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1.- Introduction. In the general theory of materials with memory

the stress is assumed to be a functional of the whole histor)} of the strain
/1, 2,3,4,5, 6/, sothat the equations of motion which for purely elastic
materials coﬁstitute a system‘ of partial differential equations, in the theory
of materials with memory they are partial differential equations whose
coefficients are functionals of the strain. It seems natural to call an equa-
tion of this type "Functional Partial Differential Equation".

Functi'onal partial differential equationsoccur in abplications, not
only in the theory of materials with memory. They occur in some other flelds
such as 'the theory of nuclear reactors.

In spite of their interest from the practical point of view, apparently
they have not been so far the wé‘,.- “of a systematic treatment from a purely -
.mathematical point of view.

This is ‘r;ot the case for functional differential eg. itious for func-
tions of a single variable, which have been extensively stuaiea /7, 8, 9,
10, 411, 12, 1§7. It seems therefore that a systematic treatment of functignal
partial differential equations is wanting . The present work i{s a first attempt
"‘ to fill this gap. |
For s'ome tim.e during the development of the thebry of viscoelastic

materials, it was thought that surfaces of alscontinuity were unable to exist
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in viscoelastic media /14/. The possibility of existence of surfaces of
Jiscontinuity is related to the hyperbolic character of the governing equations.
Apparently both were ove. ic.<ed for some time. Glanz and
Lee /15/ considered a model which led to a hyperbolic system of partial
differential equations (with memory) and this was integrated by the method
of characteristics. A systematic study of discontiﬁuous solutions in |
materials with memory has been done only recently /14/. Herrera and Gur-
tin /16/ calculated the acoustiéal tensor in full generality and later Coleman
and Gurtin partly in collaboration with Herrera ﬁ?, 18, 19_7 developed a
general theory of wave propagation in materials with memory. Varley /14 ,2¢]
independently, neglecting thermal effects, caiculated a general partial
differential equation for the change of amplitude as the wave progresses and
integrated it explicitly for plane, cylindrical, or spherical waves propégatins'
into an mﬁnité body at rest. Although the above work ig not cqncemed with
the existence of solutions, discontinuous solutions can be easily constructed
2771 : .
[20,}(. As a consequence of all these results, it has become clear that many
properties cormresponding to hyperbolic differential equations are preserved .
' by the equations of motion for materials with memory if the functionals defining
the memory are assx;med to satisfy appropriate hypothesis.
It is therefore natural to try to develop a theory pérallel to the theory
of hyperbolic pértial differential equations for functional differential equations.
In this paper attention will be restricted to systems of functional
differential for functions of two independent variables. In a manner simllar
to what has bé-en done for partial diifereniial cqnaﬂoné ﬁl] we {irst introduce

the notion of conservatic:i i:xw and thas diafine winl wH hiban by a quasi-linear
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system of functional differential equations. Then some necessary. conditions
for the existence of weak discontinuties are discussed and adefinition

of hyperbolic system is given.

The main results of the paper are existence and uniqueness theorems
in a determinacy domain for a Cauchy problem of the hyperbolic system of
functional partial differential equations.

The paper is based on a previous paper by Friedrichs /22/. Some
of the ideas due to Douglis /23/ have also been helpful'in the development
of the work.

The hypothesis of the main theorems refer to some sortlof gengralized
Lifshitz conditions. THs type of conditions can be deduced from the existence

wrhen they
of the Frechet derivatives of sufficiently high orderkare assumed Lo exist and
appropriate smoothness hypothesis ére imposed on them. This was perhaps desir
able to do, but the author preferred to assume directly coﬁditions of the
Lifshitz type because they are intuitively appealing and in applications can be
directly checked, Besid es, the paper is already considerably long and it
was thought convenient to avoid enlarging it even more w/l4 Z4e discussion

a/d_ ornl sriiicst /5 nol essacliol For Fhe HLheory.
2 g

2.- Notatién. The functional differential equations which we shall

ge——

~

investigate refer to a system u:{u X ol Vv functions ul, eess Uy
- simply called "a function", of the two variables x and t. The coefficients

of the equations, given as square matrices

A={A;& ,. B"JLB}Q ;oAgEd ey

and the inhomogeneous term  C = {C V,l are functionals of u. More

)
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¢ for these two functions and we shall do so.
lIn a s;milar manner, we assoclate with every point
(x, t,Tle &(ﬁ,&) a functional B, t, G, -) which is defined in the same

set of functionsas A and C. Using the convention adopted before, we

A
deffne the function b in (9\'([3, $) by
“b(x,t,%) = Bix,t,s,u)

and we shall drop the superindice u whenever this does not lead to
confussion. It must be emphasized that the functional B(x, t, G, -') is
defined on functions defined in the interval [0, f_] . |

In section 8 we define some functipnals in terms of the functionals
A, B, C, and we shall use for them conventions éxxmlar tc those introduced
here, | |

For vectors | = ifi‘k and ﬁmatr;\tcs r = {r‘j} we introduce the

9

absolute value

‘Vi VL K ‘l‘Q',.\
\'.i, .\)

: “\,\ - m&x Z\Y*j\
A:LI"'[\) 3 .

50 that Ieg) <ielig]
If £ and r dependon 'x%,t in 5{_([3,6), we introduce

the notation +

| £ sox (Er 0 5 oaed x
< 0¢T ¢t
| ri, = moow Ie(x, el Tixed x
osw ¢t '
Observe that . I U
A SIS AR GRS



(6

/

We define further
L& = mox H(’(,‘D\
(Y e®

= WO % lr(x,ﬂ\
el Moy

When f and r dependon i, .G in @(ﬁ,é),

| {
—C = VY\O\)QA \’(X t1t>
H “ (x,i,'t:)e&l I !

”\/\l = "MQ % AEY(X,'t/t>!
(x,t,TYENR

' With these definitions
ef i el i)
The partial derivatives will be denoted most often by means of subindices.

The restriction to the set g of a functibn u defined in
(R(P.: §),  will be denoted oy W, i.e.

UG = U(x,0); X, sx<X,

The set of continuous fu_nctions defined on R (P,cs ) will be
denoted by ?(P,J ). The set of those with first order continuous
derivatives by "8}1( /3 d) and the set of those with seroud order continuous
derivatives by 055‘2((3 ,§ ). We shall write u c °\§fa([3,d ) if and only
i ueT(B,S) and |

ull< - | (24.2)

Also, uecgjl(fi,é) ifandonlyif ué"%\‘l({‘s,d') and
R el

Il fundl +1 kel <n (2.0

Finally, ue §&2(n,d) if andonly if we “U,2(3,d) and -
PRTE ARAVE;
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l\m\ﬂ-\luxilﬁ\\udlq»uum\{qruuuu*uu“u < 1L (2.1.c)

This notation will be used for vectors as well as for matrices

Analogous definitions are given for "'O“ (P , 6 ), Cg.l(P, &) and
2Dz o N g
I (P, S ) replacing &(P, d) oy 0\(53, @ ) and including in the
left hand of the inequalities(21.b) and(21.c) the partial derivatives with

respect to T

2. (onvervation Laws. For fixed x and t, let F(x,t,.)

and <., iu, ) ve vector valued functionals defined on some subset of the
set of functions: “
£ (co0,t]— R (3.1)
A system of conservation laws is an equation of the form
Uy + {?(x,t,u)k +C =0 (3.2)

", Foll wing Ccleman, [Co,l(eman, Gurtin and Herrera 17/ we consider
the set of functions f(r):(-oo, t) —-—>Ry' obtained by taking for every f its
restriction f(‘) 1o the interval (-0, t). Without specifying further,
assume defined a normn “fr”t in this set of functions. We define the norm

of a functipn f by . | |
I £ \[i o ECIE | £ () | (3.3)

We suppose that for fixed x and t, Fx, t, ) has a func~

.

tional derivative in the sense o'f Frechet with respect to this norm,

Flxe 8 )7 2000+ DEGGE D 9t) 0.0
"5F Lot g o)+ o (130i)

. g [ . T b d
where ti. arator introducad by Coieman /24, 257 is such that



: (8

’ . ' . H B
. . , ; .

DF(x, t, f) is a matrix valued functional, so that DF(x, t, Hgt) . is

. ‘ e ! -
lnear in gf(t), on the othor hand §F{x, t, £l-) 1is a linear functional of
the restriction g, of gq.
Ve assume oven mora, that for fixed £, the function Fx, t, f)

kas a partdal derivative with raspeét %0 x. In this case a functional

Fx(x, t, -) may be defined in the same set ol functions as F. Itis given
by Pe £ )E
- 92 yF(xT
Fx(xltlx')"_ax i ( '

Rcocall that here £ is a fixed function independent of X,
In this notation

%F('x,t.,u)}x_-. DE (%, W) Uy, ) + §F (¢, t,ul twd ) + B (X t,W)

and (3.2) becomes

ut*Au“g\t(x,t,u\cum\-rC=o (3.5)
where .A(x, t, ) 1is a matrix valued functional defined by
ACx,t,w =DF(x,t,u) \

and we have modified the definition of C adding Fx.
In‘what follows we resirict attention to those cases for which the

" linear functional of (uyxly, dF(x, t, u (ux)) can be written as an integral

i.e.
| + ‘ |
éF(x,t,u\(u,\ﬁ) = S Bix,t,T, Wyuedde

where B, t,. G, «) for fixed x,t, G, is a matrix valued functional
defined in. the same set of functions as F.

Then
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€
Uy + Alx, €, Wux + SB‘ (x,£,T,dux)dT + C(x,tu) =0 Q.6

-0

In what follows any sysiem of the form (3.6) will be called quasi-
.'Unear ‘system of funciional parilal differential equations, independently of

whether 1t can ba derived from a conservation law of the form (3.2) or not.

