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1. Introduction

Recent work on the propagation of wavefronts in materials with
memory by Herrera and Gurtin,® Coleman et al,> Coleman and
Gurtin®* and Varley® has shown that the dynamic equations for such
materials exhibit many of the properties of hyperbolic partial dif-
ferential equations.

However, it seems that so far this fact has not been exploited in the
solution of problems. The only case reported in the literature of which
I am aware are some papers by Glanx and Lee,® and Lee and Kanter’
in which they used the method of characteristics to solve some problems.
But this was done only for a very special type of straimn-stress relations
for which it was possible to reduce the equations of motion to partial
differential equations of hyperbolic type without memory.

Thus, it is natural to try to formulate a general mathematical theory
of functional partial differential equations of hyperbolic type which
would include as a particular case the equations of motion for materials
with memory.

Within this program, I have recently formulated a theory for nonlinear
systems of functional partial differential equations of hyperbolic type in
two variables and proved existence and uniqueness of solution in a
domain of determinacy.

To extend such a theory to equations for functions in four variables
(three spatial variables and time) does not seem to be an easy task.
Therefore, I have recently restricted my attention to linear systems. One
of the simplest problems that may be considered refers to questions of
uniqueness. In this paper, attention will be restricted to the equations
of motion for the linear dynamic theory of viscoelasticity.

Uniqueness questions for quasi-static linear viscoelasticity have been
extensively studied.®~!% However, the equations of quasi-static visco-
elasticity differ from those of dynamic viscoelasticity in one essential
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respect: for any given past history the former are elliptic while the latter
are hyperbolic. Correspondingly, the well-posed problems in both cases
are different.

[nitial boundary value problems for the dynamic theory have already
been investigated.'’>'> On the other hand, Cauchy’s initial value
problems apparently have not been investigated at all, in spite of the
fact that this type of problem is specially relevant in connection with
hyperbolic equations.

Uniqueness questions for Cauchy problems are connected with the
determination of appropriate domains of determinacy whose knowledge
in turn gives information about the speed of propagation of viscoelastic
signals, because the speed with which the boundary of a domain of
determinacy moves is a bound for the speed of propagation of signals.
If the domain of determinacy is maximum in some sense, then the speed
with which its boundary moves equals the speed of propagation of
viscoelastic signals.

The purpose of this paper is to report a uniqueness theorem for a
Cauchy’s initial value problem in the domain of determinacy defined
by the speed of propagation of acceleration waves.!

When formulating Cauchy’s initial value problems for equations with
memory, not only the initial values of displacements and velocities must
be given, but the whole past history must be given as well. Then, the
problem consists in determining a solution in the domain of determinacy,
having the given past history.

Roughly speaking, a theorem reported in this paper shows that if the
past history of a material is prescribed in a region R, of E*, then there
1s at most one solution of the equations of motion in any domain ob-
tained by shrinking R, at a speed which is everywhere larger than the
greatest speed of propagation of acceleration waves. This tends to give
support to the widespread suspicion that the speed of propagation of
signals equals the maximum speed of propagation of weak discontin-
uities; a suspicion which is also supported by what is known in some
other fields such as the theory of elasticity.!?

It 1s assumed that the elastic tensor is initially symmetric and initially
positive definite but anisotropic and inhomogeneous. Another good
feature of the theorem is that it does not assume that the elastic tensor
is time translation invariant, an assumption which has been used in
almost every previous discussion of uniqueness questions.

The method used to prove the theorem mentioned above, with slight
modifications, can be applied to boundary value problems. Therefore, it
has also been used to generalize in one direction a result originally due
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to Eldestein and Gurtin (first uniqueness theorem of Eldestein and
Gurtin'') by removing the requirement that the elastic tensor be time
translation invariant.

2. Notation

Let x be a point of the Euclidean space E* and t the time. Let R, be a
compact region of E*> whose boundary is R,. Even more, we assume that
R, is the closure of a normal domain, i.e., we assume that R, is closed
and bounded in E3? and that the divergence theorem can be applied in
R,. B, and B, will be complementary subsets of 6R,, Le.,

4R, =B,uB., B,nB . =¢

We use index notation, and Latin indices will run from 1 to 3 unless
otherwise explicitly stated. Summation will be understood over repeated
indices.

