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Abstract. This paper is an extension of previous work by Herrera and Figueroa to multiple
leaky aquifers. The equations governing the motion of such systems are transformed to obtain
a simpler system suitable for numerical treatment. An essential feature of the method is the
introduction of a lag time that occurs because the influence of any aquifer is not transmitted
instantly, to its neighbors. This approximation is suitable for treating cases for which the
conditions on the aquifers vary slowly. The numerical treatment of the resulting system of
equations is of the same order of complexity as that for a single aquifer.

INTRODUCTION

Leaky aquifers that lose or gain water from
adjacent strata occur frequently in mnature.
Hantush [1967] cites among these systems the
Dutch polder areas, Roswell and other areas
in New Mexico, the southern areas of Minne-
sota, and many areas in Florida. Mexico also
has areas of this type.

The treatment of this kind of problem has
been incomplete so far. It is usually assumed
in the theory of leaky aquifers [Hantush, 1960;
Hantush, 1964; De Wiest, 1965] that the pie-
zometric head in one of the aquifers is not
altered by the discharge or recharge of the
other one. Such an assumption is admissible
in many situations, especially if the time of
operation has not been too long, but for a
longer operating time this hypothesis is not
admissible because it leads to predictions that
contradict the results observed in practice.

On the other hand, solutions for transient
flow reported in the literature [Hantush, 1967]
that take into account the interaction between
acquifers do not include the storage capacity
of the leaky media. It is well known [Hantush,
1960] that in many situations occurring in prac-
tice, this capacity cannot be neglected without
incurring unacceptable errors.

In this paper I develop an extension of a
theory presented previously by Herrera and
Figueroa [1969] that is suitable for treating
multiple leaky aquifers. In this theory inter-
actions between the aquifers are taken into
account as well as the storage capacity of the
leaky layers. The derivation of the equations

parallels the earlier work by Herrera and
Figueroa; therefore previous reading of that
paper could help in understanding this one.

The purpose of this paper is to transform
the equations governing the behavior of a sys-
tem of leaky aquifers to obtain equations more
suitable for numerical handling of the problem.
This is achieved by first transforming the equa-
tions into a system of partial differential equa-
tions with memory that do not contain the
piezometric heads of the leaky layers. Then an
approximation for the memory functions is
introduced, and the problem is simplified. The
resulting system is essentially uncoupled except
for the fact that every equation contains the
piezometric heads of the neighboring aquifers
corresponding to a delayed time. Thus the
numerical handling of the problem is quite
simple.

If a step by step numerical method is used,
then at a given step the values of the piezo-
metric heads of the system corresponding to any
previous time will be known. Thus, when carry-
ing on the computations to extend the solution
one step further, the piezometric heads at
previous times may be taken as data, and the
computations will be the same as if the system
were uncoupled.

The derivation is done bearing in mind appli-
cations to hydraulics of wells, but the equations
can be applied to similar problems in other fields.

FORMULATION OF THE PROBLEM

The problem consists of studying the behavior
of a system of n elastic aquifers (n > 2),
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Fig, 1. Flow system.
separated from each other by semipervious
layers. The storage eapanity of these lavers iz
taken into account, Tn previous worls [ Hantush,
1960; Herrera and Figueroa, 1068] this storage
capieity has been taken into necount for anly a
single noguifer, not for multiple aquifers [Hons
fush, 19671, The discharge of the well or gystem
of wells dimining the aquifers is provided by the
reduction of the storage in the aquifers and by
leakage from the semipervious layers. The
leakape = obtained from the reduction of the
gtorage in the semipervious elastic beds or from
other bodies of water over and/or underlving
the semipervious strota limiting the  system
{Figure 1), The permeabilities in the leaky
aquifers are very small compared with those
in the main aguifers, so that the flow iz vertical
in the semipervious beds and harizontal in the
main aguifers.