4.- 'Propaqation of discontinuities. gharacteﬂsgcs, Assume
‘that a solution of (3.6) exists in a reglon R, which is continuous in R,
and whose first order derivatives are continuous except across some Une
where _they have jump discontinuities.

Let 4’ =0 . be the equation of the line of discontinuity and

define X by

2P +x2® _ o
P ot d X | (4.1)
7
2 : -
" Here we assume that grad $ # 0. -

Then oA Is a function defined on the line of discontinuity which
has the interpretation of the speed of propagation of the discontinuity. If
%—%:O ’ | such an | oA éoes not exist and we say that the speed of

: : propagation is infinite.

Since u 1s contlnuous we have the Rankin-Hungoniot relations
Tud+xfud=o0 ‘ (4.2)

for the jumps in the partial derivatives of u.

On the other hand, assume thot lur the given continuous function

Wik, 8y tha fupattana Db, 1, W o0 aud w77 Ape anaglitely
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integrable in the {nterval (-« 5 ¢t) forevery (x, )€ R andthat
t .
(e towlis

-0

and

¢
S \ux (x, ) T

-0

are continuous as functions oi (x, t}). Assume further that

“e(x ) = GUx, )
and

AOLx ) = Ak, Eu)

.are continuous. Then, it follov‘vs from (3.6) that~
[+ A(x,t,(ﬂ[uy =0 | (4.3)
Equations (4.2) and (4.3) together imply
Aluxl = oLux] (4.4)
Thus; the well known results for systems of partial dif‘erential equations

remain valid. Any line whose speed of propagation o™X satisfles (4.4) °

 will be called charac:eristic. Observe Ut (4.4) is tn % 7cc went wilh vesults

. odtasmed é’ Colemart, Gurlin and Herrere (76 17J. |
‘ We shall say that the system (3.6) is hyperbolic at a point (x, t)

 with respect to the function & (~oo, t] __qu. 1f all the elgen values of

» Alx, t, f) in (4.4) are real and elther they are all different tc.zero or B=0
This definition is identical to the one used for systems of partial

differential equations, excepi by the requirement that all the speeds of propaga

. tion of weak discontinuitiesbe non-zero. A requirement of this sort is necessary.

because othenwise the character of the equation is changnd. It will be shown
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that syste' s o, 'u -tional differential equations of this typé behave in many
res; 2« s . ~e 1, erbolic systems of differentia’ equ ‘ions. However, if the
above requirement s not introduced in the defir.uon of hyperbolic systems

the single equation
t

U ()~ guxmﬂ dz =0 4.5s)

would be hyperbolic. But if we define

t
]
A () = Sum:)d‘C
~
Tt o '4.F occor es
’ AT, =1,

and thi s is a parabolic equation.'
By the definition of hyperbolicity, the eigen values of thoe matrix
A have to be real and finite. We shall assume in what follows.without
any further e<plic - menton that all the eigen values of A are real and@re
I

uniformly bounded by a number P > 0. This implies that there exists a

matrix q a'dit: irverse q"1 such that

er'iagr_:él

where d 1is a diagonal mairix. Even more, the regions ‘G{([B,S ) will
allways be determinacy domalins /227 of the partial differential equations
to be conslidered because /3: is a bound for the speeds of propagation

of characteristics.

An equation of the form

Uy, -+ f}\&ﬁ,t,m\,ux"' Clet,u)z0 (446
3
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obtained by dropping the term containing the integral in equation (3.6) will
be called "reduced equation". Sometimes to be more explicit we call equa
tion (3. 6) the'full equation”.

The reduced and full equations will be discussed separately.
When dealing with the full equation we shall assume that all the eigen -
values are real and different to zero and uniformly bounded away from zero
by some number /0 ~ 0. This implies the existence of an inverse
matrix A™} .

Our main goal will be to discuss uniqueness and existence of
solution of a Cauchy problém for equation (3.6). In this problem we will
_prescribe ufx, t) in (9 X(~o, O:) . When we restrict attention to
functions which are equal to the prescribed function in 9 X(-oo, 6] ., the
functionals Alx, t, ¢), Clx t, 9, Blx, t, G, .) may be thought as

functionals defined in a set of functions f: [0, tj—p R\? . Consequently

O ) .
S B(xt,5wWult)ds

{s also 4 functional defined for functions  §: 10, t)—o P\v , which

can be incorporated in C. All these considerations lead us to restrict

a-

oo b~
ttention t

. t
U+ A(x;i:,u) Uy + S%(x,t;z:,u*,ux('c)d'c+C(X,JC',U)= O .8
. S .

where Afx, t, «), Bl t, .., <), c(x, t, -) forevery x,t, and

. ~
’G‘) are functionals defined in a set of {unctions f: Lo, tyj—v R

5.~ Prolminary Reguiig. in taig seciien sve plove somo results

foF HR3F ‘3§:pcari‘|£11lc aynl . an af onetiog dtffential ogquatlnn g Wh“‘fh y;;“l
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be used in the sequel. Most of these results are easy consequences of
results originally obtained by Friedricﬁs and this section uses nomenclature
introduced by him /22/.

0

The system to be con’sl‘der.e“d isw
Ui+ QU +YU+ C =0 (5.1)
where a, r and c¢ are functions of x and t. only. Itis
“assumed that the system is hyperbolic, {.e. that there exists a matrix q

and its inverse q"1 such that

. -1
k4 O :
J AN a (5.2)

where | d s a dlagonal matrix.

The eigen values of a are assumed to be bounded in absolute

value by P >> 0. Under these conditions we prove

THEOREM §5.1. Assume that in a region Q\(P 9),a, q, gl

are bounded functions, with bounded continuous first derivatives , while r
and ¢ are bounded continuous functions. Then, if u is a solution

in the wider sense of (5.1) and wu 1is continuous on 9) there
exists a number N > 0 such that givenany g > 0, anumber X\g>0

can be chosen so that

[

lue™ <N T+ ele ™|

(5.3)

whenever N> >\0 . Even more, the cholce of N and Ao depends

only on the bounds for a, q, g~1, r and thevﬁrst derivatives of q.
Proof, This theorem follows immediately from Frierich's results

[22/. According to section § of that ppper u is snld to be a solution of

(5:1) tiv thes wldue asnign, (f and iy of
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\J = qr'iu

satisfles in the wider sense, the equation
| o \ ot _o
VY, + GVUx + & (%tfgﬂx+(g~3v+i c =3 (5.4)

Since @(P §) isadet erminacy domain, by Lemma 4.1 of Friedrich's
. 11 A s
S O=-M fve >l e ITlielgTee

(5.5)

where

=] %‘5(%“a%xw@us\.\a-*u\m{l«wM"“ peiligl

Let M* be a bound for

g g e -l -+ el Ugh

and use the fact that q\} = u so tnat

e
e 1gveti<igtiiverd

Therefore,

| (A~ M*H\u@“\\sﬂ\i ol foli+had \\1“!1 \\.ce

. by (5.5. Hence

\\'ué“u \\a\\\\a-"u\\a\\»fl_{-_-ﬁ—— | ce

whenever }x > 2M*.

Take

! TP
Nl>2‘\\\ar‘\‘\ \'\\Q‘ i
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and given € > 0, <choose Ao such that

) ‘ v
Moo M and oy AL e
With t.his choice, >\ >>\o implies

i ' — -t
et < NuTl ~ ellee ™

"TME('REIM _S5.2. Under the hypothesis of Theorem 5.1, there

—— —

exists a number M such that

lladll <™
If the function U 1is kept fixed, the choice of ™M depends only on the
bounds for a, q, q“l, r, ¢ and the first derivatives of q.

Proof. Using (5.3) N
lull =l we ™™ e\ < nert tue

< el iNial~ ellell}

o

(5.6)

Observe that the bound given by (5.6) has the properties asserted in the

s
by

theoren.

CORCLLARY 5.1. Assume that a, q, q"l and c possess

continuous first derivatives in @\( ey $). Let u bea solution in the

)

" wider sense of

U + AUy + C =0 | (5.7)
in @\( P, cS , uc.. that U has first continuous derivatives on 9 .
" Then there exists N >0 such thatgiven £ > 0 we can choos€ No>0

for which A > >\YC impiles



‘i

“uté*ﬂ“<N¥Lku*hU\%+Exc-e |+{cee ﬂ<59w

Even more the choice of N and A o depends only on the bounds for
a, q, 1  ‘and the first derivatives of a and q.
Proof, Observe that Ut = -alyx - ¢ on (9 . By theorem

5.3 of Friedrick"s paper, u and u; eoxist, are continuous and

X

 satisfy in the wider sense
qu)t ( x) + Ux u" +Cr =0 (5.10.a)

@t)t oy Q(u{;)x‘f‘ CL.tU,( + Cye =0 (5.10.b)

By theorem 5.1, there Is a number N such that given any ¢ >0,

we can chose )\.0 with the property that >\ > /\ o Iimplies

lu S <N Tl ~ €'llce

Tu e eN [T+ e'llcae

\Nl:‘
l (5.11.a).

gl
(5.11.D)

Hu;e"“u <NNTG I+ <€ P(Ct+ﬁ ot NS -M‘U (5.11.c)

Observe that although the numbers N and /\0 predicted by theorem 5.1
may be different for every one of the equations (5.11), they can be taken
equal if we choose N and )\o as the greatest. of each triplet. Now,

- from theorem 5.1 it follows that the choice of N and Ao depends
only on the bounds for a, q, qfl and the first dérivatives of a and ¢

On the other hand



| "

e+ ) €N teee e tol Vue@™ .
£ )\1’:\[

<lege ™ i+ \afl\x\jw A+st Ik e }

I <! sl such that

| g' \ \ <'i : (5.12)
then

NI 1T \ﬂs*é\%\\cxe’““* heee™ I
e U< i{\‘ E ¢ (5.13)

Thus, given &>0 wetake ¢g'< & suchthlat (5.12) holds. Then

from (5.11) and (5.13), the relatlons (5.8) and (5.9) follow. -

COROLLARY 5.2. Under hypothesis of corollary §.1 there exists

" anumber M such that
H\)\“‘t‘\\\}\x\‘\f\\ut“ <M (5.14)
When U is given, the choice of ™M depends only un the bounds for
a, q; q"l,'c‘ and their first derivatives. |
Even more, if in addition a, q, q'l and ¢ possess continuous
second derivatives in @\( P, d) and U continuous second derivative
in 9 , then there exists a number M such that

<

el + s+ Tl ol uge i+ Mgl M (51
When U ‘is kept fixed, the cholce of M depends onlAy on the bounds for
a, q, g}, ¢ and their first and second derivatives.

