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1. Introduction

Variational principles have been used extensively in mechanics. Recently they
have played an important role in the formulation of the finie element method
[1. 2] which is currently subject 10 vigorous development.

The basic:concepts applicable to the formulation of variational principles for
static boundary value problems have been known for some time. In dinamics the
development has been less satisfoctory, Theugh Hamilton-type variational prin-
ciples are well known. they correspond 1o transienl probiems which are ‘not
well-posed.

In this paper we are concerned with principles apphicable to imitial-value
problems. Complementary variational principles for these problems can be con-
structed [3]. but they raise the order of the operators considered, Variational
principles which do not have that inconvenient feature were first formulated by
Gurtis [4. 5]. By use of GuUrTIR'S approsch: numercus applications have been
made to prohlems i mechanies and refated fields: Thus, to list but a few, vanational
principles for initial-value problems in clastodynamics and viscoelasticily hiave
been derived by GURTIN [§] and LeiTsan [6]. respectively : NICKELL & SACKMAN [7]
did corresponding work for thermoelasticity. Heat flow problems have been con-
sidered by GusTis [4], EMERY & Carson [B] and Wilsos & NICKELL |#]. Extensive
applications to ground water hydrology have been made by NeuMax & WiTHER-
spooN [10] and Javanoe, & Witherspoon [11]. and additional work has been
carried out by ProDHAN & SarMa [12). Applications i soil mechanies have been
cartied out hy Brergia [|3] and Grapousst & Wiisox [14]

In Gurrin's method, given an initial value problem. the inverse of the ume
operator is applicd to obtain integro-differential egquations which contain the
initial conditions implicitly and for which variational pricciples can be derived
with the use of convolutions. Recently Saxpuu & Prrew [15] und Toxm [16]
have showr that Guenis’s Tormulation can be set within the framewoerk of the
general theory of variational methods [17), What is essential is the use of the
convolution as inner product, and TonTl [16] has given an example for an initial-
vulue problem for which the transformation imto an intezro-differeatial equation
is not reguired,

In this paper we present a general formulation of initislvalue problems in
terms of functional valved operators. This formulation s gquite suitable for
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treating initial and boundary conditions systematically. using it, one obtains
variational principles for which the admissible functions are required to satisfy
neither the initial nor the boundary conditions. We zpply that formulation to
derive variational principles for a large class of initial-value problems, which are
simpler than those that Gurin’s method yiclds. In order to make clearer the
relation between these vanational principles and Hamilton's principles, the latter
are obtained using Tunctional valued operators, Then we establish a systematic
method of simplifying Gurtin’s variational principles. This result has special
interest, hecause Gurtin-type principles have been obtained for many problems
and here it 15 shown how 1o transform them into a simpler form.

In Section 2, we recall mathematical results and notations that will be used
in the sequel. Section 3 is devoted to the recasting of some Known facts about the
theory of variational principles for linear operators [17, 18] in terms of functionsl-
valued operators. The time dependent problems Lo be considered in this study
are Tormulated in Section 4. Sections 5 and 6 are devoted to obtaining variational
principles of Hamilton-tvpe znd for initial-value problems, respectively. The con-
nection of these principles with Gurtin’s principles is established in Section 7. To
illustrate the use of these results, in Section 8 we obfain a simpler variational
principle for elastodynamics and exhibit its connection with one obtained by
Guztis [5).

2. Mathematical Preliminaries

Let D and K be two linear spaces over the fisld of real numbers R'. By a
linear operator or simply an operator, we mean a linear mapping

LiD— K, (2.1
The set
RiL)={Lu|ueD} (2:2)
is called the range of L. Let L, and L, be two linear mappings of & into &, and
a=R'. Then the operators L, +4L, and al, of I into K, are defined for every
ue} by [19];
(Ly+Lyyu=Liu+Liu (2:3a)
and
(ol yu=all,u). (2.3b7

The set of all linsar operators of D into K is itsell a linear spuce with respect
10 these operations, In the special case when K=R', an operator is called a linear
functional; thus, the set of all linear functionals on £ is a linsar space that will be
denoted by D%,

