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1. Introduction

Recent work on the theory of materials with memory [/ — 5] concerned with
the study of singular surfaces in such materials, has very much enlightened the
basic structure of the governing equations of motion. It has shown that under
appropriate smoothness hypotheses, they behave in many respects like hyperbolic
partial differential equations. It is therefore desirable to study the dynamics of
materials with memory by methods similar to the methods used in the study of
hyperbolic partial differential equations.

However, a systematic theory of functional partial differential equations has
not been developed so far. A first step in this direction has been given recently
by the author [6]. However, the paper is concerned mainly with questions of
uniqueness and existence, and many other aspects of the theory of hyperbolic
differential equations remain to be extended to functional partial differential
equations of hyperbolic type.

It is well known [7] that the Riemann representation of solutions is extremely
helpful in understanding the basic structure of solutions of linear hyperbolic
differential equations. As a matter of fact, this elegant method has the advantage of
exhibiting what may be called the microscopic structure of the solutions which
gives insight not only to the study of the linear problems, but to the non-linear
problems as well.

This is the first of a series of papers whose purpose is to extend Riemann’s
representation method to functional partial differential equations of hyperbolic
type. However, to be more specific, Riemann’s representation will be formulated
only for the equations of motion of linear viscoelasticity, although similar ideas
can be applied to functional partial differential equations in general, and it seems
desirable to develop such a general theory.
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In this paper a Riemann representation of solutions for two dimensional
problems (position and time) is formulated when the body forces are knownin
the whole space. The Riemann function is characterized in terms of its values on
two characteristic lines and some jump discontinuities for its spatial derivatives
across the time line passing through the singular point. An iteration scheme to
construct the Riemann function is formulated. This scheme is shown to be con-
vergent, and by means of it the existence of the Riemann’s function is proved.
Uniqueness of solution when the body forces are prescribed is also shown.

It is well known [7] that Riemann’s function for a single hyperbolic equation
in two independent variables is characterized by its values on two characteristics.
Thus, Riemann’s function for the equations of dynamic viscoelasticity exhibit a
new feature. This is a line of discontinuity for the first derivatives along the line
of “memory transmission”. This fits quite well with the known facts about
Riemann’s functions. The processes controlling the phenomena which the partial
differential equations describe are manifested in the Riemann function through
singular lines or surfaces. For linear elasticity the only basic process is that of
wave transmission which is manifested by means of discontinuities along charac-
teristic lines or surfaces. For one-dimensional motions in linear viscoelasticity,
in addition to wave transmission, we have memory transmission; thus, in addition
to the discontinuities along two characteristic lines manifesting the process of
wave transmission, we have discontinuities across the line of memory transmission.

The existence of the Riemann function is shown under the hypotheses that the
coefficients of the equations of motion are C3. It seems that to assure existence
it is enough to assume them to be C2. Apparently, however, the methods used
in this paper are not appropriate for obtaining such a refinement, and methods
similar to those used by FrRIEDRICHS [8] should be used. However, the importance
of that refinement in the theory of hyperbolic differential equations lies in the
fact that, by means of it, existence can be shown in the non-linear case [8]. Never-
theless for the type of equations discussed here, existence in the non-linear case
can be shown by a direct procedure based on the results already known for linear
partial differential equations, and this has already been done [6]. Since methods of
the same type are used throughout the paper, it has not to convenient seemed
break the homogeneity for the purpose of achieving the refinement mentioned
above.

For partial differential equations there are reciprocal theorems which are
closely connected with Riemann’s representation method. The same is true for
the theory developed in this paper. A reciprocal theorem of this type is presented
in section 8. It is obviocusly related to a reciprocal theorem given by VOLTERRA
in 1909 [11].

The obvious applicability of the results for the formulation of numerical meth-
ods must also be stressed because the integral equation obtained in section 4
is well suited to be treated numerically.

2. Notation

We shall be concerned in this paper with the dynamic equations of linear
viscoelasticity for one-dimensional motions. If u(x, f)eC? is the displacement
19+
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fieid, they are

t 2
%{E(z) ou (t)}+ - g G 2L @dr—p T H (=10 @1)

where

E(x,t)>0 is the “‘initial value” of the relaxation tensor, defined for every
(x,t)eR,.

G(x, t, t) is the relaxation tensor defined for every (x, )eR,, 1<t It is con-
venient to extend the definition of G(z, 7) to be zero when 7> 1.

p(x)>0 is the density, defined on R,.

Slx, 1) are the body forces defined on R,.

The speeds of propagation of acceleration waves [7, 2] ¢(x, t) at every point
satisfy

, E
N, tematicall that c 2 =2
We systematically assume that
G(x,t,7)eC®> when (x,0)eR,, 1=t,
E(x,1)eC?* on R,,
p(x)eC* on R,.
With every point (x,, Z,) We associate two lines
t=t,(xg,t9,%), (2.3.2)
t=1t,(xq,t5,%) (2.3.b)
such that
Z;" —e7l(x, 1), (2.4.2)
%:czl(x, 1), (2.4.b)
ta(X05 20, X0)="1,(X0, %o, X0) =10 (2.4.0)

where ¢, and c_ are the positive and negative roots of (2.2) respectively.

For one-dimensional motions governed by equations (2.1) it is possible to show
uniqueness theorems analogous to the uniqueness theorems established for the
three-dimensional dynamic theory [9]. This justifies defining the domain of
dependence D _ (x,, #,) of the point (x,, f,) as the closed region given by

D_ (xo H t0)= {(x, t) I té tr(xO E) tO 2 X), té ta(x() ” tO » x)} (253)
and the domain of influence D, (x,, ;) of (xq, 5) by

D+ (xO > tO)z {(xa t) | tg tr(xO ] tO 3 X), tg ta(xo > tO 3 x)} C (25b)
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Observe that ¢, and c¢_ are positive and negative definite, respectively, and
therefore ¢, and ¢, are monotonically increasing and monotonically decreasing
functions of x, respectively. Thus, the only point of intersection of 7, and ¢, is
(x¢, fo). The boundary of D, (x,, t;) will be denoted by S, (x,, #). Its equation is

= t_(.. (xO . to N x) (2‘6.3.)
where
t.(xg,10,X%), if x=x
t+<xo,ro,x)={ (oo _ ° (2.6.b)
t,{xg,t0,%), if x=2x,.

