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Integrodifferential Equations for Systems of Leaky Aquifers and Applications
2. Error Analysis of Approximate Theories

ISMAEL HERRERA

Centro de Investigacion en Matematicas Ap/icadas y en Sistemas
Universidad Naciona/ Autbnoma de M'exico,'M'exico 20, D. F., Mex

This paper is the second of a series devoted to developing a method of analysis based on the in-
tegrodifferential equations of leaky aquifer systems. In part I [Herrera and Rodarte, 1973aJ the in-
tegrodifferential equations were derived, and an interpretation for some of the approximate theories was
given in terms of the memory functions occurring in the equations. The same equations are quite suitable
for a systematic analysis of the errors involved, and therefore in this paper they are used to carry it out.

tush [1960, 1964] and to Neuman and Witherspoon [1969c]. In
1960, Hantush formulated his modified theory of leaky
aquifers together with his asymptotic solutions for small and
large values of time and proposed a range for its application
on the basis of the error analysis of the Laplace transforms.
Later, in 1964 he introduced a slight modification of the range
corresponding to his solution for large values of time. An im-
portant ~tep forward was given by Neuman and Witherspoon
[1969c], who compared their analytical and numerical
solutions with the approximate ones.

The main shortcoming of the approach used by Hantush to
establish the range of applicability of his theories lies in the
fact that the asymptotic behavior of the Laplace transform of
a function gives information only about the asymptotic
behavior of the function in the time domain but there is no
way to establish accurately the er~or implied by the cor-
responding approximation.

On the other hand, Neuman and Witherspoon [1969c] were
able to exhibit explicitly the error that approximate solutions
yield in the cases that they considered and establish some
rules for their application, but they agreed that a more com-
plete analysis of the error would be desirable. A brief discus-
sion of Hantush's approximation for large values of time has
already been published [Neuman and Witherspoon, 1970;
Herrera and Figueroa, 1970].

When the integrodifferential equations for leaky aquifers
are used, the shape of the memory functions that correspond
to each of the approximate theories can be exhibited ex-
plicitly, as has been done in part 1. In the present paper by us-
ingthis approach a direct and accurate analysis is carried out,
which has permitted the errors for the drawdown at the
different parts of the aquifer system to be estimated.

It is difficult to define the relative error when the drawdown
in the unpumped aquifer is neglected. If the standard defini-
tion is adopted, the errors at the unpumped aquifer are large
at all times because the system starts from an unperturbed
situation and neglecting the perturbation implies a 100%
relative error even when the perturbation is very small. If one
is interested in finding out whether a theory is applicable to a
specific problem, this feature of the definition is unsatisfac-
tory because the theory is. actually applicable in many
situations as long as the perturbation is small. Thus the fact
that the relative error is very large is irrelevant in such
applications. At the same time it must be observed that such a
definition is not informative because in using it, all that can be
said is that the relative error at the unpumped aquifer is very
large, irrespective of whether the perturbation of the draw-

In recent years the theory of leaky aquifers has experienced
dramatic advances that have permitted it to go beyond many
of the simplifying assumptions that were used during the in-
itial period of its development. Indeed the theory has con-
tinuously been perfected, from the simplest model due to
Jacob [1946) and later improved by Hantush and Jacob [1955]
to more sophisticated approximations due to Hantush [1960).
Finally, the need to resort to approximate solutions has been
removed to a large extent by the construction of some
analytical solutions [Neuman and Witherspoon, 1969a. b) and
of numerical methods of analysis [Javandel and Witherspoon.
1969].

Because of this progress it is now possible to analyze quan-
titatively many problems that were not previously amenable
to numerical treatment. However, approximate theories fre-
quently have a simpler structure than the exact ones because
they may depend on a smaller number of dimensionless
parameters and consequently, there are many situations in
which it is advisable to use them. To use approximate
solut~ons efficiently, it is essential to know accurately their
ranges of applicability. The study of the applicability of ap-
proximate theories als_o may be helpful in acquiring a deeper
understanding of the theory of leaky aquifers.

On the other hand, the system of integrodifferential
equations governing the dynamics of leaky aquifers that was
developed in part I [Herrera and Rodarte. 1973a] has been
used to construct a simple approximate numerical method
[Herrera and Figueroa. 1969; Herrera. 1970; Herrera and
Rodarte. 1973b), whose range of applicability is closely con-
nected with that of Hantush's approximation for large
values of time [Neuman and Witherspoon. 1970; Herrera and
Figueroa. 1970).

The aquifer system that will be considered is made of two
aquifers separated by an aquitard in which the flow is vertical
(Figure I). The following approximations are discussed: (I)
neglecting the drawdown at the unpumped aquifer, (2) Han-
tush's small values of time approximation, and (3) Hantush's
large values of time approximation.

The analysis is made for the case of a well pumping at a
constant rate, but the results obtained for approximations 1
and 2 are valid whenever the drawdown is a nondecreasing
function of time.

