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The dynamics of leaky aquifers are gbverned by a system of integrodifferential equations
derived in this paper. Alternative expressions for the memory functions are obtained, and it is
shown that approximate theories of leaky aquifers correspond to several ways of approximating

the memory functions.

In many situations the behavior of leaky
aquifers can be understood only when they are
viewed as part of a complex multiple-aquifer
system [Neuman and Witherspoon, 1969a]. For
many years the complexity involved in the
treatment of such systems has given rise to the
development of approximate solutions [Jacob,
1946; Hantush, 1956, 1959, 1960; Hantush and
Jacob, 1954, 1955a, b, 1960). It has only been
recently that a numerical method of analysis has
been developed [Javandel and Witherspoon,
1969], and only under the assumptions that flow
is horizontal-in the aquifers and vertical in the
aquitards have some exact analytical solutions
been obtained [Neuman and Witherspoon, 1969a].

The assumptions of horizontal flow in the
aquifers and of vertical flow in the aquitards
have been extensively used, and Neuman and
Witherspoon [1969a] have confirmed their validity
for most cases of practical interest. Under these
assumptions it has been shown [[errera and
Figueroa, 1969; Herrera, 1970] that the transient
behavior of drawdown is governed by a system of
integrodifferential equations. Some other fields,
such as the theory of viscoelasticity, are also
governed by integrodifferential equations, and for
them the understanding of the corresponding
systems of equations has played a fundamental
role [Truesdell and Noll, 1965; Gurtin and
Herrera, 1965; Coleman et al., 1965; Barberdn and
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Herrera, 1966a, b, 1967; Herrera, 1966]). We are
convinced that the integrodifferential equations
of leaky aquifer dynamics constitute the basis of a
powerful method of analysis.

The interest in this system of equations is at
least twofold. It can be used as a very flexible
tool for preliminary analysis before a complex
model is advanced. The system has this use
because the memory functions appearing in it
have universal shape; i.e., the shape of these
functions does not depend on the particular
problem considered. Therefore much information
about a given situation can be derived before
almost any computation has been made. As an
example of the possibilities in this respect we
mention that it has been shown [Herrera, 1970,
equations 30] that the influence function of one
aquifer on the next one has the shape of a unit
step function (Figure 1) with a lag time *, given
by

* = p"/6a’ (1)
Therefore one can conclude immediately that the
system can be treated as uncoupled at times
<t* as given by (1).

The system of integrodifferential equations can
be used to develop improved computational
methods. The possibilities in this respect have
already been exhibited by the construction of
approximate methods [llerrera and Figueroa,
1969; Herrera, 1970] that have been shown to
apply in some transient conditions [Neuman and
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Witherspoon, 1970; Herrera and Figueroa, 1970].
However, ‘it seems that the integrodifferential
equations can be used to develop improved
computational methods of more general appli-
cability. This can be achieved through a better
understanding of the role and structure of the
m2mory functions, which may permit the
construction of uniformly valid approximations.

Consequently, we have decided to devote a
series of papers to discuss more thoroughly the
system of integrodifferential equations and apply
them to several problems of interest in aquifer
dynamics.

In previous work [Herrera and Figueroa, 1969;
Herrera, 1970] attention was focused on obtaining
approximate methods of solution, and little
attention was paid to the integrodifferential
equations themselves. Thus in this paper the
madtter is attacked ab initio for the particular case
of a two-aquifer system separated by an aquitard
(Figure 2). First the integrodifferential equations
are derived, and then they are applied to analyze

/ ,’//// /
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Fig. ;2 The aquifer system.
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tence function k.

the nature of some approximations of leaky
aquifer dynamics.

We consider first the Hantush and Jacob [1955b]
solution obtained on the assumption that the rate
of leakage into the pumped aquifer is pro-
portional to the potential drop across the leaky
aquitard. Then we deal with Hantush’'s [1960}
solution for short periods of time. Finally,
Hantush’s solution for large values of time is
analyzed.