Similarly, the boundary of D_ (x,, to) is S_ (xg, Z;) whose equation is

t=t_(xo.10,%) @.7.2)
where
1,(x o ,X), if x§x
t_(xo,to,x)={ (%ot _ © (2.7.b)
tr(x0>t0’x)a if x;xo.

At every point of S, (except at x,, 7o) we define the unit normal vector
n=(n,, n,), outward to D,. Similarly » on S_ is taken outward to D_. We
associate with n the unit tangent vector (n,, —#n,) which is obtained rotating n,
90° clockwise. Observe that

n,=—chn,, (2.8.2)
where we assume ¢ defined by
c on t,
c=—-—{ (2.8.b)
c_ on t,.

The adjoint equation of (2.1) is defined by

0 év a T ov 8211_ .

It is convenient to decompose D, and D _ into two sub-regions. Given (x,, %),
we define

Dy (Xo,t0)={(x, )| (x,0)€D 4+ (X0 ,20), X=Xo} » (2.10.2)

Dr:t (xO > t0)= {(XA t) I (xs t)GD__;__ (xo L] tO)a x;.x()} . (2'10'b)
Also

{(xo,0)11=10}
di(xo’t0)=Dli(xo’tO)mDri(xo,t(ﬂ:{{(xZ,t)itth}. (2.11)

Sometimes it will be convenient to consider the vector

X=(x,1). (2.12)
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With this notation
u(x,t)=u(X).

In the x, t-plane we shall consider line and surface integrals. The element of inte-
gration in both cases will be denoted by dX and the character of the integral will
be specified by a subindex under the sign of integration.

When we consider a piecewise continuous function and restrict attention to
some closed domain in the interior of which the function is continuous, it is
possible to define a new function which is continuous in the entire domain and
differs from the previous one, at most, on the boundary. In many instances it is
possible to replace the former by the latter without altering the validity of the
relations considered. Therefore we frequently shall do so, although we shall not
use a new symbol for the new function.

When dealing with functions of several variables, we write explicitly only those
arguments whose values in the expressions considered are not obvious.

We shall restrict attention mainly to solutions u(x, ¢) of (2.1) for which there
is a number 7, such that

u(x,t)=0, whenever 1T, (2.13)

and we shall say that functions satisfying (2.13) possess ““finite history’. Functions
which vanish outside a bounded domain will be called of ‘““bounded support™.

The notation R, for the n-dimensional Euclidean space will be used throughout
the paper.

3. Characterization of the Riemann’s Function

Given a point (x4, t,), we say that the function Q(x, ¢, xq, #o) is a quasi-
Riemann function of (2.1) with singularity at (x4, #p) if as a function of (x, 1),
it is continuous on D_ (x4, #o) and possesses piecewise continuous first and second
derivatives on D_ (x,, t,), whose only line of discontinuityis d_ (x4, 7,). In addition

Q(xa taxo,to)=0 for every (xs t)¢D—(x0st0)' (3'1)
On S— (x03 IO)

G Y b

O(x, 1. %0, 1) =A{p(x) c1 (x, ) H e © 0 (3.2.2)
where
A= =1 {p(x0) c; (X0, 1)} % (3.2.b)
On the line d_{xg, tg), it is required that
0Q . G(xq,t5,1)
E{xq,1) [—67 (X051, xo’to)]“ Elxy.te)
(3.3)

to a
— [ G(x0,7, 1) [%(xo,r,xo,to)] dr,
t
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where the square brackets stand for the jump discontinuity (the value on the right
minus the value on the left).

It is convenient to associate with Q the function g{(x, ¢, x,, fy) defined by

2 (E 5Q>+ai TG0 Q()d ] {G(t (x), 1) (- (x))}

ox 0x c(t_(x))
(3.4.3)
8*0
_P—a“t“f‘zg(xst:xo,to), (x:t)éD—(xontO):
g(x,t,xg,t5)=0, (x,0)¢D_(xq,t5). (3.4.b)

From the definition of Q and the assumptions about E, G and p stated in section

1, it follows that g(x, 1, xo, o) as a function of (x, 7) is piecewise continuous on

D_(xq, to) and d_(x,, to) is the only line across which g may have jump discon-
tinuities.
When

g(x,t,x5,15)=0 for every (x,8)eD_(x¢,10), (3.5

we say that Q is a Riemann function of (2.1) with singularity at (xq, f5). Such
a function will be denoted by R(x, t, xq, ?o)-

Similarly, we say that Q*(x, ¢, x,, t,) is a quasi-Riemann function of the ad-
joint equation (2.9) with singularity at (x,, ¢,), if, as a function of (x, ?), it is con-
tinuous on D, (x,, t,) and possesses piecewise continuous first and second deriva-
tives on D, (x,, t;), whose only possible line of discontinuity is d, (x;, ;). In
addition,

0F(x,t,x,,t)=0 for every (x,1)¢ D, (x4,t,). (3.6)
On S, (xy, )

t G(x", 1, t') o
ZE(x, 1)

Q*(xa t:x1:t1)=A* {p(x)c+(x’ t)}_:;tetI (37&)
where
A*=—~3{p{x) e (x1, 1)} 7% (3.7.b)
On the line of discontinuity 4, (x,, ,), it is required that
Q" G(t,t)) ¢ [ :I
E(x,,t t _ G(ty, 7 T . 3.8
(x, )[ ()} o e ARl (38)
We associate with Q* the function g* defined by
o (00" 20" 6 [G(1)Q ()] _
ox (E ox ) ‘[G(t Tox () d= dx { c(ty)
R (3.9.2)
%,
= p Wzg*(x’ t, xlstl)s (xs I)GD.*.(XI, tl)a

g*(xs t: X1, tl)zos (xs t)¢D+ (x15 tl) . (39b)
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Again, g* is a piecewise continuous function of (x, #) on D, (x,, ¢,) whose only
line of discontinuity is d, (x,, ).