The main contributions about this matter are due to Han-
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applied to other problems of interest in groundwater
hyrlro)ogy.
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PRELIMINARY RESULTS

In this section some known results that will be used in the
sequel are summarized.

When vertical flow is assumed in the aquitard, the draw-
do~ns s., S2' and s' at the aquifers illustrated in Figure I are
governed by a system of differential equations [Herrera and
Rodarte, 1973a] that can be expressed in terms of the dimen-
sionless variables t', ,1'", and Ri (i = 1,2). In these variables this

system bec°'!1es

~ + L~+ (~) = ~~ (la)
oRI R1 oRI 0,1'" 1'-0 al ot

(}2S' 8s'

~=a?

~- (~) =-.!-
0,1'" 1'-1

/'
y (lb)

Fig. I The aquifersyste~.
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iJ282 1~ + ~ iJR2

For a well pumping at a constant rate these equations must
be supplemented by the conditions

s'(R, 0, I') = s.(R, I') (2a)

s'(R, 1, I') = s2(R, I') (2b)

s.(R,O) = s2(R, 0) = s'(R,~, 0) = 0 (3a)

together with

lim s.(R; I') = lim s2(R, I') = 0 (3b)
R~," R~'"

.as. Q11m R. ;-R = -2 T (3c)R,~O u. 11'

=:f-=O!JD

Here the notation for the convolution has been used; i.e.,
given any two functions p(t) and q(t),

(p * q)(t) ~ it p(t -r)q(r) dr (5)
0

the functions f, g. h; and", wet:e introduced in part I and, ,
are given ilJ the notatIon. The first two will be called the
memory functions, and th~ last two the influence functions,

Let 5, and5' be the approximate valu~ ofs, and s' that are
obtained when the drawdown S2 in the pumped aquifer is
neglected. In this case, (4) become

down there is large or sma.II: One can ~ay that the definition
erases any information that we may have,

This difficulty, which is very obvious in the case of the un-
pumped aquifer., is also present in the case of the aquitard.
Indeed the drawdown at the aquitard predicted by the ap-
proximate solution necessarily tends to zero as one ap:'
proaches the unpumped aquifer.

Thus in many situations the standard definition of telative
error. is not satisfactory at the unpumped aquifer and at the
aquitard. Consequently, it is necessary to look for a.lternative
definitions. Actually, which definition is the most convenient
one depends on the particular application that is going to be
made... In this work the relative error considered is obtained by
dividing the error by the drawdown at the pumped aquifer.
This definition has the advantage over the standard one of not
erasing the information that we hav~ on the behavior of the
unpumped aquifer. There are applications for which it is rele-
vant, but it must be realized that there are other situations for
which it may be unsuited.

Through the use of that definition the bounds obtained for
the relative errors made by neglecting the drawdown in the
unpumped aquifer and by using Hantush's small time ap-
proximation are essentially independent of the distance to the
well, but they depend significantly not on.lY on the properties
of the aquitard but on the storage capacity of the aquifers as
well. Indeed they are monotonically decreasing functions of
the storage capacity of the aquifers. In the case of Hantush's
approximation for large values of time the relative error has a
significant dependence on the properties of the aquitard, on
the storage capacity of the pumped aquifer, and on the dis-
tance to the well.

As an application the formulas developed here are used to
establish the range of applicability of the approximate
theories. The range of applicability is defined as that on which
each of the approximate theories considered yields e!Tors that
are not larger than 5%. Through the. use of this criterion for
all cases considered the ranges of applicability are larger than'
what Hantush [1960, 1964] had anticipated, a fact that is in
agreement with Neuman and Witherspoon's [1969(:] results.
There is a possible exception to this statement: the relative
error in the case of Hantush's [I 964J approximation for large
values of time increases with distance to the well, and
probably, the range of applicability given by him is too op-
timistic for sufficiently large values of R.

Apparently, the method of analysis used in this work can be

When the drawdowns are subjectt;d to conditions (3a), they
fulfill (I) and (2) if and only if they satisfy the system of in-
tegrodifferential equations [Herrera and Rodarte. 1973a]:

2

~ + 1- ~ -f * ~ + h * ~ = ~ ~ (4a)
aR1 Rl aR1 at at asl at

~ + 1- ~ -f * ~~ + h * ~ = .l ~~ (4b)
aR2 R2 aR2 at at aa2 at
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~+~~-f*~}= (6a)
1 OSl

;;::87

and

assumptions under which they were derived are discussed. In
this section the main results of the appendix are quoted to
supply a basis for the corresponding error analysis..

