
VOL. 9, NO.4 WATER RESOURCES RESEARCH AUGUST 1973
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1. The Nature of Approximate Theories
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The dynamics of leaky aquifers are governed by a system of integrodifferential equations
derived in this paper. Alternative expressions for the memory functiolls are obtailled, and it is
shown that approximate theories of leaky aquifers correspolld to several ways of approximatillg
the memory fuJlctioIlS.

In many situations the behavior of leaky
aquifers can be understood only when they are
viewed as part of a complex multiple-aquifer
system [Neuman and }Vitherspoon, 1969a]. For
many years the complexity involved in the
treatment of such systems' has given rise to the
development of approximate solutions [Jacob,
1946; Hantush, 1956, 1959, 1960; Hantush and
Jacob, 1954, 1955a, b, 1960]. It has only been
recently that a numerical method of analysis has
been developed [J avandel and }V itherspoon,
1969], and only under the assumptions that flow
is horizontal in the aquifers and vertical in the
aquitards have some exact analytical solutions
been obtained [Neuman and Witherspoon, 1969a].

The assumptions of horizontal flow in the
aquifers and of vertical flow in the aquitards
have been extensively used, and Neuman and
}Vitherspoon [1969a] have confirmed their validity
for most cases of practical interest. Under these
assumptions it has been shown [fferrera and
Figueroa, 1969; Herrera, 1970] that the transient
behavior of drawdown is governed by a system of
integrodifferential equations. Some other fields,
such as the theory of viscoelasticity, are also
governed by integrodifferential equations, and for
them the understanding of the con"esponding
systems of equations has played a fundamental
role [Truesdell and Noll, 1965; Gurtin and
fferrera, 1965; Coleman et at., 1!J65; Barberdn and

lIerrera, 1966a, b, 1967; lIerrera, 1966]. We are
convinced that the integrodifferential equations
of leaky aquifer dynamics constitute the basis of a
powerful method of analysis.

The interest in this system of equations is at
least twofold. It can be used as a very flexible
tool for preliminary analysis before a complex
model is advanced. The system has this use
because the memory functions appearing in it
have universal shape; i.e., the shape of these
functions does not depend on the particular
problem considered. Therefore much information
about a given situation can be derived before
almost any computation has been made. As an
example of the possibilities in this respect we
mention that it has been shown [llerrera, 1970,
equations 30] that the influence functioll of one
aquifer on the next one has the shape of a unit
step function (Figure 1) with a lag time t*, given
by

t* = b,2j6a' (1)

Therefore one can conclude immediately that the
system can be treated as uncoupled at times
<t*, as given by (1).

The system of integrodifferential equations can
be used to develop improved computational
methods. The possibilities in this respect have
already been exhibited by the construction of
approximate methods [llerrera and Figlteroa,
1969; Herrera, 1970J that have been shoWIl to
apply in some transient conditiolls [Neuman andCopyright @ 1973 hy the American Geophysical Union.
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Fig. 1

the nature of some approximations of leaky
aquifer dynamics.

We consider first the H antush and Jacob [1955b]
solution obtained on the assumption that the rate
of leakage into the pumped aquifer is pro-
portional to the potential drop across the leaky
aquitard. Then we deal with Hantush's [1960]
solution for short periods of time. Finally,
Hantush's solution for large values of time is
analyzed.

In all these three cases it is shown that the
corresponding solutions are obtained by approxi-
mating the memory functions in suitable ways.
Therefore we can summarize our results by
stating that the method on which approximate
the.ories of flow in leaky aquifers have been based
consists essentially of making suitable approxi-
mations of the memory functions of the exact
integrodifferential equations governing the
aquifer behavior. The importance of this result
can be seen by the fact that the method has been
used only for very specific problems. Thus, for
example, Hantush's solutions were obtained for
the problem of a single well in which radial
symmetry is p-ssential. The above result shows
that the approximations that he used can be
applied with greater generality by introducing
them into the integrodifferential equations re-
gardless of the boundary conditions. It is obvious
that, by doing so, greater flexibility is achieved.