For a function f(x, t) we use the notation

m+n
i &x; 0x; - -+ 0x, Ot"
m-indices

We define the norm of a tensor A;;..; by
“AHZ = ”Aij---ki.z = Aij---kAij---k (2.1a)
Observe that if 4;;.., and Bj;....., are two tensors and

Cl'“n = Aij"'kBij“'kl"'n
then
ICll < [A] B (2.1b)

The Cartesian components of the relaxation tensor will be denoted
by Gy;,(x. 1, 7); they are assumed to be in general a function of x, ¢, 1
so that the subject of our discussion will be an inhomogeneous,
anisotropic solid whose stress-strain relation is not restricted to be time
translation invariant, u,(x, t) will be the Cartesian components of the
displacement vector; 1;4x,t) the Cartesian components of the stress
tensor; p(x) the mass density; and C;;,,(X, 1) = G;;,(X, t, 7} the “initial
value™ of G, .

We denote by & = (x,1} = (x;,X,,X3,!) a point in the space-time
(E* x {—oc, 0)). All integrals will be in the four-dimensional space-time
in which dg denotes the element of integration. The character of the
integrals (volume or surface integral) will be denoted by a subindex
under the integral sign.
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The symbols G,;,, and G, are defined by
: il
Giqu(xs f ‘C) = "a_t Giqu(x, t, T) (22)
= 0
Giqu(x’ L, T) = 6_1.' Giqu(xa [N T:) (23)

We say that G;j,,(x, t, 7) is initially symmetric when

Ciqu(xa t) = Cpqij(x’ t) (24)
and initially positive definite if
Ciqu(x’ t)aifapq >0 (2.5)

whenever the symmetric part of g;; is nonzero.

Let T>0; for every te[0,T], E® x [t,t] is a three-dimensional
Euclidean space immersed in the four-dimensional space-time. For every
te[0, T] we consider a compact region R(t) = E* x [£,t] which we
assume to be the closure of a normal domain.

Let

—

'[=
7(#) = |
\v)
t=0

R(T)
M

Fs vy

—
o
N

v’

and S*(t) the boundary of ¥(t) in the space-time. We assume that
(a) V(1) is the closure of a normal domain (compact),
(b) R(0) =R, x [0,0],

and adopt the following notation:

S4(t) = R(0)
S,(t) = closure of {S*(t) " [E* x (0,1)]}
S5t} = R(1)

Observe that
S*(t) = S,(t) v S,(t) v S5(1)

The unit outer normal vector to S*(t) will be denoted by n,(x, 1)
(0 = 1,2,3,4) at every point (x,7)e S*(¢). It is assumed to be defined
and continuous in S,(T). It must be understood that n; (i = 1,2, 3) are
the spatial components while n, 1s the time component.

The above assumptions imply that

n=0 n,= —1 on §,(t) (2.7)
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We consider two types of domains V(T). One type will be when
V(T) is a ‘“‘hypercylinder” and the other one will be when V(T) is a
“conoid.”

We say that V(T) is a hypercylinder if

nyx, 1) =0 for every (x,1)e S,(T) (2.9)

In this case S,(T)= R, x [0, T| and the spatial components n; of
n, (x = 1,2, 3, 4) constitute the outer unit normal vector to R.

In the case when V(T) is a conoid we assume that R(t) shrinks with
time, Le.,

R(t") < R(?) whenever ' >t
We require even more than that. It is assumed that
na(x,7) >0 whenever (x,1)e S,(T) {2.10)
Therefore, when V(T) is a conoid there is a k(0 < k < 1) such that
na(x,7) > k whenever (Xx,7)€ S, (2.11)

because n, is continuous on S,(7) which 1s compact.