Neglec.ting the drawdown at the unpumped aq~ifer. It is
shown in th~ appendix that the errors

IJt(R, t') = St(R, t') ~ St(R, t') i = I, 2 (I7a)

IJI(R, ,(", ~) = s'(R, ,(", t') -s'(R, ,(", t') (I7b)

implied by neglecting the drawdown at the un pumped aquifer
satisfy t\)e i!1tegrodifferential e9uations

~~! + f *~! = h * ~
( I8a )Qal ilt' .ilt' ilt'

2- ~~ + f * ~ = h * ~~ (I8b)
Qa2 ilt il~ ilt

where

(18c)
where

fL(t') = + ! oCt') ;:: g(r) dr (10)
(19a)

Let Pl(t) and Pi'(t), where i = I, 2, be two functions and their
respective first-order derivatives defined fort ~ O. When this
notation is used, the main properties of the convolution that
;-viII be used in this work can be stated as follows:

PI * P2 = pz * PI (11)

a(l -qJ * ~ * S,82 = at' at
(19b)

8' =
a (1)

(So t') +7 (So t')

0(1 -q2) *' s* ,
at (19c)

p,(O) = 0 (12)

then wher~

Qi(t') ~ Qi(t' = exp (CXai2t') erfc [~ai(t')1/2

(13)
,:}. (20a)i =

If PI satisfies (12) and it is nondecreasing and P2 is non-
negative, then PI * P2 isnondecreasing; if in addition P2 is non-

decreasing, then

(20b)

(20c)(PI' * P2)(t) :::; PI(t)P2(t) (14)

The first property (II) is well known, and it is quoted in
l1"!any textbooks of advanced calcul~s. The second property
(13) can be established easily by applying the usual rules for
the derivative of an integral when use is mad~ of (12). The first
part Qf the third property is now obvious in view .of the second
property (13) and the fact that (20d)

PI' * P2 ~ 0 (15)

Fin~l]y, when P2 is nondecreasing
[' 1'

P2(t -r)pI'(r) dr ~ P2(t) PI'(r) dr = P.I(t)P2(t)
-0 0 (16)

'"
(2J(t, t') = 2 L [(.,Jo(4n -2 -t, t')

,,-1
eA

-"'o(4n -2 + S, t')] (20e)

Neglecting the drawdown at the unpumped aquifer yields
relative errors that vary at different parts of the aquifer
system. At the unpumped aquif~r itself they are large at all
times because the system starts from an unperturbed situation
and neglecting the perturbation implies a 100% relative error
~ven when the perturbation is very small. Thereforeitis more
informative and relevant to compare the error 82 at the un-
pumped aquifer with the drawdown s, at the pumped aquifer,

whi<;h can be derived by taking (12) into account.

ERROR ANALYSIS

In the appendix, expressions for the errors implied by the
appro~imate theories 90nsidered are developed, arid the

On the other hand, the value s. of the drawdown predicted by
Hantush's [1969] asymptotic solution for small values of time
satisfies [Herrera and Rodarte, 19730]

2~~ + 1 ~ -to * ~ = ~ ~l (7)
aR R oR at Clal at
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For similar reasons it is also convenient to compare the error
at the aquitard with St,

Accordingly, define

8r = s.(R, t.') -s.(R, t')

= (s, -8,) + (8, -s.) = 8, -8,

where {J! is given by (17a) and

(J. = s. -of! {28)

Observe that (27) can be interpreted as decomposing the total
error in one part due to neglecting the drawdown in the un-
pumped aquifer and another part due to approximating the
memory function .l(t') in (4a) by

j{t') ~fo(t') = (1I"t')-1/2

In the appendix it is shown that an estimate of 11. can be ob
tained by solving the integrodifferential equation

q(t/) = 81/S1 (2Ia)

E2(t/) = 82/S1 (2Ib)

E/(r, t/) = 8/ /SI (2Ic)

Observe that I -qt(t'), et(t'),and eA(t)(t, t') are nondecreas-
ing functions of t' that vanish at t' = O. For the case of a
steady well pumping at a constant rate the functions St and s'
of t' are also non decreasing. Consequently, in view of the
second and third properties (12-14) of the section on
preliminary results, (19) imply that,

E ( t/ ) < ~~~ * ~~ * e ( 22a)1 -at/ at/ 1 aS1-,at
-1- ~ * iJ8.Clal at' + fo ~ = ~f *

1(1 -q2)E2(t') at' * e2 (22b) ---

~~*

~~

subject to vanishing initial conditions. In this case the solu-
tion is

E'(t') < a(1 -q2)

-at'

~

~~ * 818, = -, (31)at'at

(22c)
where

e.(t') = 2 i: erfc(~ )n-1 t

For maQY purposes an estimate of the relative errors less
accurate than that given by (22) is satisfactory. It can be
derived by repeated application of (14) to (22), which yields

(32)

and 11,(1') is given by (20a). Here again the functions 1- 11"
es, and s, are monotonically increasing functions of time
whose initial values are zero, so that relation (14) can be used.
Thus

E.(t') = 8 I s < iJ(l -qJ.1- , * eiJt . (33)

q(t') ~ [1 -Ql(t')][1 -Q2(t')]e!(t') (23a)

£2(t') ~ [1 -Q2(t')]e2(t') (23 b)