Among the specific results we obtain in this
paper we consider of special interest the memory
function implied by Hantush's solution for short
periods of time. This function is essentially the
reciprocal of the square root of time. In spite of
its remarkable simplicity, by means of it, an
approximation uniformly valid for all values of
time can easily be derived.

lVitherspoon, 1970; Herrera and Figueroa, 1970].
However, it seems that the integrodifferential
equations can be used to develop improved
computational methods of more general appli-
cability. This can be achieved through a better
understanding of the role and structure of the
m~mory functions, which may permit the
construction of uniformly valid approximations.

Consequently, we have decided to devote a
series of papers to discuss more thoroughly the
system of integrodifferential equations and apply
them to several problemf? of interest in aquifer

dynamics.
In previous work [Herrera and Figueroa, 1969;

Herrera, 1970] attention was focused on obtaining
approximate methods of solution, and little
attention was paid to the integrodifferential
equations themselves. Thus in this paper the
matter is attacked ab initio for the particular case
of a two-aquifer system separated by an aquitard
(Figure 2). First the integrodifferential equations
are derived, and then they are applied to analyze

./

Fig.;t.
./

The aquifer system.
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A very important contribution to establish the
range of applicability of current theories of flow
in leaky aquifers was made by Neuman and
Witherspoon [1969b]. They compared the approxi-
mate solutions with some exact solutions. The
explicit expressions obtained here for the memory
functions used in approximate theories of leaky
aquifers will help to improve the understanding
of their results. Indeed, in a further paper we will
present a systematic analysis of the error
involved.

In this paper, alternative expressions for the
memory functions f and g not previously derived
are established.

INTEGRODIFFERENTIAL EQUATIONS OF AQUIFER

MECHANICS

In this section the set of integrodifferential
equations, equivalent to the partial differential
equations governing the transient behavior of
multiple-aquifer systems, will be obtained for the
particular case of a two-aquifer system (Figure 2)
separated by a semi pervious layer (aquitard or
aquiclude).

According to H antush [1960] and Neuman and
Witherspoon [I 969a] the problem can be
formulated as follows:

~ + ~ +.!-'-(~) = J::.-~ (2a)
ox oy Tl oz .-0 al ot

02S' los'~ = -;j at (2 b)

~+~_.!-'- (~)OX2 oy2 T2 OZ .-b'

In addition,

=1-~
a2 at (2c)

~

s'(x, y, 0, t) = Sl(X, y, t) (3a)

s'(x, y, b', t) = S2(X, y, t) (3b)

Sl(X, y, 0) = 0 (3c)

S2(X, y. 0) = 0 (3d)

S'(X, y, Z, 0) = 0 (3e)

Here no contribution to the drawdown by
distributed wells has been considered, but it can
easily be incorporated if necessary. In any
particular problem, appropriate boundary
conditions have to be added to (2) and (3). Some
of the results that we obtain will be changed if the
initial conditions 3c, d, e are modified, but it is

