequeney o 1s
riven by the least integer exceeding

(WH/m (/B2 — 1/8:.°)" (46)

Thus if

wH/p, < w/[(8./8:) — 177 (47)

T I T I T l T T ]
10
8r
" D/H=.5
pip =
— .6
E
i -
1
L4k
2
. | s | . | N { .
% 2 4 6 8 10
wH/B—

Fig. 9.

Maximum attenuation against frequency showing the effeet of rigidity discontinuity.



882 HERRERA AND MAL
T ] T I g ] T l Y
1.0
8r
i D/H= .
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0 2 4 6 8 10
wH/B,—

Fig. 10. Same as Figure 9, showing the effect of density discontinuity.

the Love wave equation has only one root. Equa-
tion 47 thus gives the critical frequency, so that
the incident waves of lesser frequency will not be
affected in amplitude by the discontinuity.

In the numerical example worked out we have
restricted the computations to the case where
the depth of the discontinuity is less than the
layer thickness. If D > H, (39) has to be modi-
fied because of the contribution from the inter-
section of the interface with the discontinuity.
The following physical properties have been
assigned to the model:

The other parameters, D/H, u/p, and p/pr, have
heen assigned different numerical values. With
these values of the constants, the frequency
equation (36) gives multiple roots only when
wH/B, > 4. The incident wave is always as-
sumed to be in the first mode which corresponds
to m = 0. The computations have been made
in the range of o given by 4 < oH/B8: < 12.
Equation 36 has three roots only when H/p,
> 11. In all other cases it has two roots. But the
effect of the third root in this case is very small.
Since A,.. is purely imaginary, in the range of o
we have considered that it is enough to analyze

B:/B1 = 1.278 the behavior of the term 4, = A4, in (38) to
Jun = 1.8 (44) for the perturbation. The curves plotted in
Ko/ b ' Figures 5 to 12 show the variation of the phase
2¢/H = 0.05 and amplitude perturbations with the different
|4 T I T I T I T l T
1.2~ -
g 1.0 .
o L -
P—E 8 L P /PI =1 _
‘ Bl
(ot -
4 1 l 1 I | l L I |
0 2 4 6 8 10
wH/BZ———"

Fig. 11.

Amplitude perturbation at a point away from the dike plotted against frequency

for different values of D/H.
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Fig. 12. Apparent velocities,

parameters as well as the frequency of the in-
cident waves. In all the cases except that in
Figure 11 the extreme behavior of the perturba-
tion has been analyzed. The quantity A, in
Figures 6 to 8 will change sign at some points of
observation. The quantity 1 — |4,| in Figures
9 and 10 gives the maximum possible attenua-
tion in the amplitude of the transmitted waves
(it must be noted that they do not refer to the
same point of observation). There are points to
the right of the dike where the amplitude of the
transmitted wave is exactly 1 + |4,|. Figure 11
is representative of the behavior of the trans-
mission coefficient at a particular point, away
from the dike. Figure 12 shows the maximum

Al
possible change in apparent velocity due to the

presence of the dike.
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