When
g5(x,t,x,2,)=0 for every (x,t)eD, (x;,1,), (3.10)

we say that Q is a Riemann function of the adjoint equation (2.9) with singularity
at (x,, f;). This Riemann function will be denoted by R*(x, ¢, x|, r,).

With this notation, we have the following

Lemma 3.1. Let u(x, t)eC? on R, possess a finite history. Define f(x,t) by
means of (2.1) on R,. Then if Q(x, t, xo, ty) is a quasi-Riemann function of (2.1)
with singularity at (x4, t,), we have

u(o,to)= [ fX)OX,%0,t)dX—~ [ g(X,x0,10)u(X)dX. (3.11)

D - (xo0, to) D~ (xo0,s to)

Proof. Observe first that f(x, ¢)e C necessarily because it is a linear combination
of continuous functions.

Now define

I= | {Q(X)%_LG(I, L (@dr—u(X) - IG( 092 (5 de-

D - (>0, to)
(3.12)
G(_,n)Q(()
—u(X) 5 ( o) )} dX,
which by using the divergence theorem can be written
= {Q(X)_j; G(t-, D) % (@) dr—u(X) t;f_G(r, t_)?a%(f)df} ned X —
? (Gu_,nQ@)
o (Jo,,o)”(x) ax { c(t) }d’” (3.13)

+ }o {u(xo, 1) }oG(xo,r, ) [—%;CQ- (xo,t)] dr} dt.

The fact that
I{ X j G(t, ) (x t)dt}dX

D-

j{j fc;(r o) Q( )——(r)drdr}n,dX

S

du - éQ
=Dj'_ {H (X);[G(‘E, 1) T (T)dr}dX
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was used to obtain (3.13). Observe that in (3.13) we have

u(X)tj:G(t, ) ‘ZS (D) dt=0

and

S.[ {Q(X)_j: G(-,1) % (‘c)d‘c} n,dX

j{ j Q. 1-)G(-.7) au (r)d‘c} n,dX

5. c(t-)

O(x,t )G(_,1) au
— | (i) (X)dX

where (2.8.a) and the divergence theorem have been used. Therefore from (3.13) it
follows that

I= }D {u(xo,t)j"G(r, t)[ Q (xo,'c)] dv:}dt——

8 JuX)G(x,t_,0Q(x,t.)]
_Dj_ ax{ c(t) }
o G(ty, ) Q(xq, 1g) £ a0 (3.149)
=—__‘;Ou(t){ e (to)o < !G T, t)[ S (‘r):l d‘c}dt—
uX)G(_,t )Q(X)n,
- c(X) ax-

On the other hand, using the divergence theorem, we have
oo doof0 s (555) -7 (52 -o (5t v G2 ) o
o bt (erdier ) ar (rofi-pu 3t} ax
= j{(QE%—uE—%%) (Q g;‘ —u _aa%) n,} dX+ (3.15)
(t)]d‘c——— jp(Q Zt —uc i,?)dx—i—

+ ju(r)E(r)[ - (xo,r)]dr,

+ _f u(‘t)E(T)[

where
d 17} b3}

ds T ax =5t

(3.16)

Equations (3.12), (3.14) and (3.15) together imply that if (2.1) is multiplied by
0O, (3.4) by u, and the resulting equations subtracted from each other, an equation
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is obtained which, after integration over D_ (x,, fy), yields

5 f(X)Q(X:x07tO)dX—' _[ g(Xa x09t0)u(X)dX

D - (xo, to) D_ (x0. to)

= j' {pcu ijg — u(X)G(i_(},(;_)Q(X) nx—ch%} dX+

S -

+ }0 u(t) {E(t) [Eg (X0, t):l_z G(to, t)Q(to)+

ox ¢+ (to)

+ 6 [—‘zfg-(xo,r)jldr} dr (3.17)

_ _ dQ dpe GQ_.,t_)
=—2(pcy Qu)yy 1 Sj {2pc r +( TR - )Q}unde—F

G(ty, t) Q(to)
¢, (o)

+ 39 u(t) {E(I) [%—S(xo,t):l—Z +

+ }DG(I, ) [%% (xo,r):ld‘c} dt,

where we have used (2.8.a) and have defined

d 1 d
= Tw ds (3.18)
Now from (3.2) it follows that
—Z(pC+ Qu)xo, to=u(‘x0 H tO) (3.19.&)

and

dQ (dpc  G(t_,t)\ _
2Py +( it T ¢ )Q—O on S_(xo,t).  (3.19.b)

Hence, (3.11) follows from (3.2), (3.3), (3.17) and (3.19).
Lemma 3.1 implies the

Integral Representation Theorem 3.1. Let QO(x, 1, xq, ty) be a quasi-Riemann
function of (2.1) with singularity at (xq, ty). Associate with every u(x, t)eC? on
R, of finite history the function f(x, t) by means of (2.1). Then Q(x, t, xq, ty) is a
Riemann function if and only if we have

u (xo > t0)= _r f(X) Q(X’ X0 tO) dX (3.20)

D - (xo0, to)
for every ue C* of finite history.
Proof. Equations (3.11) and (3.20) hold simultaneously if and only if
§ g(X.xo,10)u(X)dX=0
D - (xo0.to)
for every u of finite history; thus, if and only if
g(Xa X0 to)=0
for every X.
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Corresponding to the lemma and theorem above there are dual results.
They are

Lemma 3.2. Let v(x, t)eC? on R,, of bounded support, satisfy the adjoint
equation (2.9). Then if Q*(x,t, x4, t,) is a quasi-Riemann function of (2.9) with
singularity at (x,, t;), we have
v(x,t)= [  fFXOO*X.x,1)dX— |  g*X,x,t)e(X)dX. (3.2D)

D (xq, 1) Dy (xy,14)

Theorem 3.2. Let Q*(x, t, x(, t,) be a quasi-Riemann function of the adjoint
equation (2.9). Associate with every v(x,t)eC? on R, of bounded support the
Sunction f*(x, t), by means of (2.9). Then Q*(x, t, x{, t;) is a Riemann function
of (2.9) if and only if we have

v(x,t)= [ X Q%X x;,t)dX (3.22)

Dy(xy, 1)
for every ve C? of bounded support.