~~

then", satisfiesa2", 

a",-a?=-

~~~
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not difficult to modify the analysis to account for
those changes.

As has been mentioned in previous papers
[Herrera and Figueroa, 1969; Herrera, 1970], the
set of equations 2b and 3 constitutes a well-posed
problem for the heat equation, whose solution is
given by Duhamel's integral [Courant' and
Hilbert, 1962]:

s'(x, y, z, t)

= l' ~ (x, y, t -T)U(Z, T) dT

+ l' ~ (x, y, t -T)V(Z, T) dT (4)

where the auxiliary function u(z, t) satisfies

a2u 1 au
~ = -, -0 < Z < b' 0 < t (Sa)

az a at

u(o, t) = 1 t > 0

u(b',t) =0 t>o (Sb)

u(z, 0) = 0 0 < z < b'

The function v(z, t) satisfies the same set of
equations except that the boundary ~onditions
Sb have to be replaced by

v(O, t) = 0 t > 0

v(b',t) = 1 t>O (Sc)

v(z, 0) = 0 0 < z < b'

If we write

u(z, t) = ",(r, t') (6)

where r and t' are given by

r = z/b' (7a)

t' = a't/b,2 (7b)

at' 0 < r < 1 0 < t' (Sa)

!d(0, t') = 1 t' > 0 (8 b)

!d(l, t') = 0 t' > 0 (&)

!d(t, 0) = 0 0 < t < 1 (8d)

To apply the method of separation of variables
to these equations, the inhomogeneous boundary
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condition 8b has to be removed. It can be
removed by introducing

Wl("f, t') = W("f, t') -1 + "f (9) then

which satisfies (8a) and

Wl(O, t') = 0 (lOa)

WI{l, t') = 0 (lOb)

WI("f, 0) = "f -1 (10c)

Using the method of separation of variables
[Churchill, 1941], we obtain '

m -,,'r'.'
-2 L e -,.:. -~""

,,-I

'"
h(t') = 1 + 2 L(-l)"e-"'r'"

,,-1
(16b)

as'

~ (x, y, 0, t)
iJz

=

"'(S ,t') = 1 -S ,0 Ijlll n7r~
nrr

:11)

On the other hand, it is easily seen that

(17)
When this expression for iJs' jiJz is substituted in
(2a), we obtain

~ + ~!
iJx2 iJy2

(12)v(z, t) = u(b' -z, t)

so that in view of (6) and (7) we have

v(z, t) = ",(1 -s, t') (13)

Finally, from (4), (6), (12), and the definition of S
and t' (7) it follows that

-C1 l' ~ (x, y, t -T)f(a'T/b") dT

+ c, l' ~ (x, y, t -T)h(a'T/b") dT

aSI (1 Rn)

as'
az

(x, y, 0, t) =

!-

(11 aS1

b'oat (x, y, t T)

al at ,---,

In a similar manner from (2c) it follows that

~+~
ax2 ay2

-r) ~ (1, a'r/b,2) dr

(14)

-c21' ~(x, y, t -T)!(a'T/b,2) dT

+ c21' ~ (x, Y. t -T)h(a'T/b,2) dT

But by virtue of (11) we havc
= 1- ~ (18b)

a2 at

In these equations, C; = K'/T;b', i = 1, 2.
Equations 18a, b, together with (4), i.e.,

s'(x, y, z, t) = it ~ (x, y, t -T)U(Z, T) dT

~

2 E e-n'r'~
n=l

°'"af (0, T) = (15a)

~ (I, T) = -1 -2 :t (-I)ne-n'r"
as n-\

and, in view of (6) and (7),

(15b)

(1&)

Consequently, if we define f and h by

~

f(t') = 1 + 2 L e-nsrs"
n-l (16a)

constitute a complete set of equations that, when
they are complemented by appropriate conditions
on the horizontal boundaries, determine the
behavior of the drawdown in the system of
aquifers. When they are applied, it must be
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recalled that according to (6), (7), and (13) we 1, iJs2
have + C1 0 ~ (x, y, t -T)h(a'T/b'2) dT

=.!.~
al at

~ + ~
ax2 ay2

(19a)

C282

(19b)

An alternative form of these equations is achieved
by defining

GO

g(t') = 2 E e-"'~"
..-1 (20a)

.e.,

= -1 ~ (21b)
a2 at

The shape of functions I, g, h, and (oJ is
illustrated in Figures 1, 3, and 4.

The variables sand t', introduced previously,
are dimensionless. They, together withf(t') = 1 + g(t') (20b)

When this expression is substituted in (18a, b),
the integration from 0 to t of the derivatives of 81
and 82 can be performed, (3c, d) being taken into
account, and we obtain

:, 

21,=

(22b)

(22 c)

,21, =

i= 12,
a2S1 a2S1~ + -a-1? -CISI

Ri = r(K' / Kibib')1/2 = (~;2 + 7];2)1/2

i=12 ,

5

z.o~

V

t'

Fig. 3. The memory functions f and g.
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for axially symmetric problems, constitute a
