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1. Introduction

In the first paper of this series [/], which will be called I from now on, we defined
and constructed the Riemann function for the dynamic equations of linear visco-
elasticity for one-dimensional motions. Then an integral representation theorem
was given expressing the solution to problems with prescribed body forces in
terms of the Riemann function.

It is well known [2—4] in the theory of partial differential equations that the
solution to CAUCHY’S initial value problems can be expressed by means of integral
representation formulas in terms of the Riemann function. A similar theory can
be developed for partial differential equations with memory. In the first part of
the present work this is done for the dynamic equations of viscoelasticity and the
existence and uniqueness of the solution of CAucHY’S initial value problem is
shown in this manner. Then the method of the parametrix [3], here called quasi-
Riemann function, is used to obtain an integral equation for the solution which is
suitable for numerical treatment. From the practical point of view such a procedure
has interest because it allows the construction of the solution of CAUCHY’S initial
value problem directly, when the Riemann function is not known.

2. Notation

In this work the notation used in paper I will be adopted.
We shall be concerned with the dynamic equations of linear visco-elasticity
for one-dimensional motions. If u(x, t)e C? is the displacement field, they are

~ ~ t a ~2
%{E(z)%m%%_{t G(r,r>—6%(r)dr—p%§(t>=f(x,t) (2.1)

where

E(x,1)>0 is the initial value of the relaxation tensor, defined for every
(x,t)eR,.

G(x, t, 7) is the relaxation tensor defined for every (x, t)eR, and 7<¢. It is
convenient to extend the definition of G(z, 7) to be zero when 7>1.

p(x)>0 is the density, defined on R,.

f(x, t) are the body forces.
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‘We shall restrict attention mainly to solfutions w(x, ) of (2.1) for which there
is a number 7 such that

u(x,)=0 whenever (=T

and we shall say that functions satisfying this condition possess ““finite history”.
Functions defined on R, which vanish outside a bounded domain will be said to
have “bounded support™.

The speeds of propagation of wave fronts ¢(x, ¢) satisfy

S =—. (2.2)

The positive and negative roots of this equation will be represented by ¢, and c_
respectively.
We systematically assume that

G(x,t,7)eC? when (x,)eR,, Tt,
and
E(x,t)eC? on R,,

p(x)eC? on R,.

The domain of dependence D _ (x,, #5) of the point (xq, #,) is the closed region
of the x, r-plane whose boundary consists of the characteristics passing through
(x6, o) and whose points have the property that r<¢,. The domain of influence
D (xq, 1y} of (x4, #y) is defined in the same manner, except that its points satisfy
t g to .

The boundary of D, (x4, o) is S, (xo, 15), Wwhose equation is

t=t+(x0,t0,x),
and the boundary of D_(x,, #y) is S_ (xq, ¢5), whose equation is
t=t._(x0,to,x).

Associated with the two roots of (2.2) there are two families of characteristics.
Those associated with ¢, will be called advancing and those associated with ¢_
will be called receding. For brevity we will write ¢ for ¢, when dealing with advanc-
ing characteristics and ¢ for ¢_ when dealing with receding characteristics. At
every point of S, (except at x,, f;) we define the unit normal vector n={(n_, n,)
outward to D, . The vector n on S_ is defined similarly. Observe that

n,=—cn,. (2.3)
The adjoint equation of (2.1) is defined by

13 Ju g cv 8*v .
Bx (E 6x)+5x l:fG(’.:,t)ﬁ(‘t:)d"r—,«:)—‘a—t—f——f . (2.4)
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It is convenient to adopt the notation
X=(x,1). (2.5

In the x, t-plane we shall consider line and surface integrals. The element of inte-
gration in both cases will be denoted by 4X and the character of the integral will
be specified by a subindex under the sign of integration. ‘When dealing with
functions of several variables, we write explicitly only those arguments which
are not obvious from the context. ,

According to the definition of the quasi-Riemann function Q(x, 7, xo, o)
given in paper I, it satisfies the relations