Proof. By the help of the argument used to prove theorem (5.2)

the first part of the coroliary foliows from (5.8), (5.9) and the fact that

—

U£:~Q'\C\)X~C | (5.16)

To prove tha anaapd papt nlisarve Hhat e aacopn! dapieniivre (f
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u by theorem 5.4 of Friedrichs' paper, satisfy in the wider sense the

equations

| (u"’b{* Qku‘%xwx""igr\k¥¥*o"*"ux‘*c x’fr:o (5.17.a)

' (5.17.b)
(ux-at s C\(Uﬂ XQ S Ayt O+ WUwx+Q xtd ¥ Cye=0

_ (5.17.¢)
(UH._\{-&- O\Qb\ti\ X*,’L&tuxt T+ 0 W Cet =0

From (5.17.a) and theorem 5.2 it féllows that there exists Ml

such that
I < My (5.18)

For given Exx. 4. e. for given u) the choice of Ml depends only
oh the b'ounds for a, q, q"l, Ax, By, Ux F Cpy and the first derivatives
of q. By the part already proved of the corollary for given u the bound
“for u, o depends only on the bounds for a, q, q"l,. ¢ and their first
"derivatives. Therefore, given U, the choice of Ml depends only on

_the bounds for a, q. q"l, ¢ and their first and second derivatives.

Using (5.17.b, c) and the fact that

1 - - — 5.19.b
) MUy = -GV —Qe b, -y ( )

the corresponding relations can be shown to hold for uyt and. ug .,

from which the corollary follows.

THEOREM 5.3. Let u satisfy in the wider sense
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(5.20)
U t * 0\ u x % C = O
\
in G\(fB, é) and assume that a, ¢ ¢ ! . I have continuous
second derivatives there. Then, if U has continuous second order

derivatives on 9  given £> 0 there exists Cgo > 0 such that

“\AU<“UU* & (5.21.a)
ULl < WU+ € -
4 (5.21.b)
\\u-{:“ <\\ at“* &
(5.21.c.)
Ml U Tl v € a1
Vsl < WU el g - | (5.21.e)
Mu el < \\-U\-te\\—\- € (5.21.1)

when the om Is taken with respect to 6)\( P, do) and the initial \;aluqﬁ
Ut, Uxt, Ugp- afe given by (5.16) and (5.19). Even more, if U, Uy, Uy,
Uxx: Vxt +nd %y are kept fixed, then for a given £ > 0. the
ch-)i'ce- o . c( o depends only on the bounds for a, q, q'l, c and

their fi, st and second partial derivatives.

Proof. We f{irst prove the following

LEMMA. Let u satisfy In the wider sense the equation (5.20)

in (D\(P,c(), where ¢ and 1 are continuous and a, q, q}

have first continuous devivetivas In (v . Taca yiven any £ 9 0 there
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exists éo> 0 such that

Lull<iTl- €

C =
when the norm is taken with respect 1o @\(P, Oo) . Even more, if u,

et
p : -1 w £

q and ( are kept fixed, then for a given £ > 0 the choice of
éo depends only on the bounds for a, q. q"l, c and the first
derivatives'of qd.

Proof, To prove thls Lemma we use. argumenfs closely related to
those presented by A. Douglis /23/. Let us denote by —3-%-; the
derivatives along characteristica. Define Vv = q'l u, then frorﬁ (5.4) it

follows that

dt, (5.22)

where fj contains a, q, q’l, c and the first derjvatives of q.

Equation (5.22) and the definition of v 1imply

W Gt = Z 2., (%0 t), O) s (x:x1), 0)

4‘2%&1@ T+ d———-‘-—’ dti= . (5.23)
oL o\t + a

= Z‘i ARy o)'u SATEH o)-\rZX(-rjhx; ¥ -—"1‘ '\r)&'t
where xi(x, t) represents the point where the i- -th characteristic passing
through the point (x, t} Intersects the x-axis, qyy are the elements
of the matrix g and the integration must be carried out along every one oi
the characteristics. Given E > 0, we can choose <§ 1‘ in such a way

that

(5.24)

-t %
2\%(%53;‘\‘ ¢ Sukar \at ,«\, &
° \ 2

ats 7
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whene\;er 0<t < 51. The cholce of é 1 depends only on tho bounds
for a, q, q"l, ¢, u and the first derivatives of q. But a bound for
u, when u 1is kept fixed, by thoorem 5.2; depends only on the bounds
for a, q, q-l, c, and the {rst derdvaidves of q. Thus, the choice of
él depends only on the bounds ior a, q, q’l, ¢ and the first
derivatives of q.

On the other hand ‘
2% bl ,\-t\,o) Uz {x; (x4),0)= % %5206, 000 )V Ly [ 0)
+ %—{%;LX,&WTQ,@ 'U;(xi(x‘-ﬂlo)-gik(xi(x,t),o)’kf;( Xt) ,O)}:.
(5.25)
= Uyl ,—t\,o§+Eﬁ_X&;K‘K;&X.Jc\,O\U;(\C;W ),0)- 3% ¢ 1), 0) U (X A"‘ﬂ,o\}

The functions q{x, 0), q"1 (x, 0) and u(x, 0) are uniformly contin-
uous on g (because g is closed and bounded), v alsois
uniformly continuous on ﬁ and therefore we can chose é 2> 0 such

that

\2\35;()(;,0)'\;;(‘/\;,03 - 35;()( 1,0)’1)}()(4 o)k

A

< if,
< 2 (5.26)

whenever \xi - xll < <§ 2 ior everyﬂ i. Observe tnat the cholce of
ng (for a given £ ) depends only on the functions g, q-! and 4.

On the cther hand }f} i{s a bound for the speed of propagation of the

characteristics, so that

X.A(x’-t_\ “Xi(XI-'c_\)! < C“;Z whenever JC < Cgbzzéfg_.

Therefore, from (5.23), (5.24), (5.25), (5.26) it {ollows thal
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lul<iol+¢€
where the norm is taken on (D\(f}, <§o) and 80 — min(d 3, 51).

It may be checked in the above arguments that the choice of éo depends

only on the bounds for a, q, q"l, c, and the first derivatives of q,

when U, g, and g} are kept fixed. This completes the proof of
.the Lemma.
The theorem follows now from (5.10) and (5.17), using Corollary

5.2 (relation (5.15)).

6.- Uniquecness of solution. The uniqueness of solution of a

Cauchy problem for hyperbolic systems of functional differential equations
can be shown in the large with assumptions weaker than those that will be ,
used when proving existence.
" iIn this sectlon we treat the reduced equation. The full equation
will be discussed in section 8. |
In what iollows, given two functions u, v drfined in

EN

Q( P, d), we introduce the notation
AU =vU-U . - (6.1.a)

Ao = "o -

. (6.1.b)
Ab = Vb -%b

(6.1.c)

Ne = Ve - Y% (6.1.d)

and simlliar notation for the pariiai derivatives.
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THEOREM 6.1. Let the functionals Alx, t, +), Clx, t, «)

be such that the functions a, q, q‘l and ¢ possess continuous
first order derivatives in ( &) whenever ue ¢ $) and
- Q P’ CB:R P ’

assume there {sa k >0 such that for eve‘ry x, t)e @\({3,4 )

\[}.c.\s'm&u\t. o '\Ac_\s RiB Ul (6.2)

1 : e : 1
. whenever u, ve%’:‘;‘. ( {3, d). Then if two functions  u, vJ‘Sﬁﬂ (P,J )

satisfy the equation
ut-f—Auxf‘“C':O (6.3)

- and assume the same initiai values on 9 we necessarily have

W= m Qp,d)

Proof, Observe that [\, satisfies the equation
(&u){_ + o (AW, + (A&)Ux + Ac =0

where we have written a for Ya . This is an equation for - Au{)
of the type (5.1), with r Iideniically zero. Even more =-a, -q, gl
are bounded wifh bounded first continuous derivatives, because (Q ([3,(5 )
is closed aan similarly (Da)vx + Ac is a bounded continuous function.

Therefore, theorem 5.1 can be applied. Since Au =0 on

(0, given any & > 0 we can chose )\°> 0 such that
-t 2t
ave<el{Adu, At e - (ea

whenever >\ > >\o

In view of (6.2) and the fact that v, 1is bounded, it follows

that )\t | \ -l-,\\:: "
}
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for some 0< i\)\< 1, taking & sufficiently small.

