)’z
ot

. FINITE ELEMENT ANALYSIS
IN FLUIDS

Proceedings of the Seventh International
Conference on Finite Element Methods in
Flow Problems

APRIL 3 -7, 1989

The University of Alabama in Huntsville
Huntsville, Alabama

T. J. Chung, and Gerald R. Karr, Editors

UAH PRESS

DEPARTMENT OF MECHANICAL ENGINEERING
- THE UNIVERSITY OF ALABAMA IN HUNTSVILLE
.' HUNTSVILLE, AL 35899



ALYSIS

naléivonal
dhods ¢n

mavijle

Eduors

LEING
SVILLE




UAH PRESS, 1989
DEPARTMENT OF MECHANICAL ENGINEERING
THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

Printed in USA
ISBN 0—942166—01-9



952

1 T i L Al L] ) ¥ ¥
b 4
i tea _
te 4
I \ J
/
" t=8 k=2 =
: .y rd J
3 t=Q0 “
-1 . . 4 N PR i N "
-1 1

Figure 2. Concentration contours for the purely advective rotating plume problem at
various time levels. Contour interval is 0.1.

Figure 3. Plot of concentration distribution at ¢t = 0.3 for an advection-diffusion prob
with potential flow.
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ABSTRACT

Adjoint Petrov-Galerkin (APG) methods are a general class of Petrov
derkin wethods that derive from the general theories of Herrera ([1]-[6]).
tical implementation of these methods has been achieved for
s~-dimensional problems ([4].[7]). Application to problems in more than one
pace dimension requires additional developments. This paper develops a
i1ly of Adjoint Petrov-Galerkin methods for two-dimensional flow problems.

general behavior of the schemes is discussed, and the methods are

ed to other standard approximations.

. Simulation of multi-dimensional flow and transport equations is required

lljany engineering problems. Of particular interest in this paper are

potential flows and advective~diffusive transport of passive scalars in low
dilpersivity fields. This paper develops the Adjoint Petrov-Galerkin (APG)
methods of Herrera and coworkers ([1]-[7]) for multi-dimensional flow and
tpansport problems. Specific difficulties introduced by the dimensionality
ofsthe problem are discussed, and several approximations for model flow and

; psport equations in two dimensions are given.

ADJOINT PERTOV-GALERKIN METHODS

Adjoint Petrov-Galerkin (APG) methods are based on the pioneering work
‘g‘?’ﬂerrera {[1]-[6]). One result of Herrera’s general theory is a selection
‘eriterion for test functions in a general Petrov-Galerkin framework. For a
given operator equation, the criterion to be satisfied is that each test
function should satisfy the homogeneous adjoint operator locally (within each
element). This choice of test function effectively concentrates information
at element boundaries, thereby eliminating integrations over element
interiors. In one dimension, this means that all information is concentrated
directly at node points. One-dimensional versions of APG have been developed
and applied to ordinary differential equations [4] and to one-dimensional
transient partial differential equations [7]. In the latter case, APG was
applied in space to obtain a semidiscrete systems of ordinary differential
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equations in time, which was then solved using standard time-stepping
algorithms.

Extension on the APG method to multiple dimensions is complicated by the

fact that the solution space of the homogeneous adjoint equation is now
infinite-dimensional, so that there is no unique choice of test functions.
In addition, concentration of information at element boundaries produces line
integrals (two-dimensional problems) or surface integrals (three-dimensional
problems) rather than the simple nodal evaluation of one dimension. Each of
these complications can be overcome in several different ways.

As an example, consider the Poisson equation in two dimensions, defined
on a closed rectangular domain {2, with suitable boundary conditions specified
along a1,

¢u = v2u = f(x.y). (x.y)en (1)

Application of APG proceeds as follows. Let 1 be partitioned into E
rectangular subintervals, (Oe)§=l. A weighted form of equation (1) is then

written as

fn(vzu) " (x.y) ax dy = fnf(x.y) " (x.y) dx dy 2)

For simplicity, assume uel:l (this is for simplicity of presentation only:
Herrera's general theory treats fully discontinuous functions). Then
equation (2) can be written equivalently as

I(vzu)w(x.y)dxdy= 5 I (v2u)w(xy)dxdy=ffw ax dy (3)
0 "k e=1 ne k 0 k

Integration by parts (Green's theorem) can be applied to each elemental
integral in equation (3),

E 2 . E R . e
ezl RN (v7u) w (x.y) dx dy = eil{ Ian" [(gu-n®)w, - u(gw n%)] ds

+ Ine u(v2wk) dx dy } (4}

vhere ge is the unit normal along the boundary of element e. Choice of

\vk(x.y) such that 2“wk = v2wk = O within each 0% eliminates the interior _
integrals in equation (4). thereby concentrating information along element
boundaries. Approximation of the boundary integrals in terms of nodal values
of the unknown function then produces the approximating equations of
interest.

i ..
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. One of the simplest choices of test function is a tensor product form in
ich each directional component is required to satisfy its respective

-dimensional component of the operator 2“. For the Poisson equation, this
ads to definition of wk(x.y) as the standard piecewise bilinear Lagrange

ynomial, centered at node %,.- For this choice of test function, v2wk =0

witixin each N, e=1,2....,E. Furthermore, the contributions from the first
orm in the boundary integral of equation (4) sum to zero because both

'-g °) and w, are continuous (C [Q]). and contributions to 2 I

(“"!! )w ds from adjoining elements cancel. The second term is nonzero

becanna vwk'n is discontimious across element boundaries.

xﬁ» Consider a rectangular array of nodes, with indices i and j referring
.:Wtively to x and y position, so that X = (x‘.yJ) - The following

equation results from equations (3) and (4). with the choice of w asa
plegewise bilinear Lagrange polynomial centered at N and constant node
L) ¢ing assumed in both x and y,

1
[l _p-¥) - (Dulx,.¥) + (olulx,,,.v)] dy +

(5)
y X
J*1 i+1
1 2 1
(eleay, ) - (Fulx.y) + (u(xy, )] dx = w, dx dy
.[ Ay J-1 Ay J Ay 3+l J;’J-l th k

inal step is approximation of the line integrals in terms of nodal

s of u(x,y). Three examples are provided to demonstrate the

imations that may be derived.