The goal will be to eliminate from the equa-
tions governing the behavior of the hydraulic
gystem  the drawdowns ecorresponding fo the
leaky layers. However, the resulting system will
bea gvsiem of partial differential couations with
memory. When the variations in the aquifers
are slow (in application to hydraulics of wells,
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thig corresponds to-a long aperating time), an
approximation is obtained that reduces the
preblem to a system of essentially uncoupled
equations. The coupling of the equations of the
system is sccomplished through terms contain-
ing the drawdowns in the neighboring aquifers
retarded by some lag times, Therefore, when
earrying numetieal computations, every equa-
tion can be written as if it were uncoupled,
because the values of the drawdowns at the
neighboring aguifers in previous times are al-
ready known and can be introduced as data
before doing the computations at a given step.
The above reductions are obtained independ-
ently of the boundary conditions in the hori-
zantal limits of the aquifer,

DIFFERENTIAL EQUATIONS QUVERNIING
THE MOTION

The general differentinl equation governing
the laminar flow of water in a porous elastic
medin supposed to he isotropie but possibly
inhomoreneons is

3 (o i( @)
ﬂ;r(ﬁ ﬂ::)+a'y K

af__ahk , oh
t ﬁ(ﬁ a:) =8 Gy AL
where i represents the piezometric head and g
the discharge per unit volume produced by o
distribution of wells,

In lenky aquifers, aceording to Henlush
[18807, the fow iz vertienl in the leaky layers
and horizontal in the mamn oquifers. Decause of
this fact, the piezometric head is independent
of the vertical eoordinate m every one of the
main aguifers. Tt iz therefore convenient to
ilentifly the points of each main aquifer having
the same horizontal eoordinates and to consider
the vertieal eoordinates as equal to =z, for the
naiifer §. With this hypothesis, equation 1 can
he approximted [Hantush, 19607 by
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in the main aquifers and by

O H; _ 1 9H,

92 v, 3t
in the semipervious strata, where h, (z, v, t),
H; (z, vy, 2, t) are the piezometric heads in the
main aquifers and in the semipervious layers,
respectively.

The system of flow will be assumed to be in
hydrostratic equilibrium initially. In that case,
without loss of gemerality, it can be assumed
that

{3)

hi(x: Y, 0) = H"(xa Y, 2, 0) =0

for every 1.

Flow system. The flow system consists of 7
artesian aquifers (n > 2), each one over and
underlying semipervious layers. The aquifers
may be drained by one or several wells that are
not necessarily steady. The boundary conditions
in the horizontal limits of the aquifers are not
specified.

Three different cases considered are defined
by the conditions imposed on the semipervious
layers limiting the system above and below
(Figure 1).

Case 1. They are above and below, two
other aquifers in which the piezometric heads
remain constant.

Case 2. They are above and below two im-
pervious layers.

Case 3. The first one rests above an im-
pervious layer and the second one lies below
an aquifer whose piezometric head remains
constant.

According to the above description, leaving
aside the boundary conditions on the horizontal
limits of the aquifers, the drawdowns satisfy
in each case the following system of equations:

At the main aquifers

2 (7,28 4 2 (p,20)
oz (T‘ 6:1:) + oy (T‘ dy.

0o,
(;z : (I, Y, 24, t)

+ %y

r‘,‘;j1 , \
z, ¥, 2, t)

C 0z

i:l,...’n (4)
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In the semipervious layers
320' $ 1 60’ §
Y v, ot (5)

In the planes separating the main aquifers
from the semipervious layers

sz, y, ) = oi_u(z, ¥, 24, £)

= 0'.'(13, y: z") t) ’ 1 S 'Ir S n (6)

8.'(13, Y, 0) = 0’;(1:, Y, %, 0)
= 0 for every ¢ and for every z ()

In addition,
For case 1

a'O(x; Y, 2o, t)' = 0‘,,(:8, Y Zn+1y t) =90 (8)
For case 2

i) do.,
.azﬂ (x’ y) Zo, t) = -52_ (Z, y’ zn+l; t) = O (9)
For case 3

0’0(3’; Y, 2o, t) =0

(1)

Note that all the leaky layers satisfy the
same conditions except the top and bottom
ones, which satisfy special conditions. Therefore
these layers have to be treated in a special
manner. This special treatment leads to some
complications in the notation. However, some
effort can be spared when reading this paper
by noting that those complications are due only
to this fact.