" Finally observe that for every >\ >0

L -t

\\@: L&\A\\z\\\ﬁ"”"!‘te I (6.9

and therefore
Aul sfe”aule
Hence

ot xt .
Liaul, €7 <1 e aull

On the other hand the inequality

Lau e | 2fe™sul=le

is obvious becuase

N WANVA “

N \BU\.LE\&U\

[

Substituting (6.6) into (6.5) we obtain

ST =)t ) NI
How, €| < mlisu e
which can hold with p <1l onlyif ADu= 0 for every' x, t)e
@( P, $ ). This completes the proof of the theorem.
' When discussing functional differential equations, the Cauchy

probiem considered in theorem 6.1 is not a natwail one, It is natural to
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»

consiaer.instead functionals JQ(J(, t, )., G(x, t, -) dolﬁnod for
every (x, t) e (R(P,é ) in a sot of functions f: (~oo, t] -—D.RV .
The initlal value problom would be one for which a function ulx, t) {s
| prescribed in the semi-infinite sirlp gx(-oo, O] and we look for
an extension of u{x, %) to { (‘)x(—oo, o]lsu @ (P, 6\' in such a

~ way that thé restriction of u to Q (P, d) belongs to ? 1(/’b, d)
and |

Ug + R u, + & =0
¢ ‘jQC (6.7)

holds for the restriction of u 1o 62({3, d). The unugqueness of *

solution for this problem is established in the following

COROLLARY 6,1. Let uf{x, t) be defined in %(9 x (-, 0]} J @\(ﬁ,é )
. 1 '
and such that its restriction o @\(P, $) belongs to ';S:JL(P' J),
and satisfies 6.7. Tor every (x, t)e@\(fs ,&) define the functionals

Alx,t, *), clx,t, -), for functions f: YO, q —>R" by

Aixt,8) = (x t,9) / C.(x,t,if‘):@(%,f,cg\\

where ()= u(x,z) ; if —-eo<wT<O

Assume that for the given u the functionals A and C so defined
~ satisfy the hypothesi§ of theorem 6.1. Then if any function v defined _
in {9 x(~o0, O]E 9] Q(P’ 53 issuchthat u=v In. 9 x(-c0, 0],
its restriction to @ (3,8) belongsto °T l([‘i, ¢ ) arnd satisfies
J Jn
(6.7), we necessarily have =v, in {Q({s,é),
Proosf. T'ne‘proof is obvious by theorem €.1 l.ecause u and

v satisfy

Uy A\u!“%C‘:O on @_f;"“i‘\i‘\\.
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and assume the same initial values on 9 .
Similar considerations apply to the existence theorems to be
given in later sections, but we shall refrain from going into further
discussion of this matter. >It is worthwhile mentioning that the hypothesis

6.2 In theorem 6.1 may ba replaced by a hypothesis of the form

ol chlidull,  [dclsklpdy 6o
where |

£
Iaal, = § Inue]ds o

This is proved in the following

LEMMA 6.1. Let u and Vv be continuous in @\(P,cg).

Then

| awl, stiaul; cdlau, w QE D 6
Procf. This resuit trivially follows from th» inequality

| Au)glaul, 5 os st

for fixed x

7. Extstence of Solution. In this section we prove the
exi stence of solution for the reduced system. We use again the notation

introduced in section 6.

TEZCREW. 7,1. Let the family of funclic als A{x, t, ),

C{x, t, ) and the numbor cf.». P S mueh liad
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I) The functdons a, q. q‘1 and ¢ have continuous
second derivat\ves in (3, é) for ever u 2(n,8) and
Np y ueRéf a
continuous first derivatives for every uec 55_," 1(/5, cS ) whenever
- N
0<8$éof
¢ C
Ii) Forevery 0«0 X0, thereisanumber M which
bounds in @\(P, &) the functlons a, q, q".l, ¢ and the first and
second derivatives of these functions for every ue (5,{2( [3, <§)
el
p
whenever 0 ~ o % éo . This bound is independent of <§ and of the
particular function u chosen.

IiI) There existsa k such that for evexry u, VGC&I
ey

(P.é)

 we have.at every (x, t)€@\([3,<g) . .
| dod < k) BU\t 3 | Acl Sb‘\AU‘\t (7.1.a.,b)

-

\mx\sh&\mu\é+\Aux\t+\ﬁu+\t‘s 7.2.8
A R{Buler 1aud ot hudy o

\ B(Lt\ <R Sl\ i&u\t*-\ L\_.\)\,‘\,c *\&ut\t\ (7.3.a)
\'&('t\ $\R\\fl\i\£“‘\ﬁux\t*\hu£\t\% (7.3.D)

whenever U< d < éo.
IV) Let the function U{x) deiined on 9 , possess
continuous second derivatives on 9 , and be such that the *{nitial

data" G, Tp, Uy Ukt Uyr  implied by the equation

'u.‘: +OL\}\)(+C =0 (7.4)
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. and the derived relation

(U + oMo +QyUy v Ce=0 7.5

~ A~ o~ ~ 5{“
\a\-\-\ax\—r\U{—_\*‘\U\xy\*\ux{\*\u{t\sﬂ <L (7.6)
Then there is a function ueof"l(‘o, cS‘) which satisfies

— ~
WO =uily, oy = U (x) on 9 .

Proof. We define first the "initial data” ‘uy, Vi, Uxx /tho

/Jtt and show that our definition is such that when they exist they are
uniquely determiined on 9 by the given function 1.
We say that a function w 3‘532(!3, d), cf> 0, 1is a "golution
el

of {7.4) initially" if and only if

ey
@ Wx,0) = U (%) on 9

and w satisfles (7.4) and (7.5) on 2 , with

w
o= "Q 3 c=%c.

In that case we write

N .

U (%) :be(,cﬁ :(a)x 5 athlo) :Wt(X,O)

uw-'(x}: Wy (¥X,0) -_—_(ﬁ)ﬂ(x,o} : Q\Xt 6(,03 :\/\/u(.x,o) .
A . , :

U (X 0y =w,, (¥, 0) 5

-~ -
The existence of the initial dat>» - . , . ”lr



must be understood as implying the existence of an initial solution, Itis
important to recéll"that gix)en 1 the definition of the initial data is independegnt
of the particular initial solution w chosen. That this is so for uy and.
Uy ' is obvious beca.use
A

U (x)= (‘*% (%)

Q;(x [Z) = [(:\L ))_(X (Z)
On the other hand, let v and w be two initial solutions, then

vV, Wé€ %Lz({[},é ) forsome § > 0. Therefore by (7.1)

w” _ Vv
"W, 0) ="alxa) ; c(yo)= ctro), M/ (7.7.a) i
and in view of (7.4),

w v v
g == "avg - € == a4 - ¢, M/ . (7.7.b)

Thus ’L\xt is uniquely defined,

Hence, is also independent of the particular w chosen

xt

because /A /

- . — (W (o =[d (x)

2= W 00 = (560, = (4 0%
Therefore by (7.5) and (7.3) .

/ “
h W =~ Y ‘#u({/c' 7'2'2’1‘% J M/'
aff - /ll /X £ o
o

is also i'ndependent of the choice of w.

From the above arguments it can be seen even more, thut if two

functions (not necessarily initial solutions) v, wg« ("’;77 2(/$ ,&) for some
L

J D 0, are such that

- - . N ‘A -
wizg) 2 kgl = Hilr2), & (7:8:4)
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then
'U_X(X,O\ ':\/\]x(x,o , on g

. ) (7.9.a)
V%, 0) =W, (x,0) , onr /9 (7.9.b)

and
v(l’\f,‘-r"\rC _ W&WX*WC ow B. (7.9.¢)

If in addition
’-\)’_‘: = W, , own S

, (7.8.b)

-then

W ~
f‘ICLUxt _‘_"htvx—«-"&t: QG W, + Qth*wct

(\ - (7.9.d).

v g,

Using equations (7.8) and (7.9) it can be seen that the
assumption made in theorem 7.labout the existence of at least an initial
solution, may be replaced by the assumption that certain inequalities are
satisfled. kJIndeed, assume

P
Gl @\ @), < 27 <
7. L
|\ &\« () |\~ (), \< N (7.10.a)

and define

(% t)= W09 ,(x,ﬂe&k[a,&,)

Then ve_"gf\z(r;, 3o). Construct now - V{x, t)e‘gz(P, 55) so that
_ e

e =0 °n g
S G e 2

b

= -(_k on ’\‘
O

i

V‘t
Ve
V



If we assume that
\V{ ri.‘ XE‘\+\vtl+\-\]Xx\ +\VXt\<—Q ! oY g (7.10.b)

V4
i - L o{‘ Z‘
then Ve 2(n, g Yy for some &' > 0. Define //’/fé/é/ e ?;QS,J.)/ so0 [he
)(3 )

O

w,, = 5, BN Ee, on )
WJc,: -—‘VO:\T,( - , on 9

WP AN .
W= A ) on S .
If wé assume that

\\f\f\ * \\3:,_\ +\W£\ ";\\I\IXX\"’\\}\J’)H,\ *\wxx\ <LL | (7.10.¢)

own

N V4 (//
then w e_:g: Z(P . éo) taking G >0 sufficiently small. From
g™
equations (7.8) and (7.9) and the way w was constructed, it can be
easlly seen that w is an initial solution.

Conversely if an initial solution exists and (7.6) is satisfied,
then imyva/ifl'es (7.10) are necessarily satisfled when carrying the above
Constmctlon .