In all these three cases it is shown that the
corresponding solutions are obtained by approxi-
mating the memory functions in suitable ways.
Therefore we can summarize our results by
stating that the method on which approximate
theories of flow in leaky aquifers have been based
consists essentially of making suitable approxi-
mations of the memory functions of the exact
integrodifferential equations governing the
aquifer behavior. The importance of this result
can be seen by the fact that the method has been
used only for very specific problems. Thus, for
example, Hantush’s solutions were obtained for
the problem of a single well in which radial
symmetry is essential. The above result shows
that the approximations that he used can be
applied with greater generality by introducing
them into the integrodifferential equations re-
gardless of the boundary conditions. It is obvious
that, by doing so, greater flexibility is achieved.

Among the specific results we obtain in this
paper we consider of special interest the memory
function implied by Hantush’s solution for short
periods of time. This function is essentially the
reciprocal of the square root of time. In spite of
its remarkable simplicity, by means of it, an
approximation uniformly valid for all values of
time can easily be derived.
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A very important contribution to establish the
range of applicability of current theories of flow
in leaky aquifers was made by Neuman and
Witherspoon [1969b]. They compared the approxi-
mate solutions with some exact solutions. The
explicit expressions obtained here for the memory
functions used in approximate theories of leaky
aquifers will help to improve the understanding
of their results. Indeed, in a further paper we will
present a systematic analysis of the error
involved.

In this paper, alternative expressions for the
memory functions f and g not previously derived
are established.

INTEGRODIFFERENTIAL EQUATIONS OF AQUIFER
’ MEecHANICS

In this section the set of integrodifferential
equations, equivalent to the partial differential
equations governing the transient behavior of
multiple-aquifer systems, will be obtained for the
particular case of a two-aquifer system (Figure 2)
separated by a semipervious layer (aquitard or
aquiclude).

According to Hantush [1960] and Neuman and

Witherspoon  [1969a] the problem can be
formulated as follows:
% , % , K’ (o 1 9s,
o T ot (a—) “wo @
AE
wra-n . -ak @
In addition,
8z, y,0,0 = s(z, 9, 1) (3a)
sz, y, V', 1) = si(2, 9, 0) (3b)
si(z, Ys 0 =0 (3¢)
s2(z, 4,0) = 0 (34d)
s'(z,9,2,0) =0 (3e)

Here no contribution to the drawdown by
distributed wells has been considered, but it can
easily be incorporated if necessary. In any
particular  problem, appropriate boundary
conditions have to be added to (2) and (3). Some
of the results that we obtain will be changed if the
initial conditions 3c, d, ¢ are modified, but it is
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not difficult to modify the analysis to account for
those changes. .

As has been mentioned in previous papers
[Herrera and Figueroa, 1969; Herrera, 1970], the
set of equations 2b and 3 constitutes a well-posed
problem for the heat equation, whose solution is
given by Duhamel’s integral [Courant' and
Hilbert, 1962):

§(z, 4,2, 9

t
Jds
= j; —a—i- (z, 9, t — Dule, 7) dr

ey e @

where the auxiliary function u(z, f) satisfies

92-;%%"—': 0<z<d 0<t (50)
w0, ) =1 >0
u®, ) =0 >0 (5b)
uiz, 0) =0 0<z<¥

The function v(z, f) satisfies the same set of
equations except that the boundary conditions

5b have to be replaced by
0, ) =0 ¢t>0
(¥, ) =1 t>0 (5¢)
z,00 =0 0<z<¥
If we write
ue, ) =t ) 0]
where { and ¢’ are given by
¢ =2z/b (7q)
¢ =a't/p"? (7%)
ot 0<<1 0< ¢t (8a)
w0, ) =1 >0 (8b)
w(l, )y =0 >0 (8¢
w({,0) =0 0<¢1 (84d)

"To apply the method of separation of variables
to these equations, the inhomogeneous boundary
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condition 80 has to be removed. It can be
removed by introducing

wl, ) =, ) —1+¢ (9
which satisfies (8a) and
w0, t') = (10a)
w(l, V') = (10%)
w(, 0 =¢—1 (10¢)

Using the method of separation of variables
[Churchill, 1941}, we obtain

w0 —nig¥p’

w(f, t,)=1_§_22‘6‘,7r sili'7t1|£§
a=1 n :11)
On the other hand, it is easily seen that
v(z, ) = u(d — 2z, 1) (12)

so that in view of (6) and (7) we have

e, ) = w(l = ¢, ) (13)