£'(t,t') ~ [1- Q2(t')]I[I- q!(t')]eA(!)(t,t')

+ eA (2)('r, I')} (23c)

In the limit when CXal and CXa2 tend to infinity, the relations

(23) become

(24a)

(24b)

(24c)

Et(tf) ~ et(tf)

E2(tf) ~ e2(tf)

<i>(,{", tf) + e2<2)(,{", tf) = eA(,{", tf)f'(r, I') ::; eA

by virtue of (A46) when the notation

eA(.(". t') = eA(l)(.(". t') + eA(2)(.(". t') (25)

A further application of relation (14) to (33) yields

Es(t') ~ (1 -q.)es (34)

In the limit when aa, tends to infinity this relation becomes

Es(t') ~ es(t') (35)

Again relation (35) is valid for arbitrary values of aa,because
of (26). Consequently, relations (34) and (35) together can be
interpreted as stating that for finite values of aa' the errors
corresponding to infinite aa, are reduced by the factor 1 -

q,(t'), which is smaller than l.
By virtue of (27) and the fact that f), and f)s are positive

functions it is seen that the total relative error ET satisfies.

is introduced.
Observe that relations (24) hold for arbitrary values of aal

and aa2 because

(36)ET(t') = ~ ~ max (EI' E2)
91

Hantush's approximation for large values of time. Han-
tush's approximation for large values of time satisfies (9), and
this equation can only be applied when it is possible to neglect
the drawdown at the unpumped aquifer. Therefore the
analysis of the error for Hantush's approximation for large
values of time will be made under this assumption.

Equation (9) can be written in view of (10) as

0 ~ I -q,(t') ~ I (26)

Therefore relations (23) and (24) together can be interpreted
as stating that the relative errors are bounded by those cor-
responding to the case in which aal and aa2 are infinity and
that the relative errors are reduced by some corrective factors
that are combinations of products of I -q, and I -q2 when
those parameters a.re finite.

Hantush's approximation for small values of time. Han-
tush's [1960, 1964] asymptotic solution s. for small values of
time assumes zero drawdown in the unpumped aquifer. So the
total error in the drawdown at the pumped aquifer implied by
this approximation can be written as

~~+1~
iJR2 R iJR

1 aSL ---, --SL -3 at
1 aSL

--,
<Xal at

::::; (
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On the other hand, (6a) is

a2s 1 as
aR2+RaR-s

TABLE .\. Range of Time on Which the Drawdown in the
Unpumped Aquifer Can Be Neglected

(37b) /la. = 10-1 aa2 = 10. £rao = 10' a.. = 00

a_. = 10.
a_. = 10.
a_. = 00

1.23
0.96
0.93

0.43
0.34
0.33

0.40
0.33
0.32

0.50 0.11 0.10+' !~f. -
g *~3 at' ;: I (38)

~

a.1 = 10.
a.. = 101
a.1 = (X)

1.10
0.88
0.87

0.34
0.32
0.31

0.33
0.31
0.30'

is obtained. At points where the errors are largest, lateral out-
flow tends to decrease them, and therefore it is possible to ob-
tain an estimate of the errors by neglecting the radial
derivatives in this equation; when this is done, the following
equation is obtained:

a.. = 10"
a.. = 10'
a., = 00

0.88
0.80
0.79

0.23
0.23
0.23

0.22
0.22
0.22

Pumped Aquifer
0.54
0.43
0.40

Unpumped Aquifer
0.\6

Aquitard at t = 0.2
0.44
0.40
0.39

Aquitard at t = 0.5
0.32
0.3\
0.3\

Aquitard at t = 0.8
0.22
0.22

--!-~+
aal at'

iJOL 1 iJsL iJsL*-a7 = 3a1 -g*a"i' (39) a., = 10"
a., = 00

0.68
0.65

0.15
0.15

0.14
0.14

To see that lateral outflow tends indeed to decrease the max-
imum of (JL. observe that the error .l made when (38) is
replaced by (39) satisfies

-1--~+f *~- ~, , -
aal at at

applicability will be defined as that for which the bounds for
the relative errors given by (23), (34), and (44) are smaller
than 5%.

By proceeding in this manner, Table I and the tabulation
below as well as Figure 2 were obtained. Table 1 gives the
upper limit of the values of time t', for which the drawdown
in the unpumped aquifer can be neglected. Hantush's approx-
imation for small values of time can be applied according
to this criterion at any time t' smaller than the following
values:

At a maximum, iJfJL/iJR = 0, whereas iJ2fJL/iJR2 ~ O. Then it
can be seen that iJ~/iJt' ~ O. This fact is in agreement with
well-known results for the heat equation.

To obtain an approximate solution valid for large values of
time, (39) can be replaced by [Herrera and Rodarte, 1973a]

J.- ~ -fJ =! ~ -* ~ (40)aac at' L 3 at' g at'

Therefore

(41)

(42)

and

Finally, Figure 2 gives the lower limit T L' of the interval of
time t', on which Hantush's approximation for large values of
time can be applied at the pumped aquifer.