whole set of dimensionless variables. When (18c)
and (21) are transformed into these variables,
they become

(}281 (}281~ + ~ -81

results can be expressed more simply by using the
dimensionless time t', but, to make easier the
comparison of their results with previous ones,
they did not use it extellsively. We have found
that the variables t' and aGo are quite suitable to
analyze the behavior of the aquifer system itself
irrespectively of the problem considered.

For the discussion of. the well problem it has
been customary to consider the dimensionless
variables

~ (I: ,at' ..1, "711 t -T)g(T) dT

to; = aitfr2 (24a)

and

(23a)

082
(-at' ~2, 112, T)g(T) dT

.t' 

!l

~ ( ,
D at' ~21 7121 t -T)h( T) dT+

(23b)

s'(~" 11., 'f,t')
"i as! (I: ,= 0 at 'Oi, l1i, t T)",<r, T) dT

+ 1" ~ (~;, 111, t' -r)w(1 -S, r) dr
0 (23c)

The dimensionless variables R; and t' cor-
respond to the variables riB;; and tD", used
previously by Neuman and 1Vitherspoon [1968,
1969a, b]. These authors recall that some of their

as; = (4,B;IR;)2 (25)

On the other hand, the memory functions J, g,
and h have universal shape, but the time is scaled
by the factor a' Ib", so that what is relevant as
far as the memory is concerned is the dimension-
less time t' = (a'lb")t. Note that the scaling
factor a' Ib's determines the rate at which the
memory functions act, and this factor is in turn
determined by properties of the aquitard alone.
For clays, for example, this factor is very small,
and the rate at which the memory acts is very
small unless b' is also very small.

All these facts are obscured if other parameters

The advantages of t' and aai when the properties
of the aquifer system itself are being" discussed
become apparent by recalling that aai = S' / Si is
the ratio of the storage coefficient of the aquitard
to that of the aquifer, an important property of
the aquifer system that is not directly given in
terms of Ri' tDi, and fJiO Indeed,
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(31)

,

(32)
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are used. Thus, for example, the dimensionless iJ281 iJ281 K' r' iJ81
time tD. depends on the distance T to the well, an "";J::;;2 + ~ -T in at (t -T)/o(T) dT
irrelevant parameter if interest is focused on the I 0

aquifer system itself. = J:.- ~
al iJt

ALTERNATIVE EXPRESSIONS FOR THE MEMORY
FUNCfIONS where

In the section on the integrodifferential 1
equa~ions of aquifer mechanics. we obtained the /v~~~ (:-772"
functIons u(z, t) and v(z, t) by usmg the method of
sep/!-ration of variables. In this section we will
use the method of images to obtain the same
functions, getting in this manner alternative
expressions for the memory functions.

First we will get the function u(z, t) for the case
when b' = IX). This function will be denoted by ~

uo(z e).In this case (5a) and (5b) become + L [uo(2nb' + z, t) -uo(2nb' -z, t)]" A-I (33)

iJ2uo 1 iJuo ( ) .ar = -; a 0 < z 0 < t 26a Observe that all the arguments of Uo appearing
z a t in (33) are positive whenever 0 < z < b'. This

condition had to be satisfied because Uo is defined
by (30a) only for nonnegative values of z.

From (33) it follows that

Uo(O, t) = 1 t > 0 (26b)

uo(z, 0) = 0 z > 0 (26c)

We express Uo in terms of an auxiliary function Wo
that satisfies

Uo(z, t) = 1 + Wo(z, t)

so that Wo meets (26a), and

(27)
Thus, by virtue of (30a),

~ (0 ) = -1 - (1+ 2 ~ -n'b"/a" ):. , t ( ' t)1/2 L.., e
vz ra n-1

(35)

wo(O, t) = 0 (28a)

wo(z, 0) = -1 (28b)

Using the fundamental solution of the heat
equation together \vith the method of images
yields

But

1 l ' e

--, 1/2wo(z, t) -(ra t) 0

-).'/4"'1 

dX
(29)

(36)

Therefore

1 1,
~2 0 e

-1 -1= -,- f(t') = -,- [1 + g(t')]
b b

We see that

f(t') = 1 + g(t')

-A'/ta'

Uo(z, t) = 1 - dX