On the other hand. a bilinear functional is & mapping
[,}:DxK—R (2.4)

such that for every w, reD; i, =K and a, beR', we have
fau+ by, @}l=a{u. @)+ bl al, {2.5a)

tu,ab+bit=alu a)+blu, T} {2.5b)
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A bilinear functional is called an inner product if
. ii=0 forfived ued andevery G=K=u=l( {2ha)
and
. i;=0 forfixed 7eK andevery ueD=u=l, {2.6b)
Define the bilinear functional
{]5: b DY¥s R (2.74)
by the eguation
Lu| TS =Tlu) (2.75)

for every we £ and every Te D%, Tecan be easily shown that this hilinear funcrional
is an inner product on D x DF, Tn this paper. functional valued operators play an
importunt cole ] speeifically, we will restrict attention 1o functional valued operators
for which

E=0* (2.8

Observe that 1o define a functional valued operator L7, it s sufficicnt to
konow {ull*r) for every w eeD: Thus, we can associate with every functional
valued operator L another operator £*, which will be called its adjoint, and is
defined by the condition that

fu | Efiy=<u| Ly 12.9)

hold for every w, eel). ln particular, Lthe operator L is called self-adjoint if

IF=1I. {2.10)
Criven i linear mapping
D= D, (2.11=)
we define another mapping
§:D*~D* (2.11B)
for every we J* hy
e Swhr=L{Ze|w) (2.11e)

which holds for every vsf) Therefore, il the product S5 of two operators is
defined in the usual manner as the operator obtained by the application of L
followed by 8. it is scen that L is a functional valued operator whenever £ is a
functional valued operator; it satisfies

cu | SLyy={Zu| L} (2.12)
for every w, vl

3. Variational Principles for Linear Operators

In this paper we are concerned with linear operators only; Tor them, the
results from the theory of variational principles that we will need take a very
simple form. Tt is advantageous to formulate these results in terms of functional
valued operators.

Let L be a functional valued operator and consider the equation

Lu=[, (3.1)

10 Arch, Rattonul dech. Anal, Yol 23
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where we assume that 2 solution exists; {e., we assume f=®(Ly= D*. Define
()= | Luly=2ul fD (3]
for every ue D). Then, for fixed w, r2 D, 2(u+Av)is a function of the real number

A The dervative

d L} :
Fiu'l';{rl Lud+<u|bey—240) [ (3.3

is & functional &£, whose domain is D 60, is called the variation of 2 it w. The
main result we are going to use is contained in the following

Theorem 3.1. Let L be a self~adfoint functional valued operator. Then

Lot =fu—f (3.4a)
Jor every we D), In particular
a5, =0 (341

if and only if 1 sarfiyfies (3.1).
Proof. I L is setf-adjoint, equation (3.3) becomes
o0, (t) =24z | Lu—f> (3.3)

for every w, veld. For fixed w, this implies (3.4a). Consequently, (3:4b) holds if
and only if {317 holds.

The case when L is not self-adjoint can easily be handled, at least in principle.
Indeed, let P be a linear mapping

P:D* - D*. (3.6)
The mapping P is called non-singular if, for every weD*. we have
Puw=0=w=l {3.7)
It then becomes a simple matter to establish the following
Corollary 3.1, Let P be non-singular and such that PL is selfadioint, Define

O={u|PLud—2{w| P[> (3.8)
Then
a6 =0 (3.9

"W

if and only if ©osarisfies (3,10
Proof. By Theorem 3.1, Eq. (3.9} is satisfied if and only if
FLu=Pf; (3.10)

but A is non-singular and consequently {3.10) is equivalent to (3.1).

4. Formulation of Time Dependent Problems

Let R be the clositre of an open region in R” (the n-dimensional Euclidean
space) with boundary B, and let the subsets B) and B. of B denote a decom-
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position of B, [ e
ByimB.=¢: B,uf,=8 (4.1}

enceforth we shall be concerned with functions u.r. defined on Rx [0, 1, ].
with values in R™. Each point of the set R x (0. ;] will b¢ denoted by (x, 1) where
YeR and ([0, 1,]: the components Hpeeen Xp OF xowill be called the spatial
variables, while r will be called the time. M will be the set of such functions
possessing continuous derivatives up to order M on Rx [0, 1, ]. Partial derivatives
with respect 10 time will often be denoted by dots: thus. & and w will be the same
as cufEr and @ uldt?, respectively.