. a0 8 ' o0 é (G(t-(x), 1) 0(1-(x)) o0
ox (E 6x)+ ox ;[G(T’F) dx DICEz ox { e(t-(x)) —PEe
=g(x= l:xo’to)i (x’ t)ED~(x0at0)»(2.6)
—2p(x0) €+ (Xp,10) Q(X0,-L0s X0, t0)=1, (2.7.a)
2pc ‘fig +(ddpsc — G(t‘c’t‘) nx) 0=0; on S_(xo,to), (2.7.b)
and
Eo,1) [2 Grouto. %0, 10)] = CFoled
to (270)
— | G(x0,7,0) [—g—%-(xo,f,xo,to)] dz,
where

d d d
ds Mdx ' de
and the square brackets stand for the jump discontinuity (the value on the right
minus the value on the left). RIEMANN’S function also satisfies (2.6) and (2.7),
but with g=0.
We define the sets

Dy (Xo» to)={(x, D1 (x, e D (X0, to)y X = Xo} » (2.8.2)
Dr-l- (xo » tO) = {(x’ t) | (xa t) € D+ (xo ’ to)s XZ xo} ? (28b)
and )
D,={(X,X)|XeD,.(X)}, (2.9.2)
D,={(X,X)|XeD,. (X)}. (2.9.b)

3. Cauchy’s Initial Value Problem

In this section we formulate the Cauchy initial value problem relevant to our
work.

Let [, b) be a closed interval of the real axis and define the past by

P=[a,b] x(—0,0), (3.1)



Riemann Representation Method in Viscoelasticity. fl 181

the “reduced domain of dependence” of (x,, #,) by
R(xg, to)=1(x, D] (x,1)eD_(xq,t,) and 120}, (3.2)
and the “*‘domain of determinacy of 27’ by
I={(x,t)| Z(x,)=[a, b]x [0, w0)}. (3.3)

Given any point {xq, fo)eIT, define a(xq, #o) and ff(xg, to) as two real numbers
such that

(o, Bl={x1(x, 0) e Z(x0, L0)} > (3.4)
and the “‘effective past of (xo, 76)” by
P(xy, 1o)=[a, f]x(—0,0). (3.5)

We shall consider displacement field functions u(x, 7) defined on # u IT which
are C? on IT and on £ separately. The ““past history’” U is defined by

U(x,)=u(x,1) on . (3.6)

It is assumed to possess an extension to the closure of & which is C?2. The ““initial
value™ u, is defined by

Uy (x)=u(x,0+); xela, b] (3.7)
and the “initial velocity” by
=T (v, 04);  xe[a, b]. (3.8)

With this notation we formulate the following Cauchy initial value problem.

“Given the functions U(x, t)eC? of finite history on 2 (which can be extended
{o the closure of 2 as a C2 function), f(x, t)eC on I1, uy(x)eC* and y(x)eC'
on [a, b), to find a function u(x, ) defined on £ U IT and C?2 on 7, which satisfies
(2.1) on IT with f as body forces, and whose past history, initial value and initial
velocity are U, u, and y, respectively.”

4. Integral Representation Theorem

Lemma 4.1. Lef u(x, t) of finite history be a solution of Cauchy initial value
problem as stated in the last section. Then if Q(x, 1, Xo, to) is a quasi-Riemann
function of equation (2.1) with singularity at (xo, to)ell, and g(x, t, xq, 1) are
the body forces associated with Q (as defined by 2.6), we have

u(xg, lo)= S Q(X, xq, 1) f(X)dX — j g(X, xg, to) u(X)dX +

92 (x0, to) H (x0, to)

+(pc- Quol(B,0)—(pc. Quo)(a, 0)—

B -~
"gp(QV"“o (;Ql)(.\’,())d.‘c—~ (4.1)
~ 0
_4?( f ){Q(X, Xg s to) a(; __f G(t, 1) gg ('t)d’c} ax.
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Proof. Multiplying (2.1) by Q@{(x, ¢, xo, tp) and (2.6) by u(x, 7) subtracting the
resulting equations and integrating with respect to X over #£(xg, ), we obtain