Finally, from (4), (6), (12), and the definition of ¢
and ¢ (7) it follows that

ds’ 1 Os
200 =Y([ Bt 9
g—‘; (o, a"r/b'z) dr

J ‘ = (z, -7 gL; (1, o' /b7 d1)

(14)
But by virtue of (11) we have
dw hat —nixtr
22 (0, 7) = 22 ¢ (15a)
ag— =1
a(l) - n —nizx?r
=, ) =—1—-22 (=% (15b)
ag‘ na=1

and, in view of (6) and (7),

du 1 dw
B =L,

v or (150)

Consequently, if we define f and A by

() =142 3 (160)
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R{) =142 2 (=)™ (16b)

then

as’
5 (x’ y, 0’ t)

1 6s1
= 37 (I) y, L
* 9s
- f 6; , ¥, £ — (e’ 7/b%) d1'>
o
17

When this expression for ds'/9z is substituted in
(2a), we obtain

— D’ 7/b?) dr

2 2
8 4 25
dz? ay°
‘ s
- C ‘/; 571 (z, 4, t — D’ 7/V?) dr
t .
+ ¢ ﬁ(x, y, t — Dhia’r/b7) dr
_ %‘l (1Q)
oy ot Ve

In a similar manner from (2¢) it follows that

sy
6 2 3+ o
as, ' 112
- C (xr Yy, t — 'r)f(a T/b ) dr
a31 ’ 72
+ C; (1:, y, t — Dh{a’7/b°) dr
[}
= 193
= o o . (18b)
In these equations, C; = K'/T¥, i = 1, 2.
Equations 18a, b, together with (4), i.e.,
’ 63.
$ (Z, Y, 2, t) = (x’ Y, t — T)u(z; T) dr
632
+ (x, y, t — 1olz, 1) dr (18¢)

constitute a complete set of equations that, when
they are complemented by appropriate eonditions
on the horizontal boundaries, determine the
behavior of the drawdown in the system of
aquifers. When they are applied, it must be
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recalled that according to (6), (7), and (13) we
have

g S : = sin nwz/ b (19a)
=1 L
oz, ) = 2/b +2 3 (—1)"
n=1 A
e—n’t’a'l/b"
sin nwz/b’ (190)

nw

An alternative form of these equations is achieved

999
t 9s
+C | o @y b= DT/ dr
[}
_ 1y
[2 47 at
9%, 9
.a_:l:; + ﬁ Cas,

t
- f %‘ff(x, y, t — Dl r/¥?) dr
0

:
+ C, f %i;' (=, 9, t — Dh('7/V?) dr
0

by defining 1 s,
. = ‘;2 o (21b)
) =2 T 2
o(t) Z} ¢ 200y, shape of functions f, g, &, and w is
illustrated in Figures 1, 3, and 4.
€y The variables { and ¢, introduced previously,
() =1+ ¢(¢) (205) are dimensionless. They, together with
When this expression is substituted in (18a, b), b = E‘i _ B v= 1,2
the integration from 0 to ¢ of the derivatives of s, by s, 3
and s; can be perforn?ed, (3¢, d) being taken into o= 2 Kb b)Y v= L2 (220)
account, and we obtain
o o o= (K KLYYE i=1,2 (229
s s
—a—x—; + —(ry; — Cis ar
38, . R = r(K'/K:b:6)" = ¢ + 95"
- bl § oy ’ 1]
Co | 5, @yt — Dgle'7/b7) ar i=1,2
O
sof
Ok
j—
ol
ofF — =
1 1 1 1 1 L 1 1 1 L 1 P
o 0. 0.2 0.3 04 0.5 0.6 0.7 X 0.9 t.0

Fig. 3. The memory functions f and g.
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for axially symmetric problems, constitute a
whole set of dimensionless variables. When (18c)
and (21) are transformed into these variables,
they become

% sy
3’ " o
ds
8% €1, m, ¢ — 7o(r) dr
"t s, ,
+ / ():7(51 n, t' — 7)h(7) d7
— 9
= ool (23a)
O on _
afzz 61122 52
ds
é—t_? (Eﬂ; 7'2; ‘r)g(-r) dT
v s
+ Et_; &2y 2y ' — DA(7) dr
0
(23b)

s’(‘fi: 1, §, tl)
"
Js
= ‘/; b_t_; (Et') Ni, t

+ f g_iiz' (E!'} Ney v — T)w(l - g-, T) dr
0 (23¢)