(30a)z> 0

and

.,
1 + 2 L e-n'.'I'

(38)

Using 

the method of images makes it easy to
construct the function u(z, t) that satisfies
(5a, b). It is

u(z, t) = Uo(z, t)

(34)
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Equ~tion 37 is the alternative expression of the The boundary conditions are
memory function that we were looking for.

Observe that the first term of the right-hand s( Q), t) = 0

member in (37) is the exact memory function for .iJ.s Q
the case of an aquitard of infinite thickness, ~~~ r a;: (r, t) = -M

because
and the initial condition 3c is recalled

K'

s(x, y, 0) = 0 (42d)

By means of taking the Laplace and Hankel
transforms successively and using the boundary
and initial conditions, (42a) is transformed into

R£ [3C(s)](a, p) = 21rTP a2 + A(p) (43)

where £[3C(s)] stands for the Laplace transform
of the Hankel transform of s, and

A(p) = p[(S' /TJj(b'p/a') + (l/aJ] (44)

Taking the inverse Hankel transform of (43), we
see that the Laplace transform of s is given by

82(X, y, t) = 0 (40)

In the section on the integrodifferential
equations of aquifer mechanics we considered
several alternative forms of the integrodif-
ferential equations governing aquifer systems.
In this section the most suitable set of equations
is that constituted by (21) and (18c). In view of
(40) they reduce to

~ + ~
OX2 oy2

R£(s)(a, p) = 47rTp

1~ d ( A 2).-.J!. exp -y + -!:.- (45)
0 y 4y

Equation 45 will be used later to derive the
different forms that A(p) has taken in several of
the approximations of leaky aquifers.

JACOB'S ApPROXIMATION

The approach of Jacob [1946], on which the riB
solution [Hantush and Jacob, 1955b] is based,
corresponds to the partial. differential equation

~ + ~2 -C 1S = 1- ~ (46)
a~ ay a1 at

which is derived from the assumption that the
rate of leakage is proportional to the potential
drop across the aquitard. In view of the initial
condition 3c this equation can also be written in
the form

a2s a2s 11 as 1 as
~ + ~ -C1 0 at (t -r) dr = ~ at

(47)
Comparing (47) with (41a) shows clearly that in
Jacob's partial differential equation the memory
function g has been neglected; i.e.,

, 1 + oCt) ~ 1 .i

., a8
0 at (X,

1 as= --(41a)
al at

s'(x, y, z, t)

r' a
= 'ft -!- (x, y, t -T)U(Z, T) dT (41b)

'0 ut

where for simplicity we have written s instead
of SI.

We will show that the approximate theories of
flow ill leaky aquifers that have been used in the
past correspond to alternative ways of approxi-
mating the memory function f. To this end we
consider the problem of a completely penetrating
well discharging at a constant rate Q. In this case
the solution is axially symmetrical, so that (41a)
becomes

~+!~
ar2 r ar

1 as
al at ( 42a)

f( 

t) = (48;

Here (32) has been used.

AQUIFER WITH ARBITRARY MEMORY

We consider now the case for which the draw-
down in one of the aquifers can be neglected, so
that we set

, 

t -r)f(a'r/b'2) dr
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Thus the function g(t) has been neglected.
Obviously, this function has the physical inter-
pretation of being the contribution of the storage
capacity of the aquitard to the leakage into the
aquifer.

HANTUSH ApPROXIMATION FOR SMALL VALUES OF

TIME

When drawdown in the unpumped aquifer
remains 0, the well problem considered in the
section on the aquifer with arbitrary memory
becomes equivalent to llantush's [1960] case I.
The Laplace transform (equations 42 and 43 of
Hantush's paper) of his asymptotic solution for
small values of time reduces to

Q.c(s)(r, p) = ~

~~

exp {-y -(r2/4y)p[l/al"
+ (8' /TJ(b'2p/a')-1/2]}/yp dy (49)

when the aquifer is limited by only one aquitard.
Therefore, comparing this equation with (45), we
see that

HANTUSH ApPROXIMATION FOR LARGE VALUES OF

TIME

The Laplace transform of the Hantush