Proof. The proof of these results can be constructed if we interchange the
roles of equation (2.1), @, R with those of the adjoint equation (2.9), Q¥*, R*,
respectively, in the proofs of Lemma 3.1 and the Integral Representation Theorem.

4. An Integral Equation Satisfied by the Riemann Function
The construction of the Riemann function can be reduced to solving an integral
equation. It is the purpose of this section to establish such an integral equation.
It may be deduced from the following
Theorem 4.1. Let Q(x,t, x4, 1) and Q*(x,t, x,, t;) be a quasi-Riemann
Junction of (2.1) and (2.9) respectively. Then

Q*(x0, 10, Xy, t;)+ ) g(X, %0, 10) Q% (X, x4, ;) dX

D(x1,t1, X0, to)

=0Q(xy,1;,X0, )+ j g (X, xq,ty) O(X, xq, 1) dX

D(xy,t1, X0, ta)

“4.1)

where
D(xl,tl,xO,t0)=D+(x1,tl)nD_(xO,to), (4.2)
where g and g* are given by (3.4) and (3.9) respectively.

Proof. When D is void, equation (4.1) is obvious because D is void if and only
if (x,, 1))¢D_(xq, ) and (xq, f5)¢ D, (x,, ;). In such a case

Q*(xos tgs Xy, t1)=Q(x15 t19x09t0)=0-

If (x4, t,) lies on the boundary of D_(x,, #o), then (x,, #y)} also lies on the
boundary of D, (x,, ;). In this case the integrals appearing in (4.1) vanish,
and (4.1) follows from (3.2) and (3.7).

Thus we restrict attention to the case when D(x,, ¢,, xo, fp) has a non-vanish-
ing area. Let S be the boundary of D, and define

S'+=Dﬁs+(x1,t1), (4.3.&)
S_=DNS_(xg,t)- (4.3.b)
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Then
S=8S,uS_. (4.3.¢)
Also, to save space, d, will stand for d, (x,, ;) and d_ for d_ (x4, 7). Similar

conventions will be used for 7, (x,, #;, x) and z_(xq, t5, X).
Observe that by virtue of divergence theorem, denoting the following integral

by I, we have

- {Q(X)%tj 6,09 () e 0 X = [ 6(X.0 ZZ (@) do-

8 (Gt )Q*D\_ G(t_,0Q(t)
—0(X) ( )——Q (X) 5= ( & )} dx

c{ty)
= Sj‘ {Q(X) j't G(t,r)ﬁgi(r)dt—g*(X) }_G(‘L’, t)-%Qx—-(r) d‘c} n,dX —

o (Gt 1.)Q"(14) o G({_,t)Q())
_3. {Q(X) ( e(ty) )+Q X) 5% ( c(t ) )} Rl
+ j. {Q (.)C t)_fG(xo-:‘c:t)[aQ (xo,'f):l d‘f} dt—

- f {Q(xl,t)tf G(x4,1, )[ (x1, T)] }

On the other hand, using (2.8.a) and the divergence theorem, we can write

4.4

*

j{Q(X)jG(t 7) (r)dt}n dX = — j{Q(t =) jc(z aQ (‘c)dt}n dx

(t
_ Qt_)G@_,» 20"
i ax (DX
and
SJ{Q*(X) j:G(t, 1) gg (‘c)dr} n,dX = —Sj{%(?*) j G(z, 1) == o0 (‘c)d'r} n,dX
_ I{Q(tl)(i()t 1.) aQ (:)}

Again using the divergence theorem, we have

I{Q (x0» t)jG(xo T, t)l: (XO,T)] }dt——

LES

- 5 {Q(xl t)fG(xl tr)[aQ (x4, ):l dr} dt—

4.5
~ j{Q(t)G(t,u)Q (t) , © (t)G(t_,t)Q(t—)} "o dX 4 -

c(ty) c(t-)
+2tj_ Q(x,,0) G(x4,8,1,) Q% (x4, 1) di— jQ (ant)G(xo,to,t)Q(xo,to)dt

cy(xy,2y) ¢y (xp,1t)

S
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Now, use (2.8.a) to get
I{Q(t)G(t 1) 0%ty Q*(t)G(t_,t)Q(t_)} n.dX

c(ty) e(t-)
{ () C:((tt;t);)(g ts) Q*(t)c((?fség)Q(’—)} n,dX
{Q(t+)f(§i+) 1070 Q*(nzgft)—c,(i:;Q(f—)} ndX + »
o J (UG SR S0
_ {Q (z+)c(c;‘(t)_c(;3Q(r ) 2O g((t;)t)Q(t)} n, dX
- o* () Gz((rt)r)Q(r) e

where we have used the fact that

0*(1.) G-, 1) 0(t.) o
] YN ndX =0,

implied by divergence theorem because the integrand is a function for x only.
Equations (4.5) and (4.6) together imply