It must be recalled that Hantush's approximations assume
zero drawdown at the unpumped aquifer. Therefore their
ranges of applicability given in the above tabulation and
Figure 2 must be restricted further by this condition (Table I,
the pumped aquifer).

The results contained in Table I, the in-text tabulation, and
Figure I were tested by comparing them with actual examples
computed by Neuman and Witherspoon [19690, b, c], and
satjsfactory agreement was obtained.

(43)p(t') = exp (-aact'

From (40) it follows that

8L 8L ( aSL 2 aSL ) .EL = -~ -= aGoG * _a ' -aGc P * G * _a ' SL
S SL t t 10

T~Here [Hantush, 1960, 1964]

1 1"

4;To
R2

~

sL(R, If) = . ,.-1 d,.exp

-aacT1

4aacT,

= 4;T w(~7' R) (45)

Range of applicability. This section is devoted to a discus-
sion of the range of applicability of approximate theories. The
results obtained in previous works will be compared with the
ranges derived by using (23), (34), and (44). The range of

aac=O.9

0.1 , I I I I IIIII I I I I III t t I II IIIIII 11 I III nI

0001 001 0.1 I R 10

Fig. 2. The range of applicability of Hantush's approximation for
large values of time.

as 1 asg * at' = ;;: at'

iJ"OL 

1-+ -~-
iJR2 R iJR
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In the present work by using (44) in the manner explained
previously it was shown that the interval of time on which this
approximate solution can be safely used is a function of the
adimensional distance to the well R and of the adimensional
parameter

3a.la.I: = 3 + a.1

Neglecting the drawdown at the unpumped aquifer. The
studies by Neuman and Witherspoon [l969a, b, c] are the main
contributions that have been made up to now to establish the
interval of time on which this hypothesis can be applied.
Previous studies by the same authors [Witherspoon and
Neuman, 1967; Neuman and Witherspoon, 1968] are also infor-
mative.

The main conclusion of Neuman and Witherspoon [l969b, c]
was that the drawdown at the unpumped aquifer can be
neglected in computing the drawdownat the pumped aquifer
and the aquitard whenever

Figure 2 exhibits the graphs of the lower limit of the interval
of time t' on which this theory can be applied for the values
0.9 and 2.7 of lXac. It must be recalled that the parameter lXac is
bounded by 3 and therefore the values chosen for lXac cover an
interval sufficiently wide.

Observe that there is a large region relevant in applications
in which the lower limit of the interval of applicability is 15 or
more times smaller than that given by Hantush [1960].

Finally, recall that this theory assumes zero drawdown at
the unpumped aquifer, and consequently, the note at the end
of the previous section is pertinent here.

Herrera and Figueroa's approximation. The computa-
tional method deyeloped by Herrera and Figueroa [1969]
and Herrera [1970] simplifies significantly the computations
required in studies of leaky aquifers [Herrera and Rodarte,
1973b] because it uncouples the corresponding system of
differential equations. It can be thought of as a refinement of
those methods introduced by Hantush and Jacob [1955] and
Hantush [1967] because it takes into account the storage of
the aquitard. On the other hand, it is also a generalization of
the approximation for long times [Herrera and Figueroa,
1969, 1970; Herrera. 1970; Herrera and Rodarte, 1973a;
Neuman and Witherspoon. 1970] because it does not require
the use of the hypothesis that the drawdown at the unpumped
aquifer vanishes.

According to the results obtained in some applications
made so far [Herrera and Rodarte. 1973b] this method
predicts correctly the effect of the interaction between the
aquifers in many cases of practical interest. The times t I for

which it can be applied are limited below by the values given
in Figure 2, but they are not limited above because vanishing
drawdown in the un pumped aquifer is not assumed. The
range of applicability given in Figure 2 was deduced on the
basis of the results obtained for an isolated well, but it seems
that it is wider in the case of regional studies, as will be dis-
cussed elsewhere.

t' ~ 10-1 (46)

Regarding the unpumped aquifer they only asserted that the
relative errors are large at all times. In addition, Neuman and
Witherspoon [1969b, c) observed that in the case of the
pumped aquifer and the aquitard the relative errors implied
by this hypothesis depend significantly on the properties of
the aquifers. However, this observation was not reflected in
relation (46), which is independent of the properties of the
aquifers.

In Table I the ranges of applicability of the hypothesis of
zero drawdown at the unpumped aquifer as implied from the
inequalities (23) are given. More precisely, the right-hand
members of inequalities (23) are smaller than 0.05 whenever t'
is smaller than the figures given in Table I. It can be seen that
this hypothesis can indeed be applied everywhere in the
system whenever (46) is fulfilled, independently of the proper-
ties of the aquifer. However, this limit has a significant
dependence on the properties CXal and CXa2 of the aquifers, be-
ing larger than I 0- ~ for any finite values of these parameters.