Some remarks. When analyzing equations 1
to 11 we can see that the action any vertical
fiber of any of the leaky strata can exert on
neighboring fibers is only through the main
aquifers. For example, if a point in the hori-
zontal plan of coordinates (z,, y,) is fixed, then
the motion in the fiber in the leaky layer made
of the points

do,
'&_ (l‘, Y, Zasa, t) =0

(o, Yo, 2) 2; <2< 2

where j is any integer such that 0 < j < n is
completely determined by equations 5, 6, and 7
for every time ¢t > 0, if one knows at that point
the drawdowns 8; (%, Yo, t) and 8;.. (2o, Yo, t)
in' the main aquifers that limit the fiber for
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to determining the bar eovered

by a thermal insulator when it is known that
the temperature of the bar 15 0 mitially and
that the temperatures in its end poinls vary in

4 known manner. In this case those tempera

fures nré & (2, W ¢) and & .0z, v, t). In the

three eazes considered lLere, the conditions for
thi |'-'|-.~ layers limiting above and below the
gyslem of aquifers correspond also to classical

problems of the heat equation

On the other hand, observe equation 4, which
governs the motion in the main aoguifers, The
mbuence of the leaky strata in the main aquifers

is manifested through their water contributions,

which in turn are eharacterized by the funetions
do doy_y
z, Y, 2;, t) and (z, y, 2;,
9z 0z

Because of the observation we have made,
these terms depend only on the functions
si—l(x; Y, a): 84 (x} Y, t): and 8 +1($‘, Y, t)) but the
dependence is not only on the present value of
these functions but on the past values as well.
In mathematical terms we say that (de¢._./92)
(2, y, 2, t) and (90./02) (2, ¥y, 24, t) fori =1,

. , 1 are functionals of the functions s,(z, y, )
fori =1, ..., n. Therefore it must be possible
to eliminate the partial derivatives of o_, and
o, from (4) and to write instead something con-
taining only the drawdown in the main aquifers
8. Such terms must depend not only on the
present value of s, but also on all other past
values. Hence the same must happen with the
resulting system of equations. In this sense it
will be a system of equations with memory.
The aquifers remember what happened in the
past. One may see that in fact the resulting
system is a system of integro-differential equa-
tions in which the integral terms may be in-
terpreted as a memory.

Transformation into a system of equations
with memory. Define the functions A; .(z, ?),
wherez; <2< 2:4; t20; ¢=0,1,---,n;
anda=14,i4+1; ¢1=12 - ,2—1; a=1
. = 0; « = n if ¥ = n. They are such that
in the three cases considered, the equations
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Sdee - Ldes 2oz,
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= 0 =0 her
are satished
On the other hand
Ay ikZien ) =1
i =10 1,2 e [ (13a)
Ay ilze ) =1 i 13, i
i 2= ApuEia D =10
= 1.2 ] l
In addition in case 1
Ayl fh = 4 i {0
In ense 2
040,,(0, ) _ 9Asa(ass, ) _ 0
9z 0z
In case 3
dA,

0z

Then for every one of the three cases we have

[ rt s,
, — (x,
a Jo at "’

0','(27, Y, 2 t) = Z

Y, &)

Aozt — ) dé]

as may be checked by direct substitution in
equations 5 to 11,
Therefore

()rf S, )
' (J Jx‘tv -

[ [ LB (=, 9,8
dA;

Moe e i—pa| (oo

9o 93,
%’% &, ¥, 2, 1) = 1:[ (m, Yr E)
a 4 )
”:%i (Z” o= é) dg]
wherei=1,2, ,n.
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Define
Gi.o(t) = kizy

aAa

i ey ) (1)
Wherei=1,2,---,n;a=i—1,i,i+1if
1=2 .- ,n—La=12ift=1a=

n— 1, n, if ¢ = n. Any nondefined 4, , cor-
responding to these values of 7 and « that occurs
in equation 17 must be interpreted to be iden-
tically 0.