I=— | Q*( G, QAM® n, dX + }‘Q(xbt)x
S c(t) :1

« {2G(x1;i’€;)1%j)(xl”1) J6Get T)[ (1, r)] }dt— G

o {20060 ot a2 o]
where we have used (2.8.a). Finally, write
- o og* " 52Q* £ 970
I_g{an(Eax)an( ) ( -9 ﬁt)}dx
0 oQ* og*
j{7 (o B -ere )57 (po frrer 0 )f o
og* « 09 00* . 00
Hosmee ) nr (G0 drixe g

+ IQ*(XOJ)E(xo t)l: (XOst):I dt— jQ(xnt)E(xl t)[ =— (x4, t):'

|

——Ip(chQ*—-Q* dg) dx + 5Q*<xo,r)E(xo,t>[ Q(xo,r)]dt—

- jQ(xl r)E(xl,z)[ 99" (xl,r)]
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where the convention (3.16) has been used. Adding (4.7) and (4.8) and integrating
by parts, we get

I+1'= QG {2 e 8 Gt g [ ey r)]w

_ _‘EG(t, 7) l:a@?c* (x4, T)] dr} dt—

— T 0% (xe, 1) {2G(xo, fo, D Qo5 70)  pepy [%% (Xo’t):l_

¢y (xg,1p)

_ IOG(XO , T, 1) [ f‘jg (xo,‘t):l d‘r} dt+2(pcy QQ*)(M,,I)— (4.9)

* d , *
—2(pec.QQ )(10)20)_5'; {ch if? +< dptc + Gc((tt)t)) Q}Q n.dX+
+S{{2pc - +( ar e )Q }Q”xdx

=Q*(x0 > tO » X1 tl)_Q(xls tla an tO)

where (3.16), (3.18), (3.2), (3.3), (3.7) and (3.8) have been used.
Therefore, from equations (3.4), (3.9), (4.4), (4.8) and (4.9), relation (4.1)
follows. This completes the proof of the theorem.

Corollary 4.1. Let R(x, &, xqo, to) be a Riemann function of (2.1), and let
Q*(x, t, x,,t,) be a quasi-Riemann function of (2.9), respectively. Then

R(xla tls X0, to)'—"Q*(xo » tO » X1 tl)_
- _[ g*(X7x1? tl)R(X’ antO)dX'

D {(x1, t1, x0, 10)

(4.10)

Proof. The proof follows from (4.1) if we set g=0. If we permit x, ¢, to
vary, (4.10) may be interpreted as an integral equation satisfied by R which will
be the basis for the proof of uniqueness and existence of the Riemann function.

Corollary 4.2. If the Riemann functions for (2.1) and its adjoint exist, then

R(xlatlsxosto)zR*(xoato’xl’ r1)' (411)
Proof. Set
gr=0
in (4.10).

5. Discussion of the Integral Eguations Satisfied by the Jump Discontinuities
Let K*(x,,t,, ) (t=1,) be a solution of the integral equation (3.8), i.e.

t
G(xy, 1, 1)) N f G(x, t, 1) K*(x,, t;,1)dt. (5.1.2)

E(x, D K*(xy,1,,0)= —T(x‘—t‘;)—“
1> 1



Riemann Representation Method in Viscoelasticity 283

Similarly, let K(xq, to, t) (fo=1) be a solution of (3.3), i.e.

io

%{l_ {G(xo,‘r, HK(xg,t5,1)dT. (5.1.b)

These are VOLTERRA’S integral equations for K* and K respectively. It is well
known and not difficult to show that when the functions E and G are C? as
functions of their arguments, the functions K* and K are uniquely defined by
(5.1), and they are also C? as functions of their arguments for r=¢, and t=1,,
respectively.

If E and G are C? as functions of their arguments, then K and K * are also C?
as functions of (x, ¢, 1) in the range mentioned above.

Finally, we prove the following
Lemma 5.1. For every x the functions K and K * satisfy the relation

K(x,t,t)=K*(x,t,1); t=t. (5.2)

E()CO,I)K(XO,IO,I)=—

Proof. We have
t
E(X, t,)E(x= t)K(X, t, t’)= —G(X, I, t,)_E(x: t) _g G(xs T, t')K(x, f, T)dT E]
&

t
E(x,t)YE(x, D K*(x,t', )=—G(x, , t)—E(x, ) [ G(x, t, ) K*(x, t', 1) d .
&
From these relations it follows that

K(x,t,tY=K*(x,t, t)
if and only if

t
f{E(x,DG(x,1,t)K{(x, t,71)—E(x,t)G(x, ¢, 1) K*(x,t',71)}dt=0. (5.3)
c
Now write equations (5.1) in the form
t
E(x,DE(x,1)K(x,t,7)=~-G(x,t,1)— E(x, 1) | G(x, 7', 1) K(x, t, t)d7’, (5.4.2)

E(x,DE(, t)K*(x,t',1)=—G(x,1,1)—

i (5.4.b
—E(x,t) [ G(x, 1,7 )K¥*(x, ', T)d7’. )

Multiply (5.4.a) by E(x, t") K*(x, t’, 7) and (5.4.b) by E(x,t) K(x, ¢, ), sub-
stract, and integrate the resulting equation with respect to 7 from z’ to 7 to get (5.3).

6. Some Remarks on the Construction of a Quasi-Riemann Function

It is convenient to define in R, the sets

D,={(X,X)|XeD,, (X"}, (6.1.)
Dy={(X,X)| XeD,.(X)}, (6.1.b)
d={(Cx,t, x", 1) | x=x", t=t'} (6.1.0)

and to let S be the boundary of ﬁ,u 131, ie.
S={(X,X) | XeS,(X)}. 6.1.d)
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Observe that S, under the smoothness hypothesis of section 1 for E and p, is a
piecewise C? three-dimensional variety for which the *‘edge’ formed by the set
{(X, X)} is the only sub-variety of discontinuity. However, if £ and p are assumed
to be C3, then C? may be replaced by C? in the above statement.

In this section we discuss the construction of a family of quasi-Riemann
functions which will meet some special smoothness requirements.