_____ 1 chee bropagat
Herrera and Gurtin! have established that the speed of propagation v

of acceleration waves in any direction e satisfies the eigenvalue problem
(Cijuejer — pv* dyda = 0 (2.12)

where a is some vector (a # 0). The possible speeds, solutions of (2.12),
will be denoted by v,,v,, vy. It will be assumed that

O<v, v, S0y (2.13)

3. Statement of the Problem
We consider the field equations of the linear theory of viscoelasticity
t) — puPx, 1) + Fi(x,8) =0 (3.1)

in the region V(T) where u; is the displacement field and F; the body
forces.
The stress relation is

Tij,j(X,

1%, 1) = Cijp, Dt % 1) f_ Gl £, T, (%, D) AT (3.2)

Given u(x, t) defined in V(T)u P and C? in ¥(T), we give the name
“initial velocity” to a function S(x) defined by

S(x) = uM(x,0+) on R, (3.3a)
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and *“‘past history” to the function n(x,t) which 1s the restriction to P

of the function u(x, 1), 1.€.,
n(x, t) = u(x, 1) on P (3.3b)

where the “*past” P is the set
P =Ry x (—,0] (3.4)

When V(T) is a hypercylinder, given the functions u;*(x, ) defined on
B, and Ti(x,t) defined on B, we say that a function u(x, ) defined on
V(T) u P meets the boundary conditions if '

u(x, 1) = u¥(x,?) (x,)e B, x |0, T| (3.5)
7,(x, n; = Ti{x, 1) (x,1)eB, x |0, T (3.6)

In what follows we assume that

(a) p(x) is continuous and positive in R,.
(b) m(x,t)e C? and is such that

0 N
J B GijpdX, 1, T, (X, T) dt

exists and belongs to C? on V(T).

{c) GyjpglX, 1, 7)€ C* in the closed region of E® where (x,t)e V(T) and
0<t<t
(d) G,-jk,(x, t, T) = GJ-,-H(X, f, I) = G,-ﬂk(x, t, T) (37)

whenever (x,)e V(T)and 0 < T < 1.

As is well known, in the linear theory of viscoelasticity the symmetries
(3.7) are satisfied under very general conditions. Indeed, the relation

Gijkl = Gjikl
follows from the symmetry of the stress tensor, while the relation
Gijkl = Gijik

is a consequence of the principle of objectivity which implies that the
stress tensor is a functional of the symmetric part of u; ; only.

Given Gy;,(x, t,7) in the region where (x,1)e P U V(T), © < t, p(x) in
R,, m(x,1) in P,S(x) in Ry, F in V(T), we consider two different types
of problems.
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A. THE MiXeED PROBLEMS OF DYNAMIC VISCOELASTICITY

When V(T)is a hypercylinder, given the functions u;* and T;, we say that
u(x, t) defined in ¥(T)u P is a solution of the “mixed problem of
viscoelasticity™ if:

(a) w(x,t)e C?in V(T).

(b) w.F,G,,. and p satisfy the field equation (3.1) in V(T). In these
equations 1;; 1s interpreted as a shorthand writing defined by (3.2).

(c) The past history and mitial velocity of u are given by (3.3).

(d) w and rt; satisfy the boundary conditions (3.5) and (3.6),
respectively.

B. CaucHy’s INITIAL VALUE PROBLEM FOR DYNAMIC VISCOELASTICITY

When V(T) is a conoid we say that u(x, t) defined in Pu V(T) 15 a
solution of ““Cauchy’s initial value problem for viscoelasticity” if u
satisfies (a), (b), and (c) of Section A.

We are now in a position to state the theorems.

THEOREM 1.  Assume that the relaxation tensor G, (X, t, 1) is initially
symmetric and initially positive definite. Then the mixed problem of
viscoelasticity has at most one solution in V(T) u P,

THEOREM 2. Assume that the relaxation tensor Gy, (X, t, 7) is initially
symmetric and initially positive definite. Let the unit normal vector be
given by
n=Ale,,e;,€;3,0) (3.8)

on 8,(T), where e is a unit vector (normal to R(t)) and 2 > 0 is a normalizing
factor.

Then, if
c>vy20, 20, >0 (3.9)
the Cauchy’s initial value problem of dynamic viscoelasticity has at most
one solution in P w V(T).
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