By substituting equations 16 and 17 in equa-
tion 4, we obtain

2 (i, 28) 4 2 (g, 20)
dz (T‘ oz, +ay T dy

L
s, . . .
+ Z[, 50 (@ 9,96 - 41;:\

. ds; .
+ Q; = S; — )

1,2, -+« ,n
at S

(18)

This is the desired system of integral differ-
ential equations. Note that the integral terms
depend on the histories of s, up to the time ¢
and therefore can be interpreted as a memory.

The functions G;, .. Using the classical meth-
ods for the heat equation [Churchill, 1941], it
is easy to obtain the functions G;, , corresponding
to the different cases.

To express the results it is useful to introduce
the functions

gi() =2 2 ™" (194)
m=]
gao(r) = 2 D2 ™V (19b)
m=0
go() = 142 2 (=D (199
m=1
Using them
o Kio ; 7£: ,%‘\
G, (D) 3 [Iﬂ»‘“({‘ ‘;!
K )
i o] [] i ( ‘ij“" )]
i =2, -+ ,n— 1 (20q)
K T;":;',"(‘
(r, Wi = — ¢ —5
A+l ‘LJ)A g: ( B8 )
) 1 ,n— 1 (209

189

Grmald) = 5 (%)

1=2,---,n (20¢)
In cases 1 and 3, Gy,.(¢) is given by formula
20a taking i = 1. In case 1, G, .(t) is given by
the same formula taking ¢ = =.
In cases2and 3

- /2
) —‘ ‘ Ll + a0 (Bﬂ-—lz Va1 t)J

2
-2 g (”— t) (20d)
B" n
In case 2
Ko (x* ,
(7'\ { - 7o —3 Vg |
) Bo g (.‘d‘fl ¢>
Kj 1r2 ’ / \
— =114 g < 3 V2 ()jl 20e)
8, [ 7 \g," ¢

As in a previous work [Herrera and Figueroa,
1969], we can make some observations regard-
ing the functions G, ;(t). These functions may
be written in the form

Gi () = —Ci — Fu(t) (21

where the C; are constants and the F.(t) are
infinite series of exponentials that tend to in-
finite at ¢ = 0 and tend to 0 when ¢ tends to
infinite. They decay rapidly as ¢ grows. It is
eagy to deduce the detailed shape of the func-
tions F; from the shape of the functions g,(r)
and g.(r) illustrated in Figure 2.

On the other hand, the shape of the functions
Gy, 42(t) and Gy, (-2() is the same as that of
gs(r), illustrated in Figure 3. Observe that

i i L n
1.0 20 3.0 40 30 60 7.9 8.0 9.0 w.0

Fig. 2. Shape of memory functions g: and gs.
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9:(0) = 0

dgs (0) =0

These results may be shown using Cesaro
summability criterion. It may be shown even
more that

6 0) = 0

for any m (22)

It is important to observe that according to
Figure 3 the shape. of this function is similar
to a step function.

Lag time approximation. Equations 18 were
deduced directly from equations 4 to 11 without
introducing any approximation.

Some simplifications are now made by intro-
ducing some approximations.