The upper limit of the range of applicability also varies at the
different parts of the aquifer system, being smallest at the un-
pumped aquifer and largest at the pumped aquifer. The worst
situation occurs at the unpumped aquifer when CXa2 is infinity;
it is in this case that the value 10-1 for the upper limit of the
interval of applicability is achieved.

Hantush's approximation for small values of time. The
range of applicability advanced by Hantush [1960] for his ap-
proximation for small values of time is defined by the condi-
tion

10- (47)

ApPENDIX

Neglecting the drawdown in the unpumped aquifer. When
the drawdown $2 in the unpumped aquifer is neglected, (1),
(2), and (3) for the corresponding approximate solutions Sl
and S' become

(Ala)

(Alb)

Later, Neuman and Witherspoon [I 969b, c] observed that it
could be enlarged somewhat, but they did not establish any
new limits for it.

The tabulation in the section on range of applicability was
derived from the inequality (34) in the manner explained
previously. It can be seen that the range of applicability at the
pumped aquifer of Hantush's approximation for small values
of time depends on the properties of that aquifer and can be 4
or 5 times larger than the range that Hantush had anticipated.

It must be observed that Hantush's solution assumes zero
drawdown at the unpumped aquifer, and consequently, its
applicability is further restricted by this condition, as dis-
cussed in the previous section.

Hantush's approximation for large values of time. Hantush
[1960] stated that his solution for large values of time could be
applied whenever (Ale)

(AId)

(A2a)

(A2b)

t' ~ 5 (48)

Neuman and Witherspoon [1969b, c] have observed that the
actual range of applicability was larger, but also in this case
they did not establish new limits for it.
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and (as')--0a~ r-1 -

a2/, a/'ar2 = at'

whereas (A4) and (A5a) become

(ASh).aS1 Q11m R -;;-R = -2 T (A2c)
R-a> u 7r 1

Alternatively, (AI) can be replaced by (6).
On the other hand, the exact solutions Si and s' satisfy (1),

(2), and (3). These equations together with (A 1) and (A2) im-
ply the following system of equations for the errors Oi and 0':

~ + 1- .!!!!.l + (~ ) = ~ ~ (A3a)
aR1 RI aRI at f=O £Xci {}t

(A8c)

(A9a)

(A9b)

(A9c)

(A9d)
(as'

)at!"-l~+1-~
iJR2 R2 iJR2

1 ao2
--7a.2 at (A3b)=

1'(R, 0, t') = 4(R, t')

12(R, t') = s'(R, 1, t')

1'(R, 1, t') = 12(R, t')

4(R,0) = 12.(R,0) = 1'(R, t, 0) = 0

Here
a2o'
a:f2=

<18'~'
(A3c) li(R, t') = ljm Oi(R, t')

a..-Oa..-O
,2 (AIOa)i =

(A4a)

(A4b)

(A4c)

and

1'(R, S-, t') = lim 8'(R, S-, t')

a.,--O
a O

(AIOb)

(A5a)

(A5b)

(J'(R, 0, I') = (Jl(R, I')

(J2(R, I') = s2(R, I') = s'(R, 1, I')

(J'(R, 1, I') = (J2(R, I')

(Jl(R,O) = (J2(R,0) = (J'(R, t, 0) = 0

lim (Jl(R, I') :;=' 0
R-.,

Equations (lb), (20), and (A8b) constitute a well-posed
problem for s', whose solution is given by

asls'(t, t') = e(t, t') * "ii? (R, t') (AlIa)

and consequently,

(Allb)

where

.,
e(s-, t') = ClJo(S-, t') + }2 (-1)n[ClJo(2n + S-, t')

n-l

-"'o(2n -r, (')] (A12a)

+ ",(1 -t, t') * ~~ (R, t') (A6c)

Here the errors 8/ and 8' are given by (17).
At points where the errors are largest, lateral outflow tends

to decrease them. Consequently, an estimate of the errors can
be obtained by neglecting the radial derivatives that occur in
(A3) and (A6). When this is done, (A3) yield

(~ ) = ~~} (A7a)
at 1'-0 lral at

- (~
) =~~ (A7b)

at 1'-1 lra2 at

a28' a8'ar2 = -a7 (A7c)

and e2 is given by (20c). Observe th;it

e2(t') = e(l, I') (A12b)

This well-posed problem for the heat equation and some
others that follow were solved by using Duhamel's method
together with the method of images in a manner similar to
that used in part 1 of this paper. The details will not be given
here, but in any case the results can be checked by direct sub-
stitution in the equations and boundary conditions of the cor-
responding well-posed problems.