Givenw, e R™, we define

"
Hp= Z lip by 42
=
Where u; und r; are the Cartesian components of v and ¢, respectively,
For functions u, v2 C°, we define the jnner product:
ty
ei=| [uvdxdr, (4.3)

R

Then. with every neC” we associate 4 linear functional & whose domain is ¢
and whose value for each re €% is given by

d{v)={u, ¢}, (4.4)

Consider the sccond ordar differential aperator; *

I +Fu {4.5)
}

#

Fu= F—( i ?—u

[ fx;
whose domain D is taken 10 be €2, Heps and in what follows § and § run from 1
o n and summaticn over the range of repeated indices is understood. Fand Ay,
for each 7 and j, are functions defined on Rx[0, 2] whose values are mxm
matrices; they are assumed 1o he time independent, F is required to be continuous
and symmetric, 4,; s assumed to possess continuous first order partial derivarives

and to be such that for EVERY W, I

& & ) dt  Cu
Ao Soug B8 CW (4.6)
Tox X GX; £xj
On the boundary B of &, we define
= cu
HFeu E"!""H ry xeBx[0.1], (4.7}
X

wheren (i=1, .., n) aré the components of the outward unit normal vector 1o B,

The domain D of all the functionals and of the functional valued operators
to be considered will be taken to be the set €2, Thus. ZIVED any two continuous

* Fermepa & Crovcs [20] and Opes [2] have considered a general class of higher order
operators, The analysis presented here can be extended along similar lnes to that kind of Opera-
[ors,

I
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functions
g, B, —R" {4.5a)
and

Nt By R (4.85)

we associate with them the linear functionals | [ug,] and §,[N]. The values of
these functionals, for each re D= C*, are given by

i
Biluglled=| | ug Spedxde {4.9a)
a Ry
anc
J_l
B[Ny =—] [ Nedxdr {4.95)
L. 53

The operator & is definad as a functional valued operator such thal, for evers
usC . we have
Fu={Lup= B [u]= s Ful. (4,100
where (2 1) is the restriction to C* of the functional asseciated to #u by means
of (4.3)and {4.4).
Tt is easy to prove that

(Fuy=0=%u=0, on Rx[0,1] {4.11a)
and
B[ Fpu]=0=Fyu=0. on Byx[0 ] (411t

The vanishing ol the [unctional # [«]. however, doss not generally imply the
vanishing of won B, » [0, 1,]. Accordingly, we introduce the following

Definition 4.1, The differential form %, miven by (4.7), 12 called non-singular o
Bilu]=0=u=0, an Byx=[0,7] {4.12)

We introduce now three functional valued operators,

=T

J”uz%f——uft1j:51+u{ﬂ]i}, (4.132)

£+
Aypu E%+H(D}5E.+&(ﬂr&u. (4.131)

and -
A, u= E:' + u(0) . (4.13¢)

In these definitions &, &, &, and &} are taken as the delia functions and their
first derivatives, with support on r=0 and f=r, respectively [21]. To be more
pracise. for every ¢eC7, the values of these linear functionals are

Solv)=fuix. 0)dx, (4.14a)
R

dolv)=— [ i(x, 0y dx, (4.148)
o
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dyte)=[vix. 1)) dx (4.14¢)
R
and
dyle)=— [z, 1, )dx (4.144d)
&
We recall that

Ty ]

j [ fwf e = updedr= j Hu Fr—r Fputdxdt, (d.i5a)

0k i

| [fou—uo}dxdt= _||__.'L]f::!|r|,tj I—a {0 e —u it 0 ) +u() e dx, (4.15B)
&

o0&

and
I
J ffousui
L

pixdr= [alr)ei))— w0 e(0) 45 i4.13¢)
H

The first of these relations follows from the definitions (4.3) and (4.7) of % and
&, applying the divergence thearem snd using the svmmetry of £, as well as
equation (4.6}, Equations (4.153b and ¢) are obvious.

In view of equations (4.13), it is clear that & and 4., are symmetric: on the
other hand, the adjoints of 4.; and A, ; are given by .