I{Qm j G(t, 1) SL (@ dr—u®) jG( 092 (ydv—
0 (GG_,Q(-)
——u(t) A ( c(t) )} dX +
8Q 8 (. du __ 2Q
+5{ (QE JEax) P 51 (Q gt az)}dx

=9§f Q(X, xo, to) f(X) dX—g-Z[ g(X, xo, o) u(X)dX.
After some manipulation we get
f {Q(t) j G, )%(r)dt—u(t)gx—!—(?(r, t)%%(r)dt-—
—u () 3 g (G(t_ : t)Q(t_))} e

c{t_)
_ M(X)G(f-,t )2(X)
- j c(t-) n,dX— (4.2)

_ g 4 (xg 5 1) {2 G (t—c,:zt%(t_) _ fc(r, £ [% (1:)] dr} dt+

+ {Q(X xo=to) I G(t, ‘L') (T)d‘r}

£ (xo0, ta)

On the other hand, using the divergence theorem we get
0 Ju aoQ d Jdu aQ
5{6x (QE U ax)“” 3t (Q gt az)}dX

=_s"[ {ch (au n, %—l:—nx)—pcu (—g—g n,—-——%% nx)} dX +

. 4.3)
0 6Q 0 du_, 20
~ du % Fus [22 du _ 80
where
4 _, 4 _, 4
ds  tdx = drc

Adding the expressions given by (4.2) and (4.3), using (2.6) and (2.7), we obtain
4.1).

Integral Representation Theorem 4.1. Ler u(x, t) of finite history be a solution
of CAUCHY'’S initial value problem as stated in the last section. Then if R(x, 1, xq, {,)
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is a Riemann function of equation (2.1) with singularity at (xq, to)ell, we have
u(xg,to)= J R(X,x0,1)f(X)dX+
R (x0, to)

+(pc Rug)(B,0)—(pcy Ruo)(a, 0)—

— j'p (Ry—uo aR) (x,0)dx— (@.4)

- {R(X xo,to) j G(t, t

R (x0, to)

d ‘c} dX

Uniqueness Theorem 4.2. Let E, G, and peC 3. Assuming that a solution u(x, t)
of CAUCHY'’S initial value problem exists in IT U P, then u(x, t) is the only solution
and it is given by (4.4).

Proof. Set g(X, xo, fo) =0 in equation (4.1) to get (4.4).

Proof. Observe that by theorem 7.1 of paper I the Riemann function exists.
Therefore we can apply the integral representation theorem 4.1 to get this result.

5. Existence

In this section we first prove some preliminary results and then an existence
theorem for CAUCHY’S initial value problem.

Reciprocal Theorem 5.1.* Let u(x, t) be a solution to CAUCHY’S initial value
problem and let v(x, t) be an arbitrary function of class C? in R, whose support
is bounded and contained in P U II. Let f*(x, t) be defined by (2.4). Then:

Ij;f(X)v(X)dX——'I_if*(X)u(X)dX+

(4]
+fv {%_5@ G(t,7) g—g (r)d'c} dX + (5.1)

I
b dv
+§p (vy—uo E—) (x,0)dx.

Proof. Multiply (2.1) by v and (2.4) by u, subtract the resulting equations and
integrate over I7T to obtain

Iz

8{6u v

7, du av
I_ga—{vE B uEax}dX——j'p a7 10 3¢ ¢ 6t}dx+

+,§ {v —(a—é);__iG(t, 7) —g—z—(‘c)dr u -a—jc(z t) (r)dt} dX (5.2)
=,,E (fXOvXD—fFXuX)}dX.