- )

We prove now the theorem by iteration. For every ue‘—gj 2(/3 . é 0) ,

el
suc’: tiat
e “\
X\XIQ\:U(X\ 3 Ut(%,O\:u{(X) (7.11)

we define the transformation ‘G by

U = t’(\ﬂ (7.12.a)

where

Ut + o Ug v %e=0 (7.12.D)
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and A~ .
X o) = U(x)

U / » (7.12.¢)
The existence of initlal solutions of (7.4) implies that the set S - of
functions satisf“ying (7.11) and belonging to ’g 2( [‘::, é'o) is not void,

e

On the other hand the functivas Ya(x, 0), Ya,(x, 0) and UYa;lx, 0)

depend only on the initial values of u, uy and |y (incqualities

(7.1.a), (7.2.a) and (7.3.8) ), so that if we define

o]

RO =A%,0) ; ﬁx(ﬂzuﬂxkxlo\; at(x\zuﬁt(x,d
" )

, the definition of these functions does not depend on the particular
u e S chosen, by virtue of (7.8) and (7.9).

By theorems 5.3 and 5.4 of Friedrichs' paper and equations
(7.11) and (7.12) it follows that U e L 2(p, §) and U isan

initial solution, {.e.

st AN\
U=u
— P (7.13.3)
U = U,
(7.13.Db)
U. -G
EE (7.13.¢)
—_— P
U™ W xx (7.13.d)
— S
Ue = Uxt (7.13.¢e)
- N\
. Uy (7.13.1)

on Y .

derivatives have bounds which hold independently of UEPS:Z(P ,8) as
Few

By hypothesis a, g, q_l, ¢ and their first two partial

long as 0<<S < (g; < &0 . Therefore, by theorem 5.3 given & > 0,

. ' :
we can chose 8 > 0 independentof ue g , such that
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I ol Gl
| UM< 1 Gll~e

| U ll<ll Geli~ e
| Ul < Tl v £
(U <} Quelive
(Ul <l U €

when the norm is taken on Q (P, d'). Observe that theorem 5.3 can
be applied because E, Ex, _ﬁt, _Gxx' Uxtr Uxx are kept fixed by
(7.13) . Taking £  sufficiently smali, we have

NI IR VAICI VRIS JoM SRV B v

)
therefore, the transformation ‘{5 maps the set of functions S into

)
- itself, if g is taken as the set of functions Ue.? 2([3 , &) satisfying
>
(7.11).

We prcve next that t is 8 contraction with respect to the -

norm “ t

\\\‘*\té%'\\*\\\u"\te \\ -~ E‘\“ut\té}t “ ~ (7.14.b)

for some >\ > 0.

Let vg %' and

Vo= G ()

Then

(&U)t + Q(BU},;&(;&Q)\/K +Ne=o0

(7..15.a)
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and

AU =0 ; BUy=©° ; OLU)t =0 (7.15.1)
where we have written a for and Aa and Ac stand
for Ya-"a, Yc-% respectively. By (7.14.a) ¢ is a uniform
bound for Vi, Vi, and V,: whenever v e g '.  On the other hand
a, g and q"1 have first order continuous derivatives which by

hypothesis II are uniformly bouanded. All this implies by corollary 5.1

that given any E > 0 there exists N\ > 0 s.uch that on Q( Y
| e taul < ealle™aal » sllo™ac| o

Nt
-t _ o |
\ QfﬁAU,(‘&s sole nal~eale *paxleel@ag,

xt \ TN \
e [&UJ cenS Balrealic Ath
o Xac M~salle SR PPA - B
sele Xhe
whenever u,veg‘
Forany A >0, relations of the form (6.6) hold. Therefore,
using (7.1), (7.2) and (7.3) and by an appropriate choice of € , it

follows that for any number 0 < /u\ <1 we can choose PN > 0

such that

I e AU LS AU el e L nud
' . RV (7.16
< p i\\ @ aut A+ 4 tau A

~

)
n R( B, 8.
The fixed point u of the contraction necessarily belongs to

C%jl(f}, §')  because the partial derlvatives are uniformly bounded on
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= ~

g'. In addition wulx, 0) = (%) (and even more up = u,).

We consider now a particular approximating sequence of functions

u(q‘) G g=1, ..., n, ... wilchgoes to the fixed point of the
contraction Let 't he given by
(o +1) () (o-+A) 2
U, + Q& Uy ~ C =0 (7.17.a)
where ) ang c(o-') have obvious meanings. Then

\ o \ = -
G T (U e seTe) =0

(7.17.b)
where a =Ya. Since uf(-"" is uniformly bounded, and & — a
and c?— ¢ go to zero uniformly as - —e o by (7.1), it follows

that u 1is a solution of (7.4) in tne strict sense.
T «aist:nce theorem 7.1 is restricted to the small because
é' < é o + When the functional differential equation (7.4) is linear
this resitiction can tc¢ removed, and convergence can be shown in the large
G.oo. & =80-

- Using the arguments explained at the end «f section 6, ‘the
case for which the coefficientsin the functional differential equation are
functionals’ ;lefined on functions whose domain is (-0, t] may be
transformed into one for which the domain of these functions is [0, f:]
In the _line.*: ~age this transformation gives rise to an additional
inhomogeneous term, which does not introduce any further difficulty
because t' ~ wuw.f of ¢ .e exintence in the large is given for the linear

inhomo., = . . . in the following
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THEOREM 7,2, Let the famillies of functionals A(x, t, *),

C(x, t, ) and the numbaer 50 >0 be such that for every (x, t)GQ(P, éo)
ACK,E, Y=ak,4) s Cixt, ) Tt )1 dix ) e
where L 1is a linear funciional and a, d are two fixed functions (the

same independently of u) deilned {n Q\(P, 50) and a, q, q-l,

de%jz([}, 8o
Assume in addition:
o I) The functional & (x,t, *) Is such that the function
A0 =t we PEPL S whenever ueTii(p, &) and
Rc_cajl(f-"l éo) whenever ua %—.‘AI(J}, éo) .
'II) There exdstsa Xk such that forevery (%, t)e (R(lﬂ, 30)

we have

L) sklulye (7.19.a).

3 Qx\@ﬂxgt\\l\t*'\ux\{*\ut\% (7.19.D)

\&t\ S\O\i\U\t-ﬂ-\Ux\t-\r \ut\_&k (7.18.0)
‘ wheneverb uecéjl([;, So)- |

‘ Then given any function G(x) defined on b and possessing, s
second order continuous derivatives there, there is a function ue ‘-p 1 (P, éo) .

which satisfies (7.4) in &(P, do) and such that
P
U (x,0) = U(x)

Proof. The proof of theorem 7.2 is similar to the proof of

thoerem 7.1,
Obsgerva that a, g, q‘l. ¢ togather sl thair first aond

gecond deéfivativad are vit) faFhly bauadnd iy @‘ {81 BeERIAS Lhay
) i
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av@continuous in Q)\(P, cgo).

Now the construction of an initial solution w is always
possible because thore are not inequalities to be satisfled. This fact

2
30 wcb‘g’,\ (3, &

,_i.e- e ‘j ’

[

permits us to define them on the whole @\( o).

T JEL
Ve dofino the set g as tho collection of functions
ue%’j‘z(f}, éo) satisfying (7.11). The transformation <5 definod by
(7.12) maps gb into itself by theorems 5.3 and 5.4 of Friedrichs'

paper (because the image under (5 of any element of g is an
initial solution).

We prove next that there isa A >0 forwhich & isa

contraction with respect to the norm

|, €7 )+ e |+ | el € I

t

where the norm || “ is taken on Q(P, So). .

Equation (7.15.a) reduces now to
(av}_&ﬂ— a(AU), + Al=0©
because a_  and d are two fixed functions independent of u and

VU . Bycorollary 5.1, it follows that givenany £ > 0 we can

chose >\ > 0 (whose choice is independent of u, v eg‘ ) such that

le>* AUl s ele™ all
fe ™ AU N sel @Al

Al
1> AU, L ceh e el alel

x A ]
From (7.19), using relations of the form {%.6), it follows that for any number

-

0 < [\A <1 wecanchose & 50 o sucha vay (ed {7.00) holds,



' L (38
To prove that the fixed point of the contraction is a solution of
(7.4) we proceed as in the proof of theorem 7.1 but observe that equation

(7.17.b) satisfled by the approximating sequence u° , reduces now to
o+1 o+ (g% D 3
u.t +qu '*'/OL""O)\ ~A)1=0
o=
Since Q - & joes to zero uniformly it follows that u 18 a solution of

(7.4) in the strict sense on @(16,5.),

]

8.- The Full Ecuation. Under some conditions tha full equation

may be shown to be equivalent to a reduced equation, In this section we

establish this equivalence and formulate un ueness and existence theorems

for the full equation.
Given the functionals Ak, t, ), C(x, t, ©) and B, t, ©,*),
x, e @\(P,c{ ;) &, t,Tle h@(l‘s,é )  we define the functional
Kl&, t, ©) (the existence of this functional is a consequence of the
exclusion of the zero speed of propagation for characteristics) in an
obvious manner. Then for any given funciion uecgil \ j/;s, 3 ) and a
fixed x suchthat (x, 0) € S we define a linear operator YL{(x)
which transforms any continuous function f: [0, t*(x)—) —oR> into

another function of the same set, according to the rule

| | £
[HLeof ity =- S “b(x,t,5) “Crix k)

5 (8.1)

Here we have written t*{x} for the loast upper bound of the set

-~

i’(‘;\(x, Gle &(G,J )'S . For brevity we shall froguoently write L
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instead of YL. The powers L of L are defined in the usual
manner, for the powerg of an operator. When f has first order continuous

derivative in EO, t*(x)l, wa define the oporator YP(x) by

y\_(wﬂya

. Mg

CUplot ) =

(8.2)

when this serieg ‘convergas point-wise in the interval [0, tw (x)‘_\ . Whaon
ve@(r},é ), forflxed x, vix,t) defines a function in the interval
E), t* (x)-j , towhich we can apply the operator YP(x), ifwe .now
permit x to vary we obtain a function ‘deﬂned on @( P, 5) wshich

we represent by YPv. Ve deiine now

. ?(X’_&):(V\P&A(X;ﬁ) ;(x,ﬂe@K_P,cﬂ

Given two functions u, ve,‘?&:l()’),é ) the Unear operators DL" are

defined for every n Dby

L X

THEOREM 8,1. Assume that the functionals A(x, t, *),

ilk,t, +), C, t, -) and B, t, G, ) are such that the functions
a, a'l, ¢ and b are continuous in &([3,5) the first'three and in

A@( P, &) the last one, wﬁenever u e"‘g\a‘i( P d )‘. Then a function

U - Aup C+ K%(X,t,’c’ﬂux(ﬁ)o\’t =0 (8.4.a)

o
in @\( P,CS) ~ if and only if
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§ |
Wi+ AU, +C =+ Pu=0 (8.4.b)

holds tn (R (2, §).