From Figure 2 we can see that most of the
area under the graph of the function Fi(¢) is
contained in a neighborhood of ¢ = 0. Suppose
that the changes of 9s,/0f are small during a
time interval equal to that in which most of the
area contained under G. ,(f) lies. It is then
possible to make the following approximations:

2
[ (f, (z, y, £)G: :(t — &) dt = —C; f QS— (z, y, &) dt
Jo 0

= —Cisi(z, v,

ds
— (=,
at

~ —Cisilz, 9, 1)

0s;
t) — f 3¢ & v OF(t —§)
o ]
E Js
Y, f) [ F'(t - S) (ZE = "‘(,7'_‘»5‘_‘('.7', Y, ““J - .(;." (a

as.-
= I; Et— (z’ Y, t)

where
- [ re«
Observe that this is equivalent to writing
F. () ~ I; 8() (29)
or to taking i
G..()~ —C; — I, 5(t) (25)

These are precisely the approximations which
were used in a previous work [Herrera and
Figueroa, 1969].

However, notice that they are applicable only
if 9s./dt varies slowly in comparison with a
characteristic time of F,(£). Because of the way
in which I, was defined, the approximation 25
has the property of preserving the total water
contribution of the leaky aquifers.

Since g:(7), as recalled previously, has a shape
similar to a step function, it will be approxi-
mated in the following manner:

gs(r) & H(r — 7¥) (26)
where H (r) is the Heaviside unit step function

)
[‘j_(x "
J0

E)F(t — §) dt

dt ~ —Csi(z, y, 1)

t
) f F(t) dt

(23)
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and ¥ is chosen so that the total flow is
preserved, ie.,

CaICE

~[e-ma|-o

Equation 27 implies

71_1‘21 [f g:(8) d§ — (r — r*)]
“iim |2 [ %

[ > (—pmeta

i —

* +2Z(—1)'"fw et dE =0

m=1

(27)

Therefore
2

~22(—l)m =‘%

m=1

(28)

Substitution of this approximation in equa-

In these equations it must be understood that
whenever any nondefined s;_, or 8;., occurs, the
corresponding term must be dropped out.

Observe now that

f‘“ (’)S‘i‘ (x

at
./-“—h 1
0o

= 3.'—1(t - t*i,i—l)
Similarly

- TV
/ — (x, y, &) H(¢
di

y Y, £) dE
(820)
E - t*i.i-l»l) dE

= gi41(t t*; ie1) (32b)

In addition

N
, ds; .

— (z, y, &)|
Jo Ot

68,'
= Cist’(z; Y, t) + I, 5? (Z, Y, t)

4 I 8(t 4 §)] dE

(32¢)

When equations 32 and the definition

tions 206 and 20c leads to
) 8 =841 (33)
G = H(t — t* )
S B:; Y are used, equation 31 becomes
T =1, ,n—1 (290) ,
. =05+ 5 (%)
G () == H(E il v y
Bn-l
Ki-1 R
=2 ,n (29b) + g et — o
where
2 +gs (t— t* o)
t*-‘,i+1 = ﬁﬁy:, t=1,-,n—1 (30@) R
6s
. 2 — C:() + Qi = 8,°
t*‘_.‘_l = _ﬂ_'-._l__,. t1=2,--,n (30b) ()
61’.'-1 .

Substitution of these approximations in the v=1em (34)
system of equations 18 leads to where the values of C, and I, are given by
_(:)_( 08) a ( ) Ki—1 f 984y *

6:1: T + ay T ﬁ. L (x; y7 E)H(t E t 1 —1) d‘E
ﬁ. % E o & oA — & ts
+ B'_ . FY] (xy Y, E)H(t £ ) dE - [ ( - I, 6f \J)—‘ dg
0= 8 i=12 (31)
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I, = %(Et’—I‘ + E;)

1= 2 ,n— 1 (35a)

C'.:K.‘-x Ky
ﬁi—l Bi
1=2--,n—1
For i = 1 or i = n we have for case 1

I, = (2, + Z)

(35b)

(35c¢)
Ko Ky
Ci=—>4++
T8 B
I, = (.- .
C, =L 4=
Bn—l. ﬂn
For case 2
L=Z2+1% G=¢ (35¢)
In = %zn—l + En Cn = ;“-—11 (35f)
For case 3
L=332+2) a=2+5 (3650
I =3%.+ 2, Co=g=* (35h)

To obtain the preceding formulas we have
used the relations

2 -
1 " 1 T o
3 = — and — 12 = = (36)
Z 6 Z (n+3)° 2

In equation 34 it must be understood that the
terms containing s;_, or $;,, must be dropped
out whenevert — 1 =0ori2+ 1 =n <+ 1, re-

spectively.