We assume throughout the section that E, G and p are C? so that the boundary
conditions (3.2) and (3.7) are continuous on S and C? on each of the two smooth
components of § as functions of the four variables (x;, #;, Xo, #,). The jump
discontinuities, satisfied by the first derivatives with respect to x of the quasi-
Riemann function, which are given by K(x,, f;, t) and K*(x,, to, t), are also C?
on d. Under these conditions, it is easy to show that it is possible to construct
a family of quasi-Riemann functions Q*(x, t, xy, t;) of the adjoint equation
which is continuous cn D wD, and C? on D, and on D, separately.

Let O*(x, t, x,, t;) be such a quasi-Riemann function; then the function

Q(x: t, Xo tO):Q*(xO’ tO’x’ t) (6'2)

by virtue of (3.2), (3.7) and (5.2), is a quasi-Riemann function of (2.1), which
obviously meets the same smoothness requirements as Q*.

If we associate with Q(x, t, x4, #,) the function g(x, ¢, x4, f,) by means of
(3.4) and with Q*(x, ¢, x,, t;) the function g*(x, ¢, x,, ;) by means of (3.9),
it follows from (4.1} and (6.2) that

I g(X’xo,tO)Q*(X,xlatl)dX

D (x1,t1, X0, t0)
= j g*(X: xl’tl)Q(sz07t0)dX'

D (x1,1t1, X0, to)

(6.3)

It must be observed that g* as well as g belong to C! on 15, and on D ; separately,
by virtue of (3.4.a) and (3.9.a).

7. Construction and Uniqueness of the Riemann Function
In this section we establish the following

Existence and Uniqueness Theorem 7.1. Let E, G, and pe C3. Then for every
point (xq, to)eR,, there is one and only one Riemann function of equation (2.1)
with singularity at (xq, tg)-

Further, for every (x, t)eD_(xq, tg), it is given by
R(xa 1, X0, t0)=Q*(x0 »los X, t)+
+ (=D g X L x 0L g XL X0 (o, 10, XM dX ... AX"
n=1 D D_

N,
n-integrals

=Q(x, t,Xg, 1)+

+ Z (=" j j' 00, t,XNg(X',X'") ... g(X", x0,t)dX"... dX"

n=1

(7.1)

ﬁ-“,—a
n-integrals
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where D_=D_(xq, ty), Q(X, X'} and @*(X, X') are any quasi-Riemann functions
of equatton (2.1) and its adjoint equation respectively, which as functions of (X, X")
are C? on D and D, separarely; g(X, XYy and g* (X, X') are given by (3.4) and (3.9))

respectively.
Proof. Because of the definition of the Riemann function we have
R(x,t,xg5,1t5)=0 for every (x, )¢ D_(xg,ty). (7.2)

Therefore, we restrict attention to D_{x,, ). Let (x,, ;) be any interior point
of D_(xy, ty), and define & as the set of real valued continuous functions defined
on D(x,, t;, xo, t5). It is convenient to introduce for every function u(x, t)

belonging to this set, the norm || || defined by
lu| = max jul, e, (7.3.2)
to2t2ty

where k is some positive real number that will be conveniently chosen later.
Here

lll lt:max {lu(x, T)I i té’féto > (xﬂ T)ED(xl:v tl: xO bl to)} ) (7'3b)
The sets
5r(x13 tl’ Xo > t0)={(X’ X’) I (Xa XI)EDr: XED(xl’ tl’ X0 tO) (7 4 )
4.a
and X' e D(xq,t,Xg, o)}
Dy(xy,t1,%0,t0)={(X, X) (X, X)eD,, XeD (x4, t;, x5, to) (7.41)
and X' eD(x,, t;, X0, %)} o
D, (x1,t1, X0, 1) =D (X1, 1, )N D(xy, 81, X0, to), (7.4.¢)
Dy(xy, 1, X0, to)=Dp (X1, 1) N D(xy, ty, Xo, to) (7.4.d)
will also be used in the discussion to follow. Equations (7.4.a) and (7.4.b) are
closed and bounded subsets of R,; equations (7.4.c) and (7.4.d) of R,.

Let O*(xg, 1y, x, 1) meet the smoothness hypothesis of the theorem. By
section 6 such a Q* exists. Define the transformation t by
W) (x, H)=0%(x0,15,x,1)— ) g (X', x,HDu(X)dX'. (7.5)
D(x,t, x0, tg)
Then this transformation maps the set & into itself. This assertion would be
obvious if g* were continuous, but it is only piecewise continuous. However
according to the remarks made in section 6, g* is continuous on each of the sets
D and D,. Hence

) g (X', x, Hu(X) dX = ) g¥ (X, x,)u(X)dX +
D(x,t, x0,10) Dy (x,t, x0,1t0) (7 6)

+ _f g (X, x, Hu(X") dX’
Dy (x,1, xo0,to0)
is the sum of two continucus functions of (x, #) and therefore is continuous.

For any k> 0 the set & is a complete metric space with respect to the norm || ||.
Our goal will be to prove that for some k>0 the mapping 7 is a contraction in this
20 Arch. Rational Mech, Anal,, Vol, 22
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metric space. The so-called Principle of Contraction Mappings [/0] will assure us
of the existence of one and only one fixed point of the contraction belonging to
the space. By (4.10) the restriction to D{(x,, ?,, Xy, tp) of any Riemann function
is a fixed point of this mapping belonging to £. Since (x4, ?,) is arbitrary, this will
show uniqueness of the Riemann function in the whole of R,. We will show
later that this fixed point is indeed a Riemann function.