Equations (A8a) and (A8c) together with (A9d) also con-
stitute a well-posed problem for I'. The method of images can
be used to satisfy (A8a) and (A8b). When this is done,
Duhamel's method yields

(A13)

wherewhereas (A6) become (18).
The results to be derived are more easily expressed in terms

of .the errors for the limiting case in which both aal and aa2
tend to infinity. In this case, (A 7) reduce to

(01')~ r-o = 0 (A8a)

~

eA(t, I') = 2 L {(-1)"+ln[!lJo(2n -t. I')
,,=1

+ "'o(2n + 'r, t')]} = eA(l)(s,t')+eA (2'(t, tf) (A14)

and eA!I) and eA!I) are given by (20d) and (20e). In view of
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(A9a), (AI3) at S = 0 becomes Then in view of (18a), (A21), and (A5a) we have

O(J2(Jl = ~alql * h * - (A23a)(A15) at'

andwhere

iJl2

at'
'"

el(t') = eA(O, I') = 4 :}::: (-1)"+1
,,-I

82 = O!a2Q2 * f * (A23b)

n 

erfc (n/tfl/2) (A16)

These equati~ns can be transformed by means of (A22a) into

iJ/2()2 = (1 -q2) * :;;-7 (A24a)
ut

(J~ = £r.lql * h * a(l -q2), *
at

iJl2at'
(A24b)

(AI7)
where it was possible to use (13) by virtue of (A22b). Finally,
the error (JI in the pumped aquifer can be expressed in terms
of /1 by using (A20a) and (A22a). In this manner,

(J = (1 - ) * a~1 -q2) * ~!.
( A25

)1 ql at' at'

In view of (A6c), (A24a), and (A25) it is possible to write

~0(1- .t[2) *8' = 01'
at'

and

(A26)~2) ( ,. t' ) * ~! tR t' )~, at' \ ,

(A18b)

because both members of these equations satisfy the heat
equation (A8c) and assume the same value$ at S = 0 and
S = I. This .last fact becomes clear when it is observed that

eA(l)(I, t') = eA(2)(0, t') = o

eA (1)(0, t') = e1(t')

eA (2)(1, t') = e2(t')

(A19a)

(A19b)

(A19c) (A27a)

2 ,iJ s!- =

~2
as'.
at' o~r<CX) (A27b)

(A28a)s.'(R, 0, t') = s.(R, t')

lim s.(R, r, t') = 0
r--~

(A28b)

together with
s,(R,O) = s,'(R, t, 0) = 0

lim s,(R, t') = 0
R-=

(A29a)

(A29b)

h*~!=

t *~
at' at' (A20b)

Therefore (ISb) can be written as

(A21)~~ + f *~ = f *~!
aa2 at' at' at'

Let qt(t'), where i = I, 2, be such that

aaiq, * f = 1 -qi t' ~ 0 (A22a)

which implies that

(A22b)q,(O) =

which establishes (20b).
On the other hand, (A6c) implies that

It is convenient to recall that the first term of the right-hand
member of this equation vanishes at ~ = I and takes on the
value I, at ~ = O. Similarly, the second term of the same right-
hand member vanishes at ~ = 0 and takes on the value /2 at ~
= 1-. Hence

= -1- (J$.
a.1 at



HERRERA: GROUNDWATER FLOW
8.19

(A3

(A3

(A

By proceeding in this manner the following equations are
obtained:

"' (R I- ' ) - ( I- ' ) * ~! (R ' )S ,),1 -"'0),1 aI' ,1
(A40a)

fJ.'(R, 0, I') = 8.(R, I')

fJ.'(R, 1, I') = s.'(R, 1, I')

fJ.(R, 0) = fJ.'(R, 'r, 0) = 0

which characterize the errors

0, = s,0,' 

= s,'

S,

A'
S

(A33a)

(A3~b)

In (A30a) the terms containing radial derivatives have been

eliminated by a reasoning similar to that used to obtain (A1)~
On the other hand, from (6a) and (7) it follows that

I ' (R '" ' ) -' ('" ' ) * ~! (R ' )., ~, t -e. ~, tat' , t (A40d)

1.(R, t') = e.(t') * ~ (R, t')
ut (A40e)(A34a)

whereHere
00

e."'(r, t') = L [CA1o(2n -r, t')
"",1

2 m

(;1')172 E e-"'/l
,,-1

At = t -to =
(A34b)

"'o(2n + t, t')] (A41 a)It is co~venient to introduce now the auxiliary functions
.f"(R. t, I'). (J"(R, t. .I'), and 8"'(R. t. I'); they are
defined by the following set of conditions:

'"
e."(.{", I') = 2 E wo(2n + .{", (')

..-1 (A41 b)

'»

e.'(s, I') = L [<lJo(2n
..-1

r, I') + (J)o(2n + r, I')] (A41c)
(A35a)

(A35b)

(A35c)lim §"(R, 'r, t') = 0
r-~

s"(R, r, 0) = 9

a2o." ao."~2 = a"til-

O~.("«X) (A35d)
which allows writing that equation as

(A36a)O~s'"<OO 1 an. + t an. af.-;;: at' 0 * at' = to at'

(A36b)

(A36c)
Consequently,

~ al.D q * f *~-v. = aal 1 0 at' (A44)
(A36d)

if 4/(1'), where i = I, 2, is such that
(A37a)

(XaiQi * to =
-q; (A45a)

(A37 b)

(A37c)

(A37d)

and

q,(O) = (A45b)

()."'(R, 0, t') = 0

()."'(R, 1, t') = s"(R, 1, t')

()."'(R, .(",0) = 0

The solution of (A45) can be derived from the formulas for
the yield given by Ha~tush [1964, p. 336]; it is

I//(t) = exp (aai2t') erfc [aa/(t')1/2] (A46)

Equation (A44) can be transf9rmed by means of (A40e)
and (A45) into (3\).