Proof. We observe first P(x, t, *) is well defined for any
1 (
function uecp (P, o) and that even more, the function p{x, t)
el
defined in this way on ®\(P, 5) is continuous. This can be shown
observing that ba~l and us-¢ are bounded in Q(P, é) because

b, a'l, u; and c¢ are continuous in thed closed region Q(P, é).

1\__’_1.—e_t M be such that
fugrell < ™ and \\\Ooii\\<M

Then from (8.1) it follows that el n
M7
| 1 (U-t*'c\\é nl

i

This shows that the series in (8.2) defining YPu 1is absolutely
and uniformly convergent and therefore p(x, t) 1is continuous. Here the
obvious fact that every term L"(u;+4 c) is continuous in @\ (P ,d) has

been used.

We show first that (8.4.a) implies (8.4.b). Equation (8.4.a)

implies
t
"\ = ‘
Uy == Q& %'uf'*c - S\O(X,t,?\ux“ra‘;gs)
Write, for fixed x t

L) = S\g(x;‘c,'z:\, U i) &G

n (h 3 ﬁ>
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multipy (8.5) by b(x, to, t) and integrate the resulting nquation with
respectto t from 0 to tg5, to ob ain

Wﬂ Y_ L(x\(b\ﬁc\\g(c\ \o(xt t\&(xa%ﬂokt

(8.7)

£

this is an integral equation for { whose only solution is

g\- = "U/’ ' (8.8)
When we substitute this result in (8.4.a) using {8.6), (8.4.b) follows.
Conversely, assume (8.4.b) and apply L to (8.4 b) to obtaln using
(8.6) ‘ |
_ (BYJdT
Lo | Lo (Ui xR 80 e ®

(8.9.a)

But by its definition, p 1is a solution of the integral equation (8.7), therefore

*p(ﬂ Y_L(x\(uL«—cﬂ({\ &\O(X £ 2)a (x,T) P(@(;iﬁ)

o

Equation (8.9.a) and (8.9.1") together imp:

P Y= ot
" When this result is substituted in (8.4.b) u: 'na (8.6), equation (8.4.a)
follows. This completes tue proof of tiec am 8.

Having established the equivalence of equations: (8.4), our alm
will be to prove that the theorems of sections 6 and 7 are applicable to
equation (8.4.b) when the functional B(x, t,73, ) catisfles smoothness
assumptions analogous Lo those reguired of A o 7 n those theoroms.

To make easipr the undersionGing of G o ne T foadiosw T s helpfal to
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explain briefly {ts motivation. Suppose we had defined the function

t
qx,t) = gg(xfc,"c,uy UG (x,t)e@?\(p,é)

for every u GCS:A(P' cg ). In order to be able to apply the theorems of

sections 6 and 7 to equation (8.4.a) we would have had to prove inequalities

of the form

\B%\ < &) Aulg
\ B%x\$\O\X\{SU\\.&"‘\BU*\tJ‘-\But\t\
SRS PR (FRIERTNURPE RN

However such bounds seem to be rather unnatural because the definition of

and

g contains u,, and therefore D,g can be bounded only by
terms containing the first derivatives of NDu. The definition of p

on the other hand is
pexs DI

At first glance it may be thought that this function presents the same type of
difficulty because it contains u:. However, ut is contained in an
integral with respect to t. The main point of the discussion to follow will
be to avoid the introduction of higher order derivatives of u, using

integration by parts.

Given define the operator uLx by

: +
" -4
v = g\\o(x e ToX ’\x,?:\,\u\i (ZY 4T 10.
o

and uLxx by

uLxxU = - %\DQ‘/i,f 7Y T (Vrﬂ—\.\ '\T’(’}'\ﬂ\’c

(ﬁ'1n“)

3'2_/)rr_
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when the right-hand members in {8.10) exist.

With this notation we prove some lemmas

LEMMA 8.1. Assume the functional A-l(x, t,- ‘)  to exist

forevery (x, t) ¢ @()f}, S ). Let the functionals A, t, ), A, t,
Clx, t, *) 4han<‘i B(x, t, % . ) Dbe such that the functions a, a-l, c
and b possess continuous derivatives in (R(P é) the first three
and in &( P é ) the last one, whenever uc.:&l‘a(lé, 5). Assume
uecgjl,(jz,é) and write L for UYL. Then

Lo

I) If ve_qé((),é) and n=1,2, ... we have:

'\j’()"\ ’C)d%

{ngk:’\o\xi,t‘,olﬂxfgw(x,ﬂ-g\%wtc)& (78 .11.a)
t

0

b). For a given u, thereis M >0 (which depends only

on the bounds for a"l, b and their first order derivatives) such that

ni (8.11.b)
;\/Y\ r Vi=4
W MT
\&Lvl\\ (v\\u Wi
\t t -1) (8.11.¢)
1)  If VQ_W“I\,{B,C;) and n=1, 2, ... we Have:
: ) .

2 D) e ((3,9)

0 {0l =S T L) en

e —

. ¥ Ay

*)
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c) Foragiven u, thereis M >0 (which depends only
on the bounds for a-l, b and their first order derivatives) such that

JESARE- NS

’ (8.12.b)

' L
d) \I\’\T{ECX‘:\ (F&Ié3

I

a) ¥ € I(P é) and the derivatives of f are
obtained differentiating term by term the series defining /() .

b) If for some () > 0 the functions a™l, b, ¢ and
their first order partial derivatives have a uniform bound in 61( F,, é )
which is independent of uq? L( 3. §), then also 14 and its first

el
order partial derlivatives have a uniform bound in @\([3 ,§) whichis
(ol
independent of uhl(a, &)
o P

Proof . Ia) Follows, taking derivative with respect to t in the

definition (8.1) of L, to obtain (8.11.a). This shows that
the same
%Ln(v)}té c?(p,& ) for n=1. Forgeneral nA is easily shown by

induction using (8.11.a).

To prove Ib) observe that pa~l and by a~l are bounded in
(D\( P, g ) because these functions are continuous and the fegion is closed.

Let M be a common bound for these functions. Then from (8. 1) it follows

t
| L, <\ wilds 6.13

Hence

\ Lv\‘ <Mt \U‘\t
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Thus, we have shown (8.11.b) for n 1.

i

. Assume (8.11.b) valid for arbitrary n, {.e.

-
e

then by (8.13) +

w41

V\‘\-\_t |
\Lﬁ‘*‘v\tSMg\fv\ch"?‘éM nt e

O

which completes the proof of (8.11.b) by Induction. To prove (8.11.c)
take the bound M sufficiently large so that it bounds also to

lba'l\-i- ibta"l\é . Then by (8.11.a) we have

\&L(vﬂ

~which is (8.11.c) for

M Al

Jc .
= 1. Using (8.13) the mequality (8.11.c)
follows by induétion.

By Ia), to prove Ila) it is only necessary to prove that
{Ln(v)} xecgj (P,é ). This will follow from formula (8. 12.a), which {n

turn can be proved by induction. The formula

(L'U’)x = Lav « Ly (8.14)

follows directly from (8.1). This shows (8.12.a) for n = 1‘. Equation
(8.12.a) for general n follows by induction using (8.14).

Topreve IIc) take M  sufficlently larje 5o tho .. Hounds also
(ba-’l)xx. Then from (8.12.a), (8.1l.b) and repeated use of (6.13), the

inequality (8.1.2. b) follows.

By Iia), to prove 'II(J') it wiil bhe enouab to sliow that
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L"t ng_’:l(Pl é }. By hypothesis vtccgj()g , é), Therefore by Ia) we

have {L(vt)} t'-‘-czj(rb,é ). It remains only to show that {L(vt)}xe‘.&j(fs, J ).

By (8.1) forany h3£0, we have
t

- \iﬂ ft\o(xar\n/-t,'z:BdL(xml'c)

LoCaaet R ( /.+\q§ ——L(«,()'\,)‘tDQ
: |

b

1t -\\ ;
- \O (X,'t,’ﬂo:i( X ;'C‘)}U.JC( X+M,'C>&'C_ .t\- \\O(X ,'th»di(K,pCﬁ[vf(x fh,’G)-Vt()(,'c)j&c
8 .