-

8 lx, 73) 6y —tifx by 8y, (4164

% i
o M =—
[0 =

-_“I',F,u=—-ri%+:.r[.\:..!,:lﬁt. (4,165}

Consider the functional valued operastors

Fe=pdip— P, (4.17a)
f:::ﬂdzr_—r":?- {4.17b)
#=pd = F. (4.17¢c)

where gois a function defined on R = [0, #,] whose values are non-singular, mx m
symmelric matrices. We assume g is independemt of ¢ The time dependent
problems with which we shall be concerned consist in finding a solution e’
10 any one of the equations

Hpti=Ffip, (. 1¥a)

Fu=lyy, {4.158k)
or

Fu=fir (4. 15¢)

We do not discuss the existence of solutions and consequently assume that a
solution existsy e that fL.2@( L), fHedFy)) and £ ;=R ). This as-
sumption implies that

foo=Fu—pu (2307 + puntx)de, (4.19a)

Far=ln=pug(x)dg+ piislx)d, (4.19b}
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and

fu=Sa+pug(x)é, (4.19¢)
where

.fR:l'?R_Jrjl[“;:_j]_ﬁz[’*']- (4,20

Here [, stands for the functional associated with /3 by means of equations (4.3)
and (4.4); up, and N are functions defined on B, and B,. respectively, whereas
tp. 2y 2nd w, are functions defined on &, As mentioned previously, 1t is assumed
that g, gy, N g, i, and w, are such that £ 5, and £, belong to the rangs of
the respeclive linear operators.

Let three time-dependent problems be defined as follows:

Probiem i) A function u is a solution of this problem if and only if ve C* and

p—a—Pu=f, on Rx[0.4]. (4.21)
L &Ag |

u=tg on Bx[0r,]. (4.22a)

Fgu=N on Brx[hi1] (4.22h)

viv.M=wylx), x=R, (4.23a)

ulx, th=u; {5}, xeR. {4.23h)

Probler {i) A function « is a solution of this problem if and only if usC?
and it meets equations (4.21), (4.22), (4.234). together with

u{x. =uylxi: xsR FE el

Prabilem fif) A function u is a-salution of this problem if and only if wseC*
and it meets equations (4.22). (4.23a) together with

cu :
ﬂf—r—_.‘-%’uz_,rR on R0, 1] 14.25)

The equivilence between these problems and those defined by equations (4, 15)
is given by

Theorem 4.1. Ler %, be non-singular and us C*, Then:

a) u s @ solution of problen 1) if and only if u sarisfies g (4.15%a),
b) iy a solution of problem i) i awd only i u sarisfies Eq (41863
ol w iz a sofurion of problem iit) if v ondy {f wsarisfies Fg. (4. 18c),

Proof. We prove part a) of the theorem onlv. The proofs of the other two
parts are similar.

Assumie equations (4.21-4.23) are satisfied by we C7. Then straightforward
application of definitions (4.17a). (4.194) and (4.20) of #y,, fip and f, shows
that (4,18a} is met by w.

Assume now that (4.18a2) is met by w2, Take v=¢C7 and such that the
closure of it% support is contained in an open subset of R« [0, 4] Then v together
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with all its derivatives vanish on the boundary of R x [ 1y . Thus, we have -
i R s Wi | . i I
O=Cv| Zapu—fapd= | [{p—a—FLu—frdxdi. (4.26)
ab &1 |

Since this is true for any such v, it follows that (4.21} is satisfied at points (x, 1)
of the interior of Rx= [0, 1,]. The continuity of both members of (4.21) implics
that this equation is met also on the boundary of R x [0, 1.1

Now take reC? so that the closurs of its support is disjoint to £x [0, r,].
Since the validity of (4.21) has already been established. for any such o we pel

O={¢| Fpu—fipr=1<t| ol lxp—uix )] 8 +ip [l 01— uglx)] dad
=— [ p{[u (=) —uix. 1, 1 e b))+ x, 0)— wglx)] elx. O)dx.
A

Since this equation is satisfied for every such p, equations (4.23) follow.
A similar reasoning for any re €2 with a su pport whose closure does not have
points in common with B, proves (4.22h). Thus it has been shown that (4.21),

~m

(4.22b) #nd (4.23) are mel by v and therefore for every peC?
O={ol Fopu—700 =<o| By [—ng, 15
LE,
By [ —ug ]=0.

This establishes (4.22a) since 2 Is nen-singular. The proof is now complete.

Hereinafter we shall refer to these time dependent problems as problems 1),
i) and iii), respectively.

Finally. we recall that %, ; is self-adjoint, while

Fh=pat - #, (4.27a)
P =pdt -, (4.271)

5. Hamilton's Variational Principle
In view of the fact that ., is self-adjoint, Theorem 1.1 implies the following

Theorem 5.1 { Hamilton's varigtional principle). Let usC* and %, be non-
singular. Then u is a solution of probiem i) if and anly if

082, ,=0 {5.1)
o o where

Qup=dul Fpuy—=24u| f2p3. (3.2)

Proof. Wecan apply Theorem 4.1 because Zy is non-singular and consequently
problem i) is equivalent to equation (4, 18a). Taking into account that AT
self-adjoint, straightforward application of Theorem 3.1 vields Theorem 5.1.