NOTATION

thickness of ith aquifer, L
ti1,ickness of aquitard, L.
function defined by (2Ob).
function defined by (20c).
function defined by (25).
function defined by (20d).

With these definitions it can be seen that

8.' = 8." + 8."" 0 ;$ ,(" ~ I (A38)

The limits 0[8., 8.', ~.'!, and 8.'" when aal tends to infinity
will be represented by I., I',f', and ["', respectively, With the
use of this notation, (A30a) implies in view of (A38) that

(81."/8,(")1'-0 + (81."'/8,(")1'-0 = ,0 (A39)
I ' ' bI bt ' ." I ", I " I , d It IS now pOSSI e to 0 aln s, ., ., ., an .

successively, From. (A35) an expression for $" in terms of Sl
can be derived, Then (A37) determine I."', which can be used
to obtain I." from (A36a), (A36c), (A36d), and (A39), Fi-
nally, I.' and I. are given by (A38) and (A3Ia), respectively,

hi
h'

e!(t')
~~(t')

eA(t. [')
eAI!)(t. t')

la)

Ib)

32)

whereas Cs is given by (32).

Equation (A34a) implies that
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8' = s' -s', L.
8T = Sl -S. = 81 -8., L
8. = SR -SI' L.
8L = S -SL, L.

The dimensionless variables Rt, I', and aat are related with
the more familiar variables rlBt, tDt, and /3t as follows:

Rt = rlBt.

t' = [(rIB,}(1 I 6/3t2]tDt.

aat = [4/3tl(rl/3,}]2.

Inversely, the more familiar variables rlBt, tDt, and /3t are
related with the dimensionless variables Rt, t'. and aat as
follows:

rl Bt = Rt.
tDt = aatt'IRt2.
/3t = Y4 aatl/2Rt.
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eA(')(t,t') function defined by (20e).
e.(t') function defined by (32).

00

.f{t') = 1 + 2 E exp (-n21(2t').
,,-I

/o(t') = (1(t')-1/2.
/L(t') function defined by (10).
~.f{t') = .f{t') -/o(t').
g(t') = .f{t') -1.
G(t') function defined by (42).

00

h(t') =1 + 2' E (-I)" exp(-n21('t').
,,-I

Ki permeability of ith aquifer, LIT.
K' permeability of aquitard, LIT.

lj, I', I. limiting values of Ot, 0', and 11., respectively, when
aal and aa2 tend to infinity.

Q pumping rate from aquifer I, LilT.
qt(t') functions defined by (A22).
qt(t') functions defined by (200).

r radial distance to pumping well, L.
rl Bi = r(K' I Ktbtb')1/2.

Rt = rlBt.
R = RI.
St drawdown in ith aquifer, L.
s' drawdown in aquitard, L;

Si' S' values of St and s', respectively, when S2 is taken to
be tero.

s., s.' values of Sl and s', respectively, predicted by Han-
tush's approximation for small values of time.

SL values ofsl, predicted by Hantush's approxima-
tion for large values of time.

S.t speccific storage of ith aquifer, L -I.
S.' specific storage of aquitard, L -I,

St storage coefficient of ith aquifer, equal to S.tbt.
S' storage coefficient of aquitards, equal to S.'b'.

t time, T.
t' dimensionless time, equal to a'tlb".
tVt = attlr.
Ti transmissibility of ith aquifer, equal to Ktbt, L'IT.

T L' lower limit of the interval of dimensionless time
I', on which Hantush's approximation for large
values of time can be applied at the pumped

aquifer (Figure 2).
W(u, v) well function for leaky aquifers.

Z vecrtical coordinate, L.
ai = KtlS.t = TtlSt, L'T-I.
a' = K'/S.', L'T-I.

- S' ISaat -t.
aac = 3aal/(3 + aaJ.

(:Jt = r/4bt[(K'S.' IKiS.t)1/'].
o(t') pirac's delta function.

Et relative error, equal to Oilsl'
E' relative error, equal to O'isl.
E. relative error, equal to O.lslo
EL relative error, equal to Olslo
t = zlb'.

<,)o(t, I') = erfc It 12(t')1/'].
00

ClJ(t,t') =.1- t- 2 E(e-"""jn1()sinn1(t.
,,-I (Received October 10, 1973

revised January 28, 1974.)(Jt =St -St. L