CONCLUSIONS

The system of equations 34 is very suitable
to be treated numerically. In cases of practical
interest %, ._; and ¥, ., are large, larger than
the time intervals used in the numerical integra-
tion. Therefore the system of equations 34 may
be treated as an uncoupled system, solving every
one of the n equations separately. Then the
values of s,_.(t — t*,,..) and &..(t — t%*,
++1) 8t every step can be considered as data of
the problem because they have been obtained in
previous steps. A numerical program using the

ISMAEL HERRERA

method presented here is being prepared for
application in several cases of practical interest.
The results will be reported later.

NOTATION
by by, +--, by, thickness of the main aquifers, L;
Bo, By, + -, B, thickness of the leaky layers (the
main aquifer j is limited by the
leaky layers j — 1 and j (Figure
1), L;
hy, -+, by, piezometric heads at the main
aquifers, L;
H, H,, ++-, H, piezometric heads at the semi-
pervious layers, L;
K;, +++, K,, hydraulic conductivities of the
main aquifers, LT-1;
Koy K1, ***y Ky, bhydraulic conductivities of the

semipervious strata, LT;
contribution to the discharge of
the wells per unit area, of every
one of the main aquifers, L¥71;
drawdowns at the main aquifers
at any point and at any time, L;
drawdown at any point of the
semipervious layer at any time, L;
S; = ;8.9,j =1, .-+, n, storage coeflicients of
the main aquifer j;
Y = B; 2,9, storage coefficient capacity of the
semipervious layer j;
8., specific storage of the main aqui-
2D, specific storage of the leaky layer
J LY
t{, time measured from some ref-

fer j, L1;
erence time, T';

Ql: % Qm

81y * 5 8my

Goy 01y **°y Opy

T; = K;b;, transmissivity of the main aquifer
3y LT

7; = x;f;, transmissivity of the leaky layer
3 L-T7%

z, vertical coordinate, L;
2o, vertical coordinate of the top of
the flow system, L;
% = 20 — Zinoi_lﬂﬂj =1, v, m + 1, L;
n, number of main aquifers;
vi = K;/8,W = T;/8;, LT,
vi' = /2D = 7;/Y;, LT,

Acknowledgments. This work was sponsored by
the Secretaria de Recursos Hidraulicos of México.
I want to thank also Mr. Oscar Falcén for his
asgistance in several aspects of this work.

REFERENCES

Churchill, R. V., Fourier Series and Boundary
Value Problems, Ch. 6, 94-126, McGraw-Hill,
New York, 1941.

De Wiest, Geohydrology, John Wiley, New York,
London and Sidney, 1965.

Hantush, M. 8, Modification of the theory of

leaky aquifers, J. Geophys. Res., 65(11), 8713
3725, 1960. '



Leaky Aquifers 193
Hantush, M. 8., Hydraulics of wells, in Advances  Herrera, I. and G. E. Figueroa, A corresponderce

in Hydroscience, edited by V. T. Chow, 282- principle for the theory of leaky aquifers, Water
432, Academic Press, New York, 1964. Resour. Res. §(4),900-904, 1969.

Hantush, M. 8., Flow to wells in aquifers sep-
arated by a semipervious layer, J. Geophys. (Manuscript received June 23, 1969;

Res., 72(6), 1709-1720, 1967. revised August 20, 1969.)