As an application of the preceding Theorem. consider the wave cquation

i_;;;-—i"-'u =f, on R (5.3)
|::



Tab I. HErrERA & 1. BlELak

with boundary conditions

U=ty on Byx[0t]. (542
i %1 =N on Bex[D ] 15.4b)
0%
and end values
ulx, H=rnyu{x) on K, {5.5a)
ilx,t)=u{x) on R. (53.5b)

It 15 casily seen that the operator ¥y associated with the wave equation 1s non-
singular. Hence, from Theorem 3.1 we obtain the following

Corollary 5.2. Ler we 2. Then u satisfies (5.3). (5.4) and (5.5) 3 and anly If

M =10 {560
ar . where
1 3 - F o
o= r{ﬁ LS N N )
i }

0 i UL - S i T

L

+2 [ {[ulx, ) —uy(x)]ulx, o) —[uix, O —ug{x) | ulx, 0} d 5 i

k

L5 7
—2_1_!'11 J[e—ig] r,—:i dx+ [ Nudx E{ dr,

[T 71 gh Hi

Proof. The proof s obvious in view of Theorem 3.1,

This result 15 wnzlogous to Hamilton’s Poncple: 1t has the inconvenient
feature of being associated with a problem that is not well-posed. The wav in
which boundary conditions and end-values are incorporated in the functional (3.7)
it more general than the manner in which it is wsually done, because the set of
admissible functions is the whole set 7 Le. they are not reguired to satisfv any
boundary ¢r initial and final time conditions.

6. Variational Principles for Initial Value Problems

Theorem 4.1 shows that when #5 is non-singular. the second and fiest order
initial-value problems i) and fii) are equivalent to equations {4 18bY and (4. 18c),
respectively. However, 2., and &, are not self-adjoint, and in order to associaie
with these problems suitable variational principles, we must apply Corallary 3.1
To thisend, we introduce & transformation

0: =
such that for every reC~ and (x. 1)e R [0, 1,] we have
ol O=v{x, 1, =1 (H.1)

Then. we define a transformation P of D¥* into isell, by means of equations (2.117):
ie for every se C* =D and we D*_ we have

Lo | Pwh=CfTe]wh: i6.2)
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Taking into account the definitions (4.17h) and (4.17¢) of 2%, and 2, we can

verify that for every w, r=C* 1
Co | P&y uly=4u | P& vk i6.3a;
G| P&y iy = P& e (6.3h)

which show that 2%, and P.#, , are self-adjoint.
For every uel and w= 0%, we shall write

Cewy=Lu| Puwl. (6.4
With this notation, we define

alwi=Lu| P& uy—24u | Pl

- &, thl::l
=0 -2
Qyur=du| P& uy—24u | P10
(6.8)

=dus(Fu—20 00
Then, from Corallary 3.1 Tellows

Theorem 6.1, Let ws O and Fp be pon-singuiar. Then
a) u is-o solution of the second arvder initial valwe probien i) i and only if

G0, = (5.7}
af 1.
b) uiv . solution af the first arder initicl volue probies ) O aned ondy i

(i€, =) (6.2)
af .

Proof. Since % is mon-singulur: the initial valug problems ii) and 1i1) are, by
virtoe of Theorem 4.1, cquivalent to equations (4.18b) and (4.18c), respectively.
We can now apphy Corollary 3.1 to complete the proof of the theorem because
the mapping # is non-singular.

As an example of this Theorem consider the initial value problem for the
wave equation and for the heat equation. For the wave equation one must find
=% such that

lu &y ;
—_— e = ; w0, 4], [}
ETE -'-'.'L'E:"‘.‘CI- .-irR an R“I_ {]] i )
subject to the boundary conditions
u=uy on Byx[01n] GREEY
Fu o E
.rJE?:.'»' on Bax[0of ] (610
and the initial conditions
uix, M=u,{x) on R, (H,114a;

ulx. 0)=uy(x) on R. {fh:11h)
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The initial-valoe problem for the heat equation requires finding e € * such that

= —m;fu on Rx[01], (6.12)

subject to the boundary conditions {(6.10) and the imtal condition (6.17a).