* Note added in proof: This theorem, like Theorem 8.1 of paper I, is obviously related to a
reciprocal theorem given by V. VOLTERRA in 1909 (Sulle equazioni integro-differenziali della
teoria dell’elasticita. Rendiconti della Reale Accademia dei Lincei 18, 2, 295 (1909)).
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Recall that the support of v is contained in £ U 1, so that

°’?

o § cunZtmar—u fomn Z@ar ax
=
1

—u%if—G(r,t)%(f)dT}dX I{ x_&G(r,r)g—z(r)dr}dX

_f G(t,r)—g—;—(t)d }dX+_f{v—;—j'G(t )%(r)dr—

where the facts that

= 6[ G(t, 1) gl—; (r)dr} dX=I_£ {—g;—l ;G(r, t) % (1) dt} dXx

i 1%

IE% { fG(t T) i%i(‘r)(l‘t*—uj(;(t 1) ———-(1:)(11} dX =0
ir

and

were used. Applying the divergence theorem to equation (5.2) and using again the
fact that the support of v is contained in & U I, equation (5.1) follows.

Corollary 5.1. Let u(x, t) be a piecewise C? function on P UIl, such that the
only possible line of discontinuity for u and its first and second derivatives is the
interval [a, b] of the x-axis. Assume further that u=U in 2. Let f(x, t)eC in IT
be arbitrary. Associate with every v(x, t)e C? in R, whose support is bounded and
contained in 2 I1 a function f*(x, t) by means of (2.6).

Then if for every v satisfying the above requirements, equation {5.1) holds, the
Function u(x, t) is a solution of CAUCHY'S initial value problem with body forces
F(x, ), initial value uqy(x), initial velocity y(x), and U(x, t) as past history.

Proof. Define F(x, t) as the value attained by the right-hand member of equa-
tion (2.1) when the given function u is substituted in it, and let

ug(x)=u(x,0+) and y(x)-w- (x,0+).

Then u is a solution of CAUCHY’s initial vatue problem with body forces F, initial
value uj, initial velocity 7', and past history U. Therefore we only need to prove
F=f,uy=uy and ' =vy.

By theorem 5.1 we have

JFX)v(X)dX = [ X)) u(X)dX +
ir 7

(r_)dr} dX + (5.3)

+ju(X) {—~— § G, 'c)

— o

+f,o (vy —ugy g )(x O dx.
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Subtracting (5.1) from (5.3) we get
[P~ X} ey ax = p {v(v’—w—(ua~uo) —‘;%} (x,0)dx.

But this equation holds for every v if and only if F=f, y"=7y, and up=uq.

Existence Theorem 5.2. If E, G and peC?,feC', yeC? u, and UeC?, then
the function u, defined on # by u(x, t)="U(x, t) and on Il by (4.4), is the solution
of CAUCHY’S initial value problem with body forces f, initial value u,, initial velocity
v, and past history U.

Proof. It is convenient to show first that to prove this theorem it is enough
to consider the case for which u,=py=U=0. To this end define an auxiliary
function #’(x, t) on 2 U Il by setting u'(x, 1)=U(x, t) on Z and letting u’'(x, 1)
be on I7 any function belonging to C? such that

' (x,0+)=uy(x), ?;—t’(x,0+)=y(x).

Define F(x, t) on IT as the value of the right-hand member of (2.1) when u is
replaced by u’. It is clear that u(x, ) will be a solution to the given Cauchy initial
value problem if and only if u—u’ is a solution to a Cauchy initial value problem
for which the initial displacement, initial velocity, and past history vanish, and for
which the body forces are f(x, t)—F(x, t). Since under the given hypotheses
f—Fis C', it is therefore enough to prove the theorem for the case when yg=7y=
U=0.
In this case we have
ulx, )= [ RX,x,)f(X)dX on I1.
& (x,1)

The argument used in the proof of theorem 9.2 of paper 1 shows now that
u(x, t)eC? on II. To show that

[ FXD)o(X)dX = [ f*(X) u(X)dX
1 n
for every ve C? whose support is bounded and is contained in 22 U I1, observe that

I! FFX)uX)dx= l! (X {w (L) SX)R(X',X)dX'} dX
- Ig ,5 F*(X) f(X)R(X', X) dX’ dX
= J F(XY) {ﬁf F*(X)R*(X,X')dX} dX’
= I; F(X) o(X"ydX’
where we have used the facts that

R(X',X)=0 when X'elI—2Z(x,t)
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and that
o(x, )= | [f¥*XHIR*X,x,0)dX'={fT(X)R*(X',x,t)dX’ on IT
I

D4 (x, t)

because the support of v is contained on 22U Il.