asymptotic solution for large values of time
(equations 47 and 48 of Hantush [1960]) reduces
to

(50)
.e(s)(r, p) = ::-=-Q

A(p) = p[l/al + (8' /TJ(b'2p/a')-1/2]

and consequently by (44)

J(b'p/a') = (b,2p/a,)-1/2 (51)
Thus

.1'» exp {-[y + (r2/4y)p(K'/T1b'p

+ l/al + S' /3TJ]}/y dy (55)

when the aquifer is limited by only one aquitard.
Therefore, comparil1g this equation with (45), we
see that

A(p) = p(l/a. + K' /T1b'p + S' /3TJ (56)

and in view of (44),

S' -b,2p S' K'-T f -, = -3T + -
T b ' (57)

1 all p

Thus

J(p) = i + lip (58)

Taking the inverse Laplacc transform of (58)
yields

J(p) = p-I/2 (52)

The inverse Laplace transform [Sneddon, 1951]
of this equation yields

/(t') = (rt')-1/2 (53)

Thus Hantush's solution for short periods of
time is a solution of (31); i.e., as is well known
[Hantush, 1964, p. 337], it is the exact solution of
our problem when the aquitard is of infinite
thickness. We conclude that the memory function
f has been approximated by taking the first term
in (37), which corresponds to neglecting all the
reflections on the vertical boundaries of the
aquitard.

The approximation

f(t') = + l5(t')/3 (59)f(t') ~ 1/(7rt')'/2 (54)

deserves special attention. Its usefulness inlcaky
aquifer dynamics has already been demonstrated;

.e.,

g(t') = ~(t')/3 (60)

:: 
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it yielded the Rantush approximation for small
values of time. Its simplicity is remarkable and
offers great advantage for its handling. From it,
it is not difficult to construct a Ulliformly valid
approximation for all values of time, as will be
shown elsewhcre.

Before leaving this matter, we recall that
Hantush's [1960] case 2 also satisfies (41a) with a
suitable memory functionj[l/errera and Figueroa,
1969], which also has an alternative expression of
the type derived in the section on an aquifer \vith
arbitrary memory. The approximation used by
Rantush for that case is also given by (54). The
coincidence of both cases at this order of approxi-
mation is not surprising because, as was men-
tioned before, reflections on the horizontal
boundaries of the aquitard are neglected, and
consequently the boundary condition on the top
of the aquitard is irrelevant.
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This approximation has already been used to
construct approximate methods suitable for
numerical computation [Herrera a1w Figueroa,
1969; Herrera, 1970].

CONCLUSIONS

It has been shown that approximate theories of
leaky aquifers are based on several approxi-
mations of the memory functions in the integro-
differential equations of the dynamics of lcaky
aquifers. By means of analysis of these functions
in the time domain it is possible to achieve a
better understanding of the nature of these
approximations as well as to foresee the pos-
sibility of their application to new situations.
These types of results constitute important steps
toward making the intcgrodiffcrential equations a
powerful method of analysis of the very complex
situations arising in the study of actual leaky
aquifer systems. They can also be used to
construct improved, simplified methods for
numerical computation.

NOTATION

b;, thickness of the ith aquifer, L;
b', thickness of the aqllitard, L;
Ci=K'/Tib', i = 1,2, L-2;

f(t'), memory function, equal to 1 + 2E..-I'"
e-..'~'I"

fo(t), memo/y function for aquitard of infinite
thickness, eqtlal to (Ta't)-112;

g(t')=2E..-I"'e-"'~"';
h(t'), influence function, equal to 1 + 2

E.._1"'(-I)"e-"'~"';
K;, permeability of the ith aquifer, L/T;
K', permeability of the aquitard, I.I/T;
Q, pumping rate from aquifer 1, L3/T;
Ti' radial distance to the pumping well, L;
If; =Ti(K' /K;bib')112;

S.;, specific storage of the ith aquifer, L-';
S.', specific storage of the aquitard, 1..-1;