Integrating by parts the second integral of the right hand member, we obtain

after taking the limit when h Ggoes to zero:

4

3-‘3;_% = LUy - bt ©) 600 o0 0+ b (xS (2, 1, (%, 0)
>< L ]

t
: (’(‘ ' ’ y —_ -‘i, A\ I ~ e
4 ﬁ\okx,t( pIeN \X,’“C‘\)g U L%, C)dTC
- ‘
& (8.15)
This shows that (Lvt)xﬁ-céj([),é).
By (8.2) we have. ‘
co oD
u s} 1’y
PR S e S v
n=o =i (8.16.a)
where ’ ’
w=Louy  (8.16.D) S

Observe that w“'g: l({’;,é) by IId) and by hypothesis ca 1({3,3 )

also. ’fnén, by Ila) every term in the series of the right hand member of
(8.16.a) belongs to céj 1(F,or). 3y 3.1l.c) and (8.12.b) the serles

obtained taking the partial derivatives term by term in the series of the right

hand member of (8.16.8) are vuiimuny Coiivuigei b ‘u’\( ‘f}. ). In

addif16d; the sprad fhorimaa arn il oely cpaveriont ji @ TR ), by
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(8.11.b). Therefore /6/2 € cgil(yb . S ), and its first partial derivatives
may be obtained differentiating term by term (8.16.a).

Observe that under hypothesis of IIib) the bounds M occurring
in (8.11.b), (8.11.c) and {8.12.0) are independent of ue%@l([i,é ).
But t SCS , and by (6.11.p and ¢©)

\W\tS Mt ‘sU‘J"\-t < Mén
w1 <M dele S
Also using (8.15) bounds for lwx\ in @\(P, 3) can be constructed

, 1
which are independent of the particular ue ‘%:;L([} . d ) considered., All
lLhese Facts Zajeﬂer s (A Inegualilies (8.11) and (8./2.4) /)»r/ﬁf Hol tie Lonelron

and its first order partial derivatives possess bounds which hold in @ (P, S )
independently of the particular ue"&:&&(fb, &) considered. A similar

argument shows that the same 1s true for
[ve]

ZLTC

n=i

LEMMA 8.2. If in addition to the assumptions about the functionals

..1 - .
A, A, B, C in lemma 8.1 the functions a, al, b, ¢ and thelr first

order partial derivatives have a pound in @\(P . 3 ) which holds for all
1 . .
ue‘aﬁfn(p, §) andthereisa k > 0 such that

| aoctlshidul, jlaclskinuly in Qp.d)  wara

and -
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lAb\S\‘l\&u\t in @<P:Cﬂ " (8.17.b)

whenever u, ve?l((b,é). Then there isa k'> 0 such that
S
apl =170 -*RlgRiAul, W ®Rp,8  ea0

whenever u, vecgjfl(fb, d).
[,

Proof. To prove ihis lemma observe that for any n >1

Ve - L e = ZUE*(AL\

Az

ue + U A (8.19.a)

-k

n s i-i vin
'U\i v ‘uL\&., = Z_:IL (N-\H—-ut L AN (8.19.b)

On the otA er hand, by dedniqon

USLB W = g {\&\ow,»,@ (e )+ blx e AGH(x 'c)}w (x,2)dT

(8.20)

for any we(‘?( P,((s. ). By the assumptions of Lemma 8.2, it follows that

there exists a number k" >0 independent of u, VQCX:(I(P, J) such
el

T

\Q&Q\/\/\gh“\mu\t%\w\t&’c

(o]

that

(8.21)

By means of this relation and repeated use of (8.13) it follows that

il M Ewl, | A,

- (8.22.a)

where M {s {ndependent of ihe particular couple of functions u, vcj‘jl([&,(g )
, N
cor_lsidered.

The inequailties (B.11.b) and (3.17.a) touether imply
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NARY \ R MTC M"~
\ " Ae AT l &“\ (8.22.b)
g
A bound for VLD &u: in terms of l Au‘ + can be obtained integrating

by parts the definition (8.1)of VL.

,w- -1
”L&ut butdva(xomﬂx®~kﬂxt (%, t)Aulx,?)

. ok 1 dc
4 %i b(xt,5) e (XI@ST;L\'MX'AC)- (8.22.0)

Since VbVa~l and its partial derivatives admit bounds which hold regardless

of the particular ve%: 1([3 . é) considered, it follows that we can choose
£

M >0 sufficiently large so that

\’VL Auilé M [&U‘\t - (8.23.a)

and (8.22.a, b) holds simultaneously. From (8.11.b) it now follows that

T, v\.tvx-i
\ " Aut\_§ Vz‘,\_q\. VB uly (8.23.b)

Relations (8.19), (8 22 a,b) and (8.23.b) imply that

\ e - L \ G M | Dl

(n-4)L (8.24.a)

| +4 w-1
wuiln +\\\/\n —E
AR \ AL Vroudl . 8.240
| Lup T Lugl € Mg 8.24.0)

(w-4)1,
if M is conveniently ca*sen  Recali  vw cer tho' the -hoi-- of M
is independent of u, ve?l( 3, 5). By 'hed in ..on 3,2) o P, we

)

have

) ul’/\ ”\r ul =
- (vi" \ - L
D“upu:'L( LU{ )+E—~\ - 'U? uc

. =4

Y

s

B!

From this equatian and (3,24 1t follawe that 1 f
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& e g

e

! (V\—-iBl,

K=

t\e;ﬁo\ = \vpv.—“Pa\ \&u i X% @(P cg>

where k' is independent of u, veGTGjI(P, é),
a

LEMMA 8.3. Assume the functional A-l(x, t, *) o exist and

-1
let the functionals Af(x, t, *), A (x, t, ") Clx, t, *), Bix, t, <, *)
be such that

I) The functions a, a—l, ¢ and b have continuous second

derivatives in Q (P' J) the first three and in R(P d) the last one,

whenever uec&: [3 c( ) and continuous first order derivatives in

@( P 5 ) the ﬂrst[and in @([3 o) the lsst one, whenever ua"gjl (/3 cf
II) There is a number M>0 which bounds a, avl, ¢ and
their first and second derivatives in @(P,é ) and b un. tnelr first
and second derivatives in . cg whenever u{\&: 2 ,5 M s
R ((3.9) RS

independent of wu).

IIT) There exists k>.0 such that in @(/3,6)
lb&,\ < k\.\&\k\t,\ac\<\l\&u\ '\&Olil$h‘\&\ﬂt (8.25.a)

. l&Q <h&\&u\ \&U*A‘ &Ut\\ < X\hu\ t\.u,.\ ...\Aut\l(e 25.1)
8o el ul rlaud rlaud M0t s ki dlrlau sl \}

Z(
NSRS RTINS (PR RNV

{

\’5‘Q < ﬁi RNHUR RNV ST O RN

8.25.¢)

(8.25.d)

) »/‘Wﬂ)

(n, 27, e
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and in @ (Plcg)
ALl < R AUl (8.26.a)

l&bx\gki\&\k\ X&le ~ AU -(;l (8.26.b)
\.fl\oJ‘\\d"\S\‘lU\ DUl v DUl ]S (8.26.c)
\ &bt\é\i%\hu\t*‘\&uxw* [ﬁutlﬁ)x (8.26.d)

Then:
i) The function ‘ -
g A
N -
P = P
has continuous second derivatives in ®\( P, Cg) whenever uf&z ({3 , d ),
: 2%
and continuo''s first derivatives in (R (P, & ) whenever uednl (P'C( ).
Ca
i1) There is a positive number which bounds {() and its first and
second derivatives in @\(P ,8) forevery ue 642([3 J)

1ii) Thereisa k'>0 such thatin @\(p,é)

N WSl (8.27.a)

\MJ\ hS\ NP Y N P \Bu{\\ (8.27.1)

\ (8.27.¢)
Dl R IBUL L v L Bud 3
. whenever u ve”XAI(P,g ).
Proof. To prove this lemma we use arguments similar to those used
to prove lemwas 8.1 and 8.2. Therefore we only sketch the proof, emphasizing

the points which scem to be less obvious.

By Lemma 8.1 #4? possess continuous first derlvatives in
1 1

Q\(P,é) whenever ueq'ﬂ‘((}, d), (therefore, whoncver uc._‘TAZ(/B 3))

G0

and, jﬁﬂ . and i s derivatives possess oounds winich are Independent of the

particular u chosen.
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To prove that {;7 possess continuous second order dérivatives
when uecgﬁ(f} ,5) we show that the serles (8.16.a) can be differentiated
term by term to obtain a uniformly convergent series in Q(J’;, J Y. O
program is first to show that we_f&jZ(P, cg) (w given by (8.16.0))., ‘...
is immediate by (8.11.a) and (8.15). Second we show that w and its
first and second order partial derivatives are uniformly bounded in C)\ ([3 CS')

the bound being 1ndependen.. of ue éf\ (5 6) Part of this assertion has

already been shown in lemma 8.2, the rest follows taking the partial

~ derivatives in (8.11.a) and (8.15) -
Using the above facts it 1s not diiiicult to show that the series .
= w7 S il
<< ‘ l . . . T S \ N e - | - U
L’\ WS ) \l—ugx{ ) £L— | )-{:t
=0 XX Moo n=o0 (8.28)

are absolutely and uniformly convergent. "When provir;g this assertion, the

formula " g g ey ke -
S(,an}xxzéi% L L Lx L LxL. W +

ned .o, i e -4 n-i 4+ 17
L L L | B

y=1

hasl be used. Also by (3.11.a) we have

. |
(0wl = (oo - ot () b - fo 0 W

Simmilar formulas may be obtained for

T = by
R Pl b

by simultanedus use o (8.i1.a) and (8.12.b). The bounds for the series

~

(B.25) vy L To e o - -
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Similar arguments apply to
:Z:i{\:‘c} Z\L 2 2\ el

By (8.16), this completes the proof of 1) and {i), because the
serles obtalned by taking term by term the first order partial deriyatives in
(8.16.a) has already been shown to be uniform]y and absalutely convergent
in Lemma 8. 2.