6. Direct Construction of the Solution
We now give a method to construct the solution of CAUCHY’s initial value
problem which does not assume previous knowledge of the RIEMANN’s function.

Theorem 6.1. Let Q(X, X') be any_quasi-Riemann function of (2.1) which as a
function of (X, X') is C? on D, and D, separately. Assume that CAUCHY’S initial
value problem possesses a solution. Define

u(x,)y=U(x,1) on 2, (6.1.a)
uy(x, t)=9¢ (f Q(X',x,8) f(X)dX +(p c_ Qu)(B(x,1),0)—
x,t)
3 oQ 5 :
~(per QW 0,0~ | o (Qr—uo 57 ) (x,0) dx' - (6.1.6)
- 0
_g”it) {Q(X’,x,t)%_j;O G(x',t', 1) aag (x’, 1) dt} dx’ on [T,
U,y {x,1)=0 n=1,2,... on £; (6.1.0)
and
(. )=— | gX',x,0)u,(X)dX’ n=1,2,... on IT. (6.1.4)
R (x0, to0)

Then the function

u(x, )= Y u,(x,1) on 2ull; (6.2)

n=1
is the only solution of CAUCHY’S initial value problem.

Proof. Let & be the set of continuous function defined on 7. The transforma-
tion

(W), D= [ QX' x,1) f(X)dX'—

R (x,1)
"gg(j )g(X',x,t)u(X')dX’+(pc_Quo)([)’(x,t),O)—
_(p Cy Q “o) (a(x:v t)’ 0)_

, e 7 L., L ou ,
_QE(SE,:) {Q(X)x: t)Ta';—_L G(J\.,I,T) e (x ,T)d‘[} dX

is a transformation of @ into itself.

We are going to define a metric on 2 with respect to which & will be a complete
metric space. Then we will show that 7 is a contraction with respect to this metric.
Then the “principle of contraction mappings” [5] will assure us of the existence
of one and only one fixed point of 7 in £. A particular approximating sequence
to this fixed point is given by (6.2), so that u,(x, ) is the fixed point of 7. On the
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other hand, by virtue of Lemma 4.1 any solution of CAuCHY’S initial value problem
is a fixed point of 7. Therefore, w (x, ) is the only solution of CAUCHY’S initial
value problem.
Given two functions # and ve 2, define the distance between u and v by
lv—uij= max |[v—ul, e ¥’
ost<T
where
T=max{t|(x,0)ell},
lo—ul,=max{|u(x,)| [0S T=t, (x, D},

and K is some positive number to be chosen later. With this metric & is a complete
metric space. Observe

(W) —t())(x, )= —g?(j' ) g(X', x, ) {u(X")—v(X")} dX.

Now g(X’, x, 1) is piecewise continuous on 7 x IT which is compact in R,. There-
fore, there exists an M >0 such that

jg(X',x,)j<M whenever (X', X)ell x<IT.
Thus

[4
l[t@)—t@) |, SsMm [ lu—v| dz (6.3)
o]

where m >0 may be taken as the diameter of IJ.
Muitiplying (6.3) by e” ¥* we get

z
lt(u)—1(v) | < max {Afl me X' [ Jlu—v|. e ¥ X dr
(2]

O=<t=T
t
SEMm|lu—vj { max (e”K' ] eK’dt)}
o=<r=T (4]
Mm
S——%—llu—vispujlu—v|

K

where y may be taken as a positive number less than one if X is taken sufficiently
large. This completes the proof of the theorem.
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