The dimensionless variables R; and ' cor-
respond to the variables r/B;; and (", used
previously by Neuman and Witherspoon [1968,
1969a, b]. These authors recall that some of their

Nw(t, 7) dr

RopARTE:

GROUNDWATER Frow

results can be expressed more simply by using the
dimensionless time ¢/, but, to make easier the
comparison of their results with previous ones,
they did not use it extensively. We have found
that the variables ¢’ and a,; are quite suitable to
analyze the behavior of the aquifer system itself
irrespectively of the problem considered.

For the discussion of the well problem it has
been customary to consider the dimensionless
variables

tp: = a.'t/Tz (24(1)

and

B = o5 (K'S//K:8,)'"  (240)
The advantages of ¢’ and a,; when the properties
of the aquifer system itself are being discussed
become apparent by recalling that a,; = S'/8S; is
the ratio of the storage coefficient of the aquitard
to that of the aquifer, an important property of
the aquifer system that is not directly given in
terms of R;, {p;, and B;. Indeed,

a.; = (48:/R.)’ (25)

On the other hand, the memory functions f, g,
and A have universal shape, but the time is scaled
by the factor a’/b?, so that what is relevant as
far as the memory is concerned is the dimension-
less time ¢ = (a'/b®)t. Note that the scaling
factor a’/b’* determines the rate at which the
memory functions act, and this factor is in turn
determined by properties of the aquitard alone.
For clays, for example, this factor is very small,
and the rate at which the memory acts is very
small unless b’ is also very small.

All these facts are obscured if other parameters
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are used. Thus, for example, the dimensionless
time ¢, depends on the distance r to the well, an
irrelevant parameter if interest is focused on the
aquifer system itself.

ALTERNATIVE EXPRESSIONS FOR THE MEMORY
Funcrions

In the section on the integrodifferential
equations of aquifer mechanics we obtained the
functions u(z, t) and v(z, t) by using the method of
separation of variables. In this section we will
use the method of images to obtain the same
functions, getting in this manner alternative
expressions for the memory functions.

First we will get the function u(z, t) for the case
when b’ = . This function will be denoted by
Uz, £). In this case, (5a) and (5b) become

a’u,, 1 auo

A= TS 0<z 0<t (26q
w(0,) =1 >0 (26b)
Uz, 0) = 0 2> 0 (26¢)

We express u, in terms of an auxiliary function w,
that satisfies

uolz, ) = 1 4+ wolz, ¥) 27

so that w, meets (26a), and
wo(0, §) = 0 (28a)
we(z, 0) = —1 (28b)

Using the fundamental solution of the heat
equation together with the method of images
yields

1 N/t
wo(z, ) = _(ra't)”zf e Mt (29)
0
Therefore
— — 1 _f‘ -A*/da!
uo(z, t) =1 (mx't)”z A [ d\
z2>0 (30a)

and

chieg, 5 | -

g (n, t) = l:—._lt-J"_IH- {300)

From (2a) and {(4) it follows that, when the

popuatard g5 al infinite thackness, & zatisies

GROUNDWATER FLow

asl asl _ K 681

Ey + T (t Nfo(7) dr
1 1]
= 198
ay Ot
where
mo—- - — 3
v s ( ')dl

Using the method of images makes it easy to
construct the function u(z, f) that satisfies
(5a, b). It is

u(z, t) = (2, ]

+ X [uo(2nb’ + 2, &) — u(2nd — 2, 1)]
»t (33)

Observe that all the arguments of u, appearing
in (33) are positive whenever 0 < z < ¥'. This
condition had to be satisfied because u, is defined
by (30a) only for nonnegative values of z.

From (33) it follows that

u auo

a“o ’
5 (00 = (oe)+2E (2nb’, 1)

(39)
Thus, by virtue of (30a),
du . S 3 _w:,a',)
0.0 =g (142 e

(35)
But

—(o ) = b, a—‘;(o )

= @) =

We see that
() = 1 4+ ¢(t)

=i n”*( + l‘ ) (37

This equation yields, by the way, the relation

)] (30)

1423 e

- GTI)"_’(I +23 '"’“) (38)

n=1
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Equation 37 is the alternative expression of the
memory function that we were looking for.