Si, storage coefficient of the ith aquifer,

eqllal to S.;h;;
S', storage coefficient of the aqnitard,

equal to S.'b';
8i, drawdown in the ith aquifer, 1.1;
8', dr.l.wdown in the aquitard, L;

T i, trarlSmissibility of the ith aquifer,
equal to K;h;, L2/T;

t, time, T;
t', dimensiolue.';I; time, eqnal to a't/b'2;

x, y, z, coordinates, L;
a; =K;/S.; = T i/Si' L27'-I;
a'-K' /S ' 12T-I.

-.,," ,

a,,; =S' IS;, i = 1,2;
6(t'), Dirac'!; delta f\ll\clion;

'7; =y(K' /K;b;b')112;
r=z/b';
~; =x(K' /K;b;b')112.

: 

GROUNDWATER FLOW

Acknowledgment. This work has been sponsored
by the Secretaria de Recursos Hidraulicos, MC'fico.

REFERENCES

Barberan, J., and I. Herrera, Uniqueness theorems
and the speed of propagation of signals in visco-
elastic materials, Areh. Ration. Mech. Anal.,
23(3), 173-190, 1966a.

Barberan, J., and I. Herrera, The speed of propaga-
tion of signals in viscoela.~tic materials, in Modern
Developments in the Mechanics of Continua,
edited by S. Eskillazi, pp. 175-182, Academic,
1966b.

Barberan, J., and I. Herrera, ltiemann representa-
tion method in viscoelasticity, 2, Cauchy's
illitial value problem, Arch. llation. Mech. Anal.,
25(3), 178-187, 1967.

Churchill, R. V., Fourier Scrics and Boundary
Value Problems, pp. 102-111, McGraw Hill,
New York, 1941.

Coleman, B. D., M. E. Gurtill, I. Herrera, and C.
Truesdell, Wavc Propagation in Dissipative
Matcrial.s, Springer-Verlag, New York, 1965.

Courant, R., and D. Hilbert, Methods of Mathe-
matical Physics, vol. 2, pp. 512-515, Interscience,
New York, 1962.

Gurtin, M. E., and I. Herrera, A correspondence
principle for viscoelastic wave propagation,
Quart. Appl. Math., 22(4), 360-364, 1965.

HantllSh, M. S., Analysis of data from pumping
tests in leaky aquifers, Eos Trans. AGU, 37(6),
702-714, 1956.

Hantllsh, M. S., Nonsteady flow to flowing wells in
leaky aquifers, J. Geophys. Rcs., 64(8),1043-1052,
1959.

Hantush, M. S., Modification of the theory of
leaky aquifers, J. Geophys. Res., 65(11), 3713-
3725, 1960.

Hantush, M. S., Hydraluics of wells, in Advances in
Hydro.science, vol. 1, edited by V. T. Chow, pp.
281-432, Academic, New York, 1964.

Hantush, M. S., and C. E. Jacob, Plane potent,ial
flow of groluld water with linear leakage, Eos
Trans. AGU, 35(6), 917-936, 1954.

Hantl...,h, M. S., and C. E. Jacob, Nollsteady Green's
functiollS for an illfinite strip of lel\ky aqnifer,
Eos Trans. AGU, 36(1), 101-112, 1955a.

HantllSh, M. S., and C. E. Jacob, Non-steady radial
flow ill an infinite leaky aquifer, Eos Trans.
AGU, 36(1), 95-100, 1955b.

Hantush, M. S., and C. E. Jacob, Flow to an eccen-
tric well iI\ a leaky circular aquifer, J. Gcophys.
llcs., 65(10), 3425-3432, 1960.

Herrera, I., luemann representation method in
viscoelasticity, 1, Characteri~ation and constrllC-
tiOil of the Riemann functiOll, Soilltion of prob-
lems with prescribed body furce.~, Arch. llation.
Mech. Anal., 22(4), 27o-ztJl, 1966.

Herrera, I., Theory of milltiple leaky aquifers,
Water IlcsOllr. llcs., 6(1),181"1-193,1970.

Herrera, I., and G. J~. Figueroa, A correspondence
principle for the theory of leaky aquifef8, Watcr
Rrsollr. Rrs., 5(4), 900-904, 1969.



~ FLOW 1005

and P. A. YV'itherspool~, C~mmentH.

V., Water Resour. Res., 6(3), 1009,

I. N., Fourier Transforms, p. 526, M"Graw

Truesdell, C., and W. Noll, Non-linear fields
theories of mechanics, in Encyclopedia of Physics,
vol. 3, part 3, pp. 382-38.'>, Springer-Verlag,
New York, 1965.

flow in :
aquifers, 1968.

Neuman, S. P., and P. A. Witherspoon, Theory of
flow in a confined two-aquifer system, Water
Resour. Res., 5(4), 803-816, 1969a.

Nellman, S. P., and P. A. Witherspoon, Applicability
of current theories of flow in leaky aquifer.;,
Water Resour. Res., 5(4), 817-829, 1969b.

(lleceived October ;;, 1972;
revised Jalluary 15, 1973.)