Theorem 6.1 implies the vanational characterizations stated in

Corollary 6.1. Let we C=. Then
a) nis @ sofution of the initial ralue problem for the ware equation if and only i

d2, =1, i6.13a)
where
oy ) i 2
!?Jt‘m=|'|'fj tg-a—f’_u #—— =g il
H [ Cxy Gxy et
=9 (=T o [ Neudsh (6.13b)
¥ g J

[ [u
2 {[ufx. D)= uu{t}]uh f = aplxiulx, )b dx

b & is a solution of the initial valve problem for the heat equation {f and only i

=0, (6.143)
wiere
. |.. cu ot Fu )
0 = A = G o g
1% I?!d[f-‘f.- *EE.!.'I- LT, J.-:*H}rh
{’I [u— um]* dt+j N wﬂrt} (6.14B)

+ [[uix. l)]—lwutx}] uixit)dx
R
Here for every pair of functions r, seC®
res=[o(e)s(,—Tidr 1613
]

Prool. This Corollary follows immediately from Theorem 6.1 by setting

‘:‘!
_g:“=_ﬂ___.rf ) {G.16a)
Jx: 8%,
#oamn, SM (6.161)
pu=n; = = like

Crbserve that with this definition, %, is non-singalar.

The variational characterization for the heat equation presented here is
similar to un example ziven by Tonti [16]). However, our treatment of boundary
and initial conditions is slightly more general, because the admissible funcnons
are not required Lo meet any of these conditions,
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7. Connection with Gurtin’s Variational Principles

Let fand g be two real valued continuous functions defined on [0, 2¢), and
fet w. veC", We defline

I
(f=gi{n=(g=N)=|flzigli—0)dt: 120, {7.1a)

(fsuw)(x.N=(usf)ix.1]= _fj'[r}u[_t, r=oddT; (e eRx[0:4] (Tl
g

r
fusoix, D={p*ulx. M= julx,th:{:c_.f—ﬂ:f:: {x.0eR%[0,1]. (7.1e)
{1,
Observe that if w, veC2, then f=u and w» v belong to C-.
We recall the convention adopted in Section 6, equation (6.4), dccording to
which, for every functional weD* and every weC7 =D, we write

I"."'!l

Cuswd=Cu| Pwy=_u|w),

where IT is defined by (6.1). In view of the fact that [T is a one to one mapping
of €2 over €%, & functional w is defined on 7 when {u=w} is known for every
usC?. Consequently, given the functional w, amother functional fxw can be
defined on CZ, by

(el Frew)h=u*few), (7.3a)

which holds for every usC?. Taking this definition into account, we can un-
ambiguously drop the parentheses in the above expressions. If L is a functional
valued operator defined on €. then the functional valued operator f+ L for every
weC? is given by

(feLyn=f+{Lu). (7.3b)

in order to he more precise. in what follows we write CY for the set CY.
Observe that for every 1, =0 there is one such set of functions. The notation ey
will be used for the set of functions defined on 8= [0, =) and possessing contin-
uous derivatives up to order M. Given uel M the restriction of o R= [0 4]
is 2 member of €2, and, conversely, every weC,) is the restriction to Rx [0.4,]
of some members of C¥. Consequently, whenever u, reC3 we can apply the
definitions given previously to their restrictions to R=[0. 1]

Two problems will be considered now | they are

G ii) A function y=C3 is a solution of this problem if and oaly if

pu—isFu=1sfo+pltug+uy) on Rx[0 =) {7.4]
tsu=lsug on By x[0 =) (7:3a)

and
te Fgu=t+N on Byx[ o) {7.5b)

G iii} A function weC2 is a solution of this problem if and only if

pu—lsFu=1=fp+puy on R=[l ) {7.6)
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len=Tsuy, on B, %[0 =) {7.7a)

I+ Fpu=1+N .on H.x[0 o). (7.7h)

where we have written 7 and | for the functions defined on [0. &) whose valoes
for every r 20 arsrand 1 respectively.

Problems G ii) and G iii) will be called Gurine's problems, becauss they can
be derived from problems ii) and i) considered in Theorsm 4.1 in a similar
manner to that used by GurTis to derive his integzro-differential equations [4]
The squivalence between both sets of problems is established in the following.