The inequality (8.27.a5 was also shown in Lemma 8.2. Therefore ,.

to prove iii), it remains to prove (8.27. b, c) By (8.11.a), we have,

:
|
il—u } (xttm (X{)Lu{ g ‘xtT\Q(xfc)Lu{o\%g
Therefore
S n-14
[ ud=(ana) U, - vh e (AU )
J t
¥ - n-41
oo e it o
(Y 5 |
Using (8.11.b), (8.24.b), the assumpti.: (8 -S) and arguments

completely analqgous to prove lemme .. 3lluw te  fov
o0 \ (.
v o \ i' . + \j‘ ]‘ .
E K Lvt‘ L(’{t/,-< i L\-bU\tﬂ\&u"\t \[\" tt .
=4 . ’

: wi 1
- for some k" >0 Independert of Ve C“,‘ P, 6 ). A similar argument
-{L .

' applies to .
Ew U N Yy n
. - |} [V
' n=4

and therefore (8.27.¢) foliows,

In the follawio: Argumion o0 o it it Jation




AV v L U -~

DNw= LV -
and we write wa and A’lwt for the pariial derivatives of AW.
Observe that these partial derivatives exist and are uniformly bounded by
lemma 8.1 in spite of the fact thas according to the assumption in iii),

(3,8
ul v ’
ecyﬂ(f} )
By (8.19), we have for nyl,
nri z“» -4 A
L v, T Uy _— L DL w

AT

and therefore using (8.12.a)

REERCAY Z{zv“m ol
ALY S a0 L
“’\f‘( AL Y‘fwx +M\fi "L bw

i
L Aw, ' . (8.29)

By means of this formula the process of proving that there existsa k"
independent of u, ve -j(p, d) such that

o n+i o+ { .

\ZV Ve pu Lu») \é R4 ] Al s \;—\[&u{\{

Mnzo X '
1s completely analogous to that of proving lemma 8.2. The only thing peculiar
1s the proof of the existence of a number k' independent of u, "‘c&i(‘ﬂ'é )
such that - ' ' )

INVARS ) poulel TR

This {s achieved using (8.15) and the assumptions i) of jemma 8. 3., The

proof that simtlarly
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$ (e - ) é\g‘{\ﬁu\+\mu-x\t+\but\ﬂ}§

n=4i
does not offer difficulty because a relation similar to (8.29) holds. All this

= |8 (L ) 8 (e -,
<k i\ Al N UL+ \'/S%\tg

for some k'>0 whenever u, Vcod: 1([3, d).
Pol
By means of theorem 8.1 and lemmas 8.1 and 8.2 the uniqueness

of solution for a Cauchy problem of the full equation can be shown.

THEQREM 8.2. Let the functionals - Alx, t, +), K'(x, t, *),

Cx,.t, *), Blx,t, T, ) be such that the functions a, a , q, 1, c

and b and their first order derivatives exist and are bounded in @\ ([A,cf )
e D 1
the first five and"in @.(pfcf) the last one, when ugcg—:n((ﬁ,cg ), the
bound being independent of u. Assume even more that thereisa k>0
such that in Q(F, é)
VDol <R Bkl\_& ;
and tn (X (P. é)

| ntlekinul, slnclg Rl auly

Inb| < R\DU ¢
whenever u, ve‘:gti(}’s, §). Then if two functions u, verg}i([).d‘)

satisfy the equation

+ Nu = C + &B(x "c,’CIuﬂ A (TYRT =0

and assume the same Initial values on Q , we necnnnarily have

U\\)("lt.) =viv, t)
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whenever (X, 'c)egl(fi&,car ).
Proof. By theorem 8.1 u and v satlsfy
U+ MUx G+ %P =0 _
in ®\( P,é ). This is an equation of the form (6.3). By lemmas 8.1 and
8.2 the hypothesis of theorem 6.1 are satisfied. Therefore
L=
" in Q(P,é). This completes the proof of theorem 8.2.

The existence of solution for a Cauchy problem of the full equation

is given in the following:

THEOREM 8,3. Let the functionals Alx, t, *), Al(x,t, *)
(which is assumed to exist), C(x, t, ), B{x,t, T, *) and the number
£0>-o, be such that forany 0 < c( < CYO, we have
I) The functions a, a-l, q, q"l, c¢ and b have continuous
- ~
second derivatives-in Q(P, CSO) ° the first five and in - @(P, cSQ) the
last one, whenever ue¢ 2((3, d), and continuous first order derivatives
_n- P and
in Q\(P,é ) the first five and in (R (P, 60) the last one, whenever
1
u ' ..
e.cg:_n_(p d) ‘
II) There isa commonbound ™M for a, a’, g, @ ~, ¢ an
their first and second derivatives in Q(P,é ) and for b and their
) — . cg
fi ’ . .
rst and second derivatives in ®\([3,c§ )  whenever ugqéﬂ( P )
This bound is independent of u and of <§
III) There exists k>0 {(independent of (S )  such that for

every u, ve""g:—(ll()f?,cf), we have

\BQ\\<\O.[L§\A\ 3‘..;c,\\<‘n,\z\u\£ SAAat <klaul,

[
>
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ool bl inacs ek +\m\+m.u{\g
A cRind AR e <Rl Al il T

\Acx\s\aﬁl\au\;\;u. ,+\[§>u{\tk
FRARSMISAIE RIS TN

in R(p.8)
Inb| g kiduly
%

18b,)¢ {&fsu\fﬂ-\BUx\tﬂ-\f_\.ut\&‘
| \OJG\ cRY IR LU = DU

|8 bels kYl Aul, RATNTRIEINTHR
in 6\((3,6).
IV). Let the function Tu(x) pOssess continuous second de;ivatives

on 9 . and be such that the initial data Ux, U, Uy, Uy, Ut 1mplied

by the equation

u*—+AuX+C ~Pu=o (8.30.3)
and the derived relation
(u-{;}t-" &Ku{\x‘\‘ CL.tUX-'rC.t -y ’:{2{: @) (8.30.b)
satisfy

I R EY T s KO R UG (Y U P P T

1 .
Then there is a functicn ue(’\%‘j (S}, J‘) wi.ch satisiles
QL '

t

U_t+0xux+c.+ b(x,‘t"‘(_ﬂuxxxfc)&f\czo (8.32)

Q 2

@(P, &) for some 0 5‘\<c§o, and (-, 9z W),  on 9 5

Proof. Consider equation (8.30.a). iy leqaa: 81, 8.2 and 8.3,
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this equation satisfies the hypothesis of theorem 7.1. Therefore for some

\
6 >0 there is a solution wue C'\ f} é) of (8.30.a) such that

WA =W (X) on
i)
By theorem 8.1, u satisfies (8.32) in Q(P, ). This completes

- the proof of theorem 8.3.

9. The Linear Equation. In the linear case the existenc of

solution again can be shown in the large.

THEQREM 9.1. Let the family of functionais A(x, t, ),

.C(x, t, ), Bk, t, %, ) and the number 60>0 satisfy the hypothesis

of theorem 7.2 and be such that:
D ae ST B do)

A2
it) be TA(p3, o)

' Then given any function 1{x) defined on D and possessing
0 s . . 1 J
second order continuous derivatives there, there is a function uecgj (/3, o)
which satisfies (8.32) in @(P, 50) and such that
U(x o\ u (%)

ong. =

Proof. Observe that in this case
oo o0 o " .
U I’y w 0
= P\L:ZL_UJC*-ZL & +ZL J (9.1)
nz4 w4 =4

Our goal will be to show that equation (8.30.a) satisfies the hypothesis of

theorem 7.2, with

CoUe . |
C =0 Ta (9.2)

Wiy



‘0'\"“2_\-0 ' }9.3.b)
nw=4
4

Observe that i as given by (9.3.a) is & linear functional of u.
Comparing the hypothesis of theorem 8.1 with those of theorem 7.2 it is seen
that all what remains to prove is that ¢ as given by (9.2) satisfies the
hypothesis of theorem 7.2. Because of the uniform and absolute convergence
of the series in (9.3.b) as well as tnose obtained by téking the first two
partial derivatives, it follows that d1 satisfies the hypothesis satisfied

by a intheorem 7.2. A similar argument holds for
o
Tu+212d
o U + «

because we assume that ﬁ a&(;} Jdo) whenever ue‘“&‘([s éo)
and ,Q 6&1 P (So) whenever uecg‘ ([3 é) where Q(X t) = “f_u.

On the other hand for some M

o0
2 q S MRt
|3 Ul Lul <Ry ML il
V\:& , t h:i n={ *
because 1 is a fixed funcdo*x Finally

Lut g (x—tr@Q (%, TV (%,T)0G

= b(xt og L(x o\ubco\ olx th Ly (vi\\l(x{)

" .y (9.4)
“+ %o (\DQ. )T’_\*(Y,’G) aG

l

and therefore

\( i ! ,»\, \'\\\

L RS
\‘
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ah

for some k', whenever uecgil(fb, éo)

Thus |
. o v wn
co ™M™
\ " U é(h‘;_ B >\U\t
n= -0 ’

.Similar bounds can be obtained for the first order derivatives differentiating
term by term (9.3.a, b), using (5.4). The existence of the second derlvatives
can also be shown differentiating term by term the serles in (9.3). The
occursi.ce of hisher order derivatives of u is avoided by means of (815).

! Cnce the hypothesis of theorem 7.2 have been verified, theorem 9.1 follows

from that theorem and theorem 8.1.
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