Observe that the first term of the right-hand
member in (37) is the exact memory function for
the case of an aquitard of infinite thickness,
because

bl

lel '(1ra It)llz
Here (32) has been used.

Ci (‘”/)1/2 = = ';(T:fo(l) (39)

AQUIFER WITH ARBITRARY MEMORY

We consider now the case for which the draw-
down in one of the aquifers can be neglected, so
that we set

sz, y, ) =0 (40)
In the section on the integrodifferential
equations of aquifer mechanics we considered
several alternative forms of the integrodif-
ferential equations governing aquifer systems.
In this section the most suitable set of equations
is that constituted by (21) and (18c). In view of
(40) they reduce to
9% 3’s
9z* + ay’

¢
—e [ B o= Dy ar
0

_ 1l

T (41a)

s,(x’ y) z) t)

¢
Js
= /; 3 (z, y, t — Dule, 7) dr (41b)

where for simplicity we have written s instead
of s,.

We will show that the approximate theories of
flow in leaky aquifers that have been used in the
past correspond to alternative ways of approxi-
mating the memory function f. To this end we
consider the problem of a completely penetrating
well discharging at a constant rate Q. In this case
the solution is axially symmetrical, so that (41a)
becomes

9% 1 3s
a’ + r or
' 9s
- C f —(z, 9, t — Df@’ /b7 dr
o Ot
1 ds
a1 (42q)
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The boundary conditions are

(0, ) =0
e Q
I,LTTGT(T’ ) = 2T

and the initial condition 3¢ is recalled

s(z,y,0) =0 (429)

By means of taking the Laplace and Hankel
transforms successively and using the boundary
and initial conditions, (42a) is transformed into

£ [ (s, p) = (43)

ra)

2xTp & + Alp)
where £[JC(s)] stands for the Laplace transform
of the Hankel transform of s, and

A(p) = pl(8"/T)J(V'p/e’) + (1/a)]  (44)

Taking the inverse Hankel transform of (43), we
see that the Laplace transform of s is given by

0@ = 0

[Ty _( éL)
fo Low—(v+47) @

Equation 45 will be used later to derive the
different forms that A(p) has taken in several of
the approximations of leaky aquifers.

JACOB’S APPROXIMATION

The approach of Jacob [1946], on which the r/B
solution [Hantush and Jacob, 1955b] is based,
corresponds to the partial .differential equation

3% 3% 1 9s
9z’ + ay“ — Cs = a; 0t (46)
which is derived from the assumption that the
rate of leakage is proportional to the potential
drop across the aquitard. In view of the initial
condition 3¢ this equation can also be written in
the form

t
@(t—r)dr=‘l‘

! 0 at agy

s | 9% s
a2 T a® ¢ at
(47)
Comparing (47) with (41a) shows clearly that in
Jacob’s partial differential equation the memory
function g has been neglected; i.e.,

() =1+ g() =1 (48)
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Thus the function ¢g{f) has been neglected.
Obviously, this function has the physical inter-
pretation of being the contribution of the storage
capacity of the aquitard to the leakage into the
aquifer.

HaNTUSH APPROXIMATION FOR SMALL VALUES OF
TiME

When drawdown in the unpumped aquifer
remains 0, the well problem considered in the
section on the aquifer with arbitrary memory
becomes equivalent to Hantush's [1960] case 1.
The Laplace transform (equations 42 and 43 of
Hantush’s paper) of his asymptotic solution for
small values of time reduces to

9

£E)(r, p) = T

ac

j_ exp {—y — (*/49)pl1/a,

+ (S'/T)(¥*p/’) 1} /yp dy (49)

when the aquifer is limited by only one aquitard.
Therefore, comparing this equation with (45), we
see that

A@) = pll/as + (8'/T)(¥’p/a’)™*] (50)

and consequently by (44)
J(¥'p/a’) = (¥*pfa’)'"? (51)
Thus

i@ =p'” (52)

The inverse Laplace transform [Sneddon, 1951]
of this equation yields

() = (xe)™"? (53)

Thus Hantush’s solution for short periods of
time is a solution of (81); i.e., as is well known
[Hantush, 1964, p. 337], it is the exact solution of
our problem when the aquitard is of infinite
thickness. We conclude that the memory function
f has been approximated by taking the first term
in (37), which corresponds to neglecting all the
reflections on the vertical boundaries of the
aquitard.