Theorem 7.1, 4 fimction u is a solution of problem G i) if and only if w is a
solution of problem ii) for every 1, =0, Similarlv, it is @ solution of problem G i)
i -and only if it is-a solulion af problem 1ii) for every 1, =0

Proof. The fact that w15 a solution of problem G ) whenever it is 3 solution
of problem i) for every 1,0, is chvious because cquations (7.4 and (7.5) are
obtained by taking the convolution of equations (4.21) and (4.22) with the func-
ton ¢ using (4.234) and (4.24).

On the other hand. tking second order derivatives with respect o time of
(74} and (7.5) gives the set of equations (4.21), (4.22). Finally, (7.4) and the
equation derived from it by taking the first order derivative with tespect to time
vigld respectively (4.234) und (4.24), when they are evalosted at r=0,

Thus completes the proof of the first part of the Theorem. The second pan
¢an be shown ina similar manner.

Given any 1, =0, consider the egquations
tx =7 ef;y, (T.5ah

- Ls 2 ru=1%f, (7.8b)
for us . Then, we prove;

Lemma 7.1, For any us (.. we have

al e Fyu=pu—its Fu)y—fi [1eu] —f.[ 1+ Fu], (7.9a)
be #Fyu=pu—(l+Lu)—fi, [1anu]-5.[1=Ful; (7.9h)

b) 1k =t%fo—J, [reug |—Fa[reN]4 ml—'-m (7.10a}
P fry=1fa—f [V ong ] = (15 N]+p1uy(x), (7.10h)

Proof. This Lemma follows from the fact that the relations

fralts Sl =Lt t) =00, (71
Cos{le 2 u)y=dowl)« 25 ul, (7.0 1)
(rsirafy p=C(oxt)* ), {7.17¢ch

Cowilef s=Losi)sf,> {7.114d)
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are satisfied for every wpe € by the expressions given in equutions (7.9} and
(7109,

By the help of Lemma 7.1 it is EA5Y to prove:

Theorem 7.2, ey Yy be non-singular, Then a Fencrion w iv a sofution of prahiens
G i) if and only-if it sutisfies (7.84) for every b=0. Simifarly, it is a solution o
problem G iii) if and ony 10t meers (1.8h) for ereri £ =0

Proof. By yse of equations (7.9) and (7:10), the prool is analogous to that of
Theerem 4.1 and we dispense with the details of i1.

Let w, peCZ and assume that, for every ¢ =0, a functional vallied operator
L is given on €7, Then by taking the restrictions of 4 and vle ®x [0, ¢ 18 function
crlluy of tis defined and when this function is continuous, s Co| L is given
by equation (7.14) for every 10,

Assume now that £ stands for sither o or #5,, In this case

Irdewlud=CFapsLuyd= CoefsLuy={v|P{f+ Lhuy, (7.12]

The first of these cqualities can be established by substitution of the definiticns
of #,, and %, into the respective expressions. The other squalities are implied
by equations (7.1-7.3}.

Observe that {7.12) shows that the functionagl valuad operator PO L) s self-
adjoint, because CeeLuy is symmetric in i and v, by virtue of (6.3). Theorem 3.1
can be used now 1o formulate Gurtin-type variational principles associated with
the functionals

As=quer= 0 —2{Uwtw 0 {7.13a)
z1,=/_u*1tE’;;?i}—E(MwIs_}’”_‘-, {(7.13h)

defined for every 1 =0 they are ziven hy

Theorem 7.3, Assimne #, is non-singular. Then
&) a function u iva solution of probilem G i) if and ardy if

g, =0 for erery =0, (7. 14a)
Similariy, uiv a solution af G i) if and only i
A =0 forevery 10, {7.14b)

b} In addition, for every t =0 the follawing relations hold-

Ai=rwil., (7.13a)
Ai=1=0, {7.15h)
52
A .
2,= %‘“-1 (T.16u)
ariid
i
0 = L {7.16h)

7y o
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Frool. Part a) follows from Theorem 3.1. Equations (7.13) are implied by
{712, (7.13) and the definitions (6.5) and (6.6) of £2- and 2,. whereas (7.16) are
abtained by taking the second and first arder derivatives with tespect to time of
equaitons (T.154) and (7.15b), respectively.