Let # and v belong to £. Then by (7.5), using relation (7.6), we have
W) (x, ) —1()(x,1)=— § g (X x, ) {u(X)~v(X)} dX —

Dy (x,1, X0, t0)

o -‘- g*(X’, x, 1) {u(X’)._U(Xr)} dx’. (7.7)

Dy (x,1, x0, t0)

Observe now that in the range covered by the first integral (X, x, 1)eD,(x,, t1,
Xo, to) = ﬁ,, while in the second one (X, x, t)eﬁl(xl, ty, Xg, lg)<= 15,. Since g*

is continuous on each of ﬁ and Dnl, and 15 and 13, are closed and bounded, it
follows that there exists an M >0 such that |g*(X, x, t)| < M whenever (X, x, t)e

D UD, Hence, from (7.7) and (7.3.b), it follows that
|r(u)—1:(v)|,§Mmj |lu—v|, dt (7.8)
t
where m >0 may be taken as the diameter of the set D(x,, #;, xq., fo)-
Multiplying (7.8) by €% and using (7.3), we get

to
[t@)—t@ [ =Mme™ ™ [ |lu—v| T e 0 g

i
_ k(- Mm
ESMme T lu—v|] [ e KT g <

1

lu—v] .

Taking k> Mm, we have
Ity —t@lI=pllu—v]
for some p< 1. This shows that 7 is indeed a contraction.

The proof of uniqueness is therefore complete. The above argument shows
also that the integral equation

w(x, )=0%(x0,t0,Xx, 1) — ) g5 (X', x, ) w(X') dX’ (7.9

D(x, t, xo0, to)

has one and only one continuous solution on D_ (x4, fo).
Using a particular approximating sequence to the fixed point of the contraction,
we get

wix, D=0%(xq,15,%, 1)+

+Z( 1)j _[g*(X’,x,t)...g*(X",X""l)Q*(xo,tO,X")dX'...a'X"

n=1

(7.10)

__\,___,
n-integrals

where we have used the fact that g*(X", X" 1) vanishes when X"¢D, (X" 1),
and D_ =D._ (.Yo, 10).
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On the other hand, associating with Q* the function @ by means of (6.2), by
(6.3) we have for every r

j g*(Xr’ Xr——]) Q*(Xr+ l’Xr) er___ j‘ g*(Xr, Xr—l) Q(Xr, Xr+ 1) er
E5 D_
= [ gX,X""THe XX Hdx™ (71D
D-

— j‘ g(Xr,Xr-Fl) Q(Xr—l’Xr)er
D_

when the X’s are in the range of integration of the integrals appearing in (7.10).
By repeated use of this relation (7.10) becomes
w{x, )=0(x,1,Xq, )+

+ Z(—]) j i)fQ(x,t,X’) (X', XY g(X", xqo, 1) X ... dX".

n=1

(7.12)

n-integrals

Thus we have shown that (7.1) is valid whenever a Riemann function exists.

In the proof of existence of the Riemann function we will use a quasi-Riemann
function Q*(x, ¢, x,, t,) of the adjoint equation, which, as a function of (x, 7, x, ),
is C?on D, and on D,, separately. The existence of such a quasi-Riemann function
under the assumptions of the theorem is guaranteed by the remarks in Section 6.
Define for every XeD_ =D _(x,, t,) the function

p(X)=g(X,x5,tp)+ Z (-1 _[ _[g(X XYy .. g(X", xp,ta)dX ... dX", (7.13.a)

n=1
and observe that
PX)=g(X,x0.15)— | g(X,X")p(X)dX". (7.13.b)
D(X, xo0,t0)

Using arguments similar to those used to prove that the left-hand member
of (7.5) is continuous, it may be shown that every term of the sum appearing in
(7.13.a) is a piecewise continuous function of X on D_ (x4, t5) and that the only
line on which it has jump discontinuities is d_ (x4, #,). Therefore, p(X) has the
same property because the series in (7.13.a) is uniformly and absolutely convergent
on D(X, xq, to) for every XeD_ (xo, to)-

The function g(X, X)eC! on D and on D by virtue of (3.4.a) because
Q(X, X')e C? on those sets. Also, it is possibie to mtroduce a system of “‘charac-
teristic coordinates™ &(x, t), #(x, ¢) such that

o0& o¢&
“+ax Ta =0
on , on _

- ox T3 =9

and &, yeC3. This is possible because ¢, (x, ) and c_(x, ¢) are C> on R,. Let
Eo=E(xg, 1), no=n (X0, tp), and choose the coordinate system so that {(X)={,
and n(X)=<#n, whenever XeD_(xq, ty). Then the domain D(X, x,, #,) maps into
20+
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the region determined by
EX)=8=8o, nX)SnEn,.

From these remarks it follows easily that p(X)e C' on D,_ (x, to) and on D, _ (xq, tp)
separately.
In the same manner we can show that the function

[ O(x.6,X)p(X)dX’ (7.14)

D(x, t, xo, o)

possesses second order derivatives with respect to x and ¢ which are jointly con-
tinuous on D,;_ (x4, tg) and on D,_ (x,, £y). In this proof the fact, already proved,
that p(X)eC*! on D,_(x,, 5} and on D,_(x,, fy) has to be used. Furthermore,
the first partial derivatives of the function of (x, 7) defined by (7.14) are continuous
on the whole D_ (x,, ty) because they are

2L (1, X) pXVAX S50, 0) [ Q066X p(X) 5,(X) dX’

D{x, 1, xo0, to) ax

Sr+ (x’ t)
5 (7.15.a)
56D Q(x1,X) p(X)8,(X)dX’
x Sl+(x! t)

and
aQ ’ 7 7 a& ! r ’ r
| SHeatX)pX)dX -0 | 001, X) p(X)8,(X) X'~
D(x,1,%0,20) Ot ot 554
5 (7.15.b)
—7 (5D § 00,1X) p(X) 8, (X)) dX’

R RGN N

To obtain (7.15), the fact that Q(x, ¢, X’) for fixed (x, #) is a continuous function
of X’ in the whole domain D, (x, ) was taken into account.