17" Each line integral is approximated using a constant value of u, defined
as the midpoint value (this is equivalent to a one-point integration
~rule). This leads to the standard five-point finite difference
approximation,

~Li62 v, BE ———;-{5 ug =y (6)

I I I R A TS IR R R T
are the usual second order difference operators and the right side
‘ integral is also approximated with a one-point rule.
2. Plecewise linear Lagrange polynomial approximation of u in each line
integral leads to
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.G(Ax)2[6x Do g0, 0 a3 * Gty Do, D)
; Jyj-rl 1+1
= T I £ w, dx dy (7)
(Ax)(4y) Yy %y

This approximation is identical to the usual piecewise bilinear finite
element approximation to the Poisson equation

3. Quadratic Lagrange polynomial approximation of u using the three nodes
associated with each line integral leads to

? 0, Loy, 41?100 9oy D) * 12(A )2 28y (4o, 7100 00, 51
1 v i+1

= ) I £ oW dx dy (8)
Y5-1 %41

This is an enhanced nine-point approximation to the Poisson equation.
The approximation (8) is 0(h4) on uniform grids (h=Ax=Ay), while the
previous two approximations are 0(h2). Vhen f=0, equation (8) becomes

an O(hs) approximation. Furthermore, Collatz [8] has shown that it is
not possible to obtain a higher order approximation to the Laplace
operator using nine points. In this sense, the method leads to an
optimal approximation.

These three examples illustrate one possible family of approxinations based
on the APG approach.

A similar approach may be followed for the advection-diffusion transport
equation. Consider, for example, the two-dimensional equation

2

$u = YVegu - Dvu = f(x.y), (x.y)e (9)

]

In this case Q*wk =-Y-om - szwk. with local tensor product homogeneous

solutions given by

'k(x'Y) = ai(x)ﬂj(}')-
(10)
where
i 1-f, (x ) 1
a,{X) = X} y) =
i 1-F . xi$x$x“1 3 25 . yjiysyj-q-]

0 . xSy 5. XX 0 . ¥&yy g Y5y
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with f, (x)Eexp[—Vx(x—xi_1 )y/D]. fz(x)Eexp[—Vx(x—xi }/D1.
g1 (y)=expl-V, (y-y,_))/D]. ga(y)=exp[-V, (y-y;)/D]. F=exp[-V,(4x)/D]. and
E:exp[-Vy(Ay)/D]. Calculation of the appropriate line integrals in equation

(4) then leads to a nine-point, upsteam-weighted approximation for the nodal
estimates of u. Different interpolations for u in the line integrals again
lead to different approximations.

3. COMPARISON TO OTHER METHODS

Equations (6)-(8) show that the APG method applied to the Poisson
equation leads to a general family of approximations which includes the
standard 5-point finite difference approximation, the standard S-point finite
element approximation, and an enhanced 9-point approximation that attains

optimal order. Equation (5) can be viewed as a general statement of a Co.
tensor product APG approximation which subsumes the standard approximations

for this equation. Other choices of test function definitjon (under the

restriction that 2*w=0) lead to other families of approximations.

The APG approximation to the transport equation (9) using the tensor
product form (10) can be viewed as maintaining a sense of optimality in each
coordinate direction, since w(x.y) is required to satisfy each directional
component of the adjoint equation. The approach is therefore analogous to
other methods that use one-dimensional optimality to develop multi-
dimensional approximations. Examples of this approach include the tensor
product version of the Quadratic Petrov-Galerkin (QPG) method [9] and to some
extent the Streamline Upwind Petrov Galerkin (SUPG) method of Hughes and
coworkers [10], as well as the two-dimensional Allen and Southwell [11]
scheme. Under certain interpolation choices (quadratic interpolation in the
line integrals), APG becomes nearly equal to QPG and SUPG. Other more
general approximations can again be derived by including the advective term
in the general equation (5).

4, SUMMARY OF RESULTS

For highly advective transport problems, the APG method using quadratic
interpolation produces results the are very similar to the two-dimensional
QPG methods [9]. Two-dimensional steady state test problems have also shown
that APG produces results similar to SUPG except that APG is better able to
resolve boundary layers. '

Similar results have been observed for transient multi-dimensional
problems when the Petrov-Galerkin methods are applied in space only. For the
transient problem, our results indicate that a a variant of Dick's [12] Cubic
Petrov-Galerkin (CPG) method produces results far superior to any other
nine-point Eulerian approximation. The APG, QPG, and SUPG yield results that
are very similar and generally overly-dissipative, while CPG results are
significantly less dissipative and more accurate. Numerical results to
support these .claims will be presented at the conference. : -
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5. CONCLUSIONS

A multi-dimensional Adjoint Petrov-Galerkin computational algorithm was
developed for problems of flow and transport. The development leads to
general families of approximations. Definition of appropriate tensor product
test functions leads to standard finite difference and finite element
approximations for both the flow and transport problem. Standard numerical

approximations can therefore be viewed as examples of the general APG
formulation.
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