The approximation

1) = 1/(xt")'”? (54)

deserves special attention. Its usefulness in leaky
aquifer dynamies has already been demonstrated;
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it yielded the Hantush approximation for small

‘values of time. Its simplicity is remarkable and

offers great advantage for its handling. From it,
it is not difficult to construct a uniformly valid
approximation for all values of time, as will be
shown elsewhere. .

Before leaving this matter, we recall that
Hantush’s [1960] case 2 also satisfies (41a) with a
suitable memory function f [Herrera and Figueroa,
1969], which also has an alternative expression of
the type derived in the seetion on an aquifer with
arbitrary memory. The approximation used by
Hantush for that case is also given by (54). The
coincidence of both cases at this order of approxi-
mation is not surprising because, as was men-
tioned before, reflections on the horizontal
boundaries of the aquitard are neglected, and
consequently the boundary condition on the top
of the aquitard is irrelevant.

Hanrtuse APPROXIMATION FOR LARGE VALUES OF
TiMe

The Laplace transform of the Hantush
asymptotic solution for large values of time
(equations 47 and 48 of Hantush [1960]) reduces
to

£O, ) = —2—

. fo i exp {—[y + (*/4y)p(K'/T\b'p
+ /ey + 8'/3T)1}/y dy (55)

when the aquifer is limited by only one aquitard.
Thercfore, comparing this cquation with (45), we
see that

A(p) = p(1/e, + K'/T.b'p + S’'/3T,) (56)

and in view of (44),

S v 8 K
Tl f a'_ - 3T1 + le,p (57)
Thus
o) =3+ 1/p (58)

Taking the inverse Laplace transform of (58)
yields

1wy =+ 5()/3 (59)

2.,

g(t) = &(t')/3 (60)
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This approximation has already been used to
construct approximate methods suitable for
numerical computation [Herrera and Figueroa,
1969; Herrera, 1970).

CoNCLUSIONS

It has been shown that approximate theories of
leaky aquifers are based on several approxi-
mations of the memory functions in the integro-
differential equations of the dynamics of leaky
aquifers. By means of analysis of these functions
in the time domain it is possible to achieve a
better understanding of the nature of these
approximations as well as to foresee the pos-
sibility of their application to new situations.
These types of results constitute important steps
toward making the integrodifferential equations a
powerful method of analysis of the very complex
situations arising in the study of actual leaky
aquifer systems. They can also be used to
construct improved, simplified methods for
numerical computation.

NoraTtion

b;, thickness of the ¢th aquifer, L;
b, thickness of the aquitard, L;
C;=K'/T}V,i=1,2 L
f('), memory function, equal to 1 + 23,
c—n’r’l';
fo(), memory function for aquitard of infinite
thickness, equal to (xa't)1/2;
gl ) =2 st

h(t"), influence function, equal to 1 + 2
Trm(= 1™,
K;, permeability of the Zth aquifer, L/T';

K', permeability of the aquitard, L/T;
@, pumping rate from aquifer 1, L3/T';
r;, radial distance to the pumping well, L;
RB;=r(K'/Kbb' )17
8,:, specific storage of the ith aquifer, L™1;
8,', specific storage of the aquitard, L™;
S;, storage coefficient of the ith aquifer,
equal to 8,;b;;
S, storage coefficient of
equal to S,'b';
s;, drawdown in the ith aquifer, L;
s’, drawdown in the aquitard, L;
T:, tiansmissibility of the ith aquifer,
equal to K;b;, L2/T;
t, time, T';
¢, dimensionless time, equal to o't/b"?;
z, ¥, 2, coordinates, L;
«;=K,/S,; = T;/S;, )T,
a’=K'/S,,", L’T_l;
a,;=8/8;,%=1,2;
("), Dirac’s delta function;
n =y(K'/K:bb' )2,
t=2z/V;
fo=x(K'/Kbb" ).

the aquitard,
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