Finally from (7.12) and (7.13) it follows that
w(x, )=Q(x,1,Xq, o) — J Q@ t.X)p(X)dX' (7.16)

D(x,t, xa,to)

where

Hence w(x, t)eC? on D,_(x,, to) and on D,_ (x,, o) separately and is continuous
on D_ (x,, ty)- Since the function given by (7.14) is C! with respect to (x, t) on
D_(x,, ty), it follows from (7.16) that

ow | | 0Q
I:——ax :'_[____ax ] (7.17.a)
The integral appearing in (7.16) vanishes when (x, t)eS_ (x4, ?o). Thus

w(x,)=0(x,1,xq,1) on S_{(xq,15). (7.17.b)

All this shows that w(x, ¢) is a quasi-Riemann function with singularity at {x,, ;).
By the Integral Representation Theorem of Section 2, used to prove theorem 7.1,
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it remains only to show that for any u(x, t)eC? of finite history we have
u(xp,t)= | fX)w(X)dX (7.18)
D-(x0,10)
where f(X) is given by (2.1).
Now by (7.16) and (3.11)

T S@OwX) dX= [ fX) QX %o, 1) dX— | [ QXX p(X) f(X) dX dX’
=~ J p(X){ | Q(X,X") f(X)dX} dX'+

+ § (X)) O(X,x,,1t5)dX (7.19)

=u(xg, o)+
+DI {g(x,xo,to)——p(X)—Df p(X’') g(X,X")dX'} u(X) dX

which by (7.13.b) yields (7.18).

This completes the proof of existence of the Riemann function. Thus the proof
of the theorem is also complete.

A dual argument shows the following:

Theorem 7.2. Under the hypothesis of theorem 7.1, for every point (x,, t;)eR,,
there is one and only one Riemann function of the adjoint equation (2.9) with singu-
larity at (x,, ty). It is given by

R*(X, t: xlatl)zR(xlstlax: t)- (720)
Proof. The existence and uniqueness may be shown in the same manner as

theorem 7.1 was shown. Once existence has been shown we can apply (4.11) to
obtain (7.20).

8. A Reciprocal Theorem
In this section we prove the following

Theorem 8.1. Let u(x, t)eC? be a motion of finite history (i.e. u satisfies
(2.1) and (2.13)), and let v(x, t)e C?, of bounded support, satisfy (2.9); then

Jr@ oy dx= { f*XuX)dX. (8.1)

Proof. Multiply (2.1.1) by v and (2.9) by u; subtract the resulting equations,
and integrate over the entire space R, to obtain

e {U(X)E%—(X)+U(X)__L G(1,7) 9% (1) dr—u(X) E 50 (X) -

—uX) | G, t)g—;(t)dr} dX—Rj' p ai {v g’;‘ —u g;’} dx (8.2)

=R§ {fX)vX)— X)) u(X)} dX
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where we have used the fact that
v : ou ou < do
By means of divergence theorem, where we have taken into account the fact

that »(X) is of bounded support, it follows that the left-hand member of equation
(8.2) vanishes, and therefore the proof of the theorem is complete.

Corollary 8.1. Let u(x,t)eC? possess finite history. Assume f(x,t)eC is
any function. Associate with every function v(x, t)e C? of bounded support a function
f*(x, t) by means of (2.9). Suppose that for every v(x, t)e C? of bounded support
(8.1) holds. Then u(x, t) satisfies (2.1) with f(x, t) as body forces.

Proof. Let us call F(x, t) the value of the left-hand member of (2.1). Then
by theorem 8.1 we have

[ FX)o(X)dX= [ f*(X)u(X)dX. (8.4)
R» R>

Subtracting (8.1) from (8.4), we obtain
§ {FX)— f(X)} v(X)dX =0. (8.5)
K2

Since this is true for any function of bounded support, it follows that

F(X)=f(X),

and the corollary follows.

9. Construction of the Solution when the Body Forces are Prescribed
As an obvious consequence of the integral representation theorem 3.1 and the
existence and uniqueness theorem 7.1 for the Riemann function, we have the fol-
lowing
Theorem 9.1, Under the hypothesis of theorem 7.1, given any f(X)eC, there is
at most one function u(x, t)e C? with finite history for which the right-hand member
of (2.1) is f(x, t). Furthermore, if it exists, it is given by
u(x,)= | fXHRX',x,ndX'= [ fXHR*(x,,X)dX. (9.1

D-(x,t) D.(x,t)
Proof. It follows from theorems 3.1, 7.1 and 7.2.

This theorem enables us to construct the only motion with finite history for
which the body forces are f(x, ¢), when such a motion exists. However, it does
not deliver conditions under which the integrals appearing in (9.1) represent a
solution of (2.1). It is the purpose of this section to elucidate this matter.

Existence Theorem 9.2. Under hypothesis of theorem 7.1, for any f(x, t)eC!*
of finite history, the function u(x, t) defined by (9.1) is C* on R,, and it is a solution
of (2.1) with body forces f(x, t).

Proof. The Riemann function R(X, x, ¢) has been shown to have second order
continuous derivatives with respect to x and ¢ on D, and D), separately. Therefore,
from (9.1) it follows that u(x, t)e C2, because fe C'. Obviously u possesses finite
history.
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We show now that for any function ve C? of bounded support equation (8.1)
holds. In this manner the theorem follows from Corollary 3.1.

By (9.1) we have
RI fH*X)u(X)dX = RI f*(X) {D {X) f(XHRX',X)dX'} dX

9.2
= § [ f*X fX)RX',X)dX"dX ©-
Rz Rz
where f* is given by (2.9) and where we have used the fact that
R(X',X)=0, whenever X' ¢ D_(X). 9.3)

Therefore, from (3.22) it follows that
Rj XX u(X) dX=R_[ f(xX) {Rj F*(X)R(X',X)dX}dX’

=Rj fXH{ | fYX)R*(X,X)dX}dX’'

D+(X")
=R§1 f(X)v(X)dX’
where we have used (7.20) anci the fact that
R*(X,X)=0, whenever X¢ D, (X').
Thus, the proof of the theorem is complete.
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