The following schemes summarize our results:

1) Prob. (Gil) — t#{&Fn—F1i=0 — A,
& TR A
Prob. (i) +— Fu—f,=0 «— Q,

£d Prob (Giii) = I#l&Fm—fi)=0 = A,
1-‘i % :-‘|ld—"T 1.}E’ﬁ

Prob.(iii) +« Fyu—fi,=0 « Q,

These schemes show that simplified versions of variational principles for initial-
value problems can be obtained by taking derivatives with respect to timé of
Gurtin’s functionals. This fact has special interest from a practical point of view,
because Gurtin-type lunctionals have been constructed for many problems:

8. A Variational Principle for Linear Flastodynamics

In this section we illustrate the results obtained previously by deriving a
variationzl principle for linear elastodynamics. The initizl-valus problem to be
considered consists in finding a vector valued function w=C? which satisfies the

equations
-3 - - X
L8 e ‘C”“E‘J}=FE on Rwx[D 1] (8.1}

P Bxp Exy
together with the displacement boundary vonditions
w=d;, on B;x[01,], {8.2a)

the traction bBoundary conditions
1= '”“-{'.!—_{—" m=71, on B,x[01] {8.2b)

as well as the initial conditions
w(x,0)=d;(x) on R {82c)
udx, O=upix) on R (B.2d)

and

In these equations w;(x. 7) end Pix, 1) denote the Cartesian components of the
displacement vector w(x, 7} and the body force vector Pix. 1), respectively. The
function p{x} is the mass density of the medium and C,;, ,(x) arc the components
of the elasticity tensor. The latter are assumed to satisfly the symmetry relations

{-.ji.r=Cji.':I=CHi_i (#.3a)

Criei i St =0 (8.3h)

and
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for every symmetric £;;. with equality holding only when £,; vanishes identically.
The functions &, and r, are prescribed initial displacements and initial velocitizs,
while it and T are mven surface displacements and surface tractions.

It may be seen that the mixed problem defined by equations {(8.1-8.2) is of
the same form as the initial-value problem considered in the second part of
Theorem 4.1, The matrix A;; of the operator Fu defined in (4.5) is gven, for a
fixed i and j, by C\; ;. and F vanishes identically.

One of the thearems that GURTIN obtained for initial-value problems of elasto-
dynamics (Theorems 5.1 of [5]) in our notation reads as follows:

Theorem 8.1. Assume ue C2F satisfies the boundary candirfons (B.2a) For each
1=]0, o) define

Ap= I%F"‘.—ﬂ[”r* (o, )+ Crpp(x) [' *
i

duy . Gy
m —— [x, EJ
dx,  0x;

(5.4
—ZLQ,ru:-]:x,r}}dx—Zﬁf[r*‘ﬁ-uj]ﬁx,r}c.‘x.

where

O,(x, =[t=Bl(x, O+ p()[tr(x) +d,(x)]] on R [0, o0 (3.3)
Then u is a selution of the initial value problem of elastodynanics if and only if
84.=0 forevery 1=0
ar u,

According to part ¢ of Theorem 7.3, a simpler version of this variational
principle would be that associated with the functional obtained by taking the
second derivative of Aa:fe.

As=] {Mx][: w00, 04 2(u, (2, D) —d(x)) te,x, 1)
B

G *—E u,

HEE g7
L ox;  xy )RIJ} )

— 2o (x (X O]+ Crii
—(Pau)x. f)} dx=2 j'{ﬁsﬂjl‘if, t)dx.
FiE]

An alternative procedure for obtaining this vanational principle: would be to
make use of Theorem 6.1.

‘Theorem 8.2. Let u=C* and for each 1[0, =) defing the functional

Q.= {;Jl.t}{[d;* 0%, 0042 [y (3, ) — e (2] sy, 1)
R .
o . fu,  Tu
—tadx) it - Cos [_rx _MJ] (x, ) -

[Tt — H.—J_] (% thdx

—2[Fwu](x :‘_l}dx—:—l

=,

-2 }['l:,* u ]z, dx.
B
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Then w iy a solution of the initial-value profblem if and oniy if

382, =0 (8.8)
ar .

Proof. Tt follows immediately from parta) of Theorem 6.1 because the operator
¥, implied by equations ($.2h) is non-singular whensver O, satisfies relation
(8 3h)*

_ Oibssrvethat the Tunctional £2; given by ¢quation (8.7} reduces to the functional
A, when w meets the displacement boundary condition (8 2a),

Ay mentioned earlier there are many problems for which Gurtin-type varia-
tional principles have been formulated, Because of Theorem 7.3 it is sufficient to
take the time derivatives of the corresponding functionsls to obtain simplified
versions of those principles. The functional (8.7) is only one example of many
that can be derived 117 this manner.**

e
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