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1. INTRODUCTION

This article presents a general formulation of variational
principles. By a variational principle is understood and assertion stating
that the variation or derivative of some functional vanishes if and only if
a given equation is fulfilled. An extremal principle is one which establishes
the equivalence between an equation and the fact that some functional attains

an extremun value, i.e. either a maximum or a minimum.

When the functional is differentiable, a necessary condition
for the existence of a maximum or a minimum is the vanishing of its variation
or derivative. This condition is not sufficient and consequently the class
made of all extremal principles is a proper subset of the class made of all

variational principles.

The theoretical foundations of variational methods rest on the
theory of differentiation on Hilbert spaces, or more generally on Banach
spaces {1}; more specifically on the results of that theory related to the
notion of potential operators {2}. Essentially, one can say that a suffi
cient condition for an operator equation to admit a variational formulation
is that the operator be potential and this is the case if and only if its

derivative is a symmetric bilinear functional.




When the operator is not potential it is always possible,at
least in principle, to transform the problem into anequivalent one for which
the operator involved is potential. Although it has been claimed that this
is the key by which we may obtain a very wide class of variational principles,
applicable to almpst any equation {3}, its limited practical value due to the
difficulties involved in finding such transformation of the problem must be
kept in mind. However, this approach has been used successfully to treat

initial value problems {u, 5}.

In many applications a problem can be formulated variationally
in two different ways related to each other, and the solution is characterized
Dy both a maximum and a minimum principle. The maximum and minimun values of
the respective functionals are the same. In this case the principles are said

to be dual, complementary, or reciprocal {6 - 11}.

The value of dual variational principles is great, because the
difference between the values of both functionals for a couple of *rial func
tions can be used as a measure of the accuracy of approximate solutions. In
many cases the significance of dual variational principles is further enhanced
because the functionals involved have same relevant meaning in a field of ap

plication; e.g. the energy in some physical applications.

Some complementary variational principles {10} were already
known a long time ago+, but 1t was not until 1929 that Friedrichs gave the
first systematic account of them. Courent and Hilbert {12}, based their
Treatment on Friedrich's work. Later Prager and Synge developed the hyper
cicle method {13}, Diaz and Weinstein developed an approach suitable for

+ For example, Castigliano apparently discovered in 1873 {12} that the minimum
potential energy theorem for an elastic body has a dual related to "complemen

tary" energy.



linear problems {14} and Kato and Fujita {15, 16} studied the operator decom
position L = T#T. Applications of the principles have been abundant and

accounts of them are available {6 - 11}.

The work of Noble and Sewell on the subject is especially
relevant. According to them {11}, the class of dual variational principles
is made up of generalized Lagrange principles and generalized Hamilton prin

ciples. Lagrange principles apply to a system of equations of the form

T*u = y ‘ (1.1.a)
-9y Y
T 5y = ™ (1.1.b)

where T is a linear operator, T its adjoint and Y a nonlinear functional.

Hamilton principles apply to the system of equations:

wy = X

Tu-—ax
(1.2.a)

_

Tx—Bu

Here X is a nonlinear functional. The extremal principles are granted if
some functionals defined in terms of Y and X, have properties connected with

the notions of convex, concave and saddle-shaped functionals.

Tt seems, however, there are some important points that
musf be clarified further. TFirst, there are many definitions of a deriva
tive or variation of a functional or operator {1} and flexibility in appli
cations of the theory depends on which is used. Vainberg {2} observed that
the Trechet derivative is too restrictive and consequently used the Gateaux

derivative in his treatment of the subject. However, use of the Gateaux
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derivative requires the space to be a Banach space or at least a normed
space, in which the derivative must be a continupus linear operator. When

an equation is set within the framework of variational calculus, the oper
ator involved in the equation is required to be the derivative of some func
tional and consequently it must be continuous with respect to the given norm.
This requirement complicates applications of the theory, especially when
dealing with boundary conditions. Thus, in many cases very complicated or
cumbersome norms and inner products have to be introduced {9 - 11}. Tt seems
that the introduction of such norms or innmer products is lrrelevant, at least
as regards the formulation of variational principles. TIn this work, additi
ve Gateaux variations in the sense of Nashed {1}, will be used. The theory
so obtained has great flexibility, because it can be applied when the opera
tors considered =re defined in a linear space which is not equiped with an

inner product or a norm.

There is at least one other point that must be clarified. Noble
and Sewel {11} state in the introduction to their account of dual variaticnal

pPrinciples:

"Finally we remark that this paper is in no sense intended to be
encyclopedic or exhaustive. Instead it is intended to convey an approach to
dual extremun principles which the reader may find fruitful in developing
explicit consequences for himself. The examples demostrate a worthwhile

range of applicability, without justifying any claim of universality".

it is quité clear that Noble and Sewell's work is indeed very
worthwhile. but it would also be worthwhile to develop a general scheme
which allowed us to place dual variational principles in due perspective Witg
in the general framework of the calculus of variations. The relation between

Lagrange and Hamilton principles is well established {11}, they can be ob




tained from earch other by Legendre transformations. On the other hand,
Rall {17} has developed a model for operators defined on a Hilbert space,
which makes it possible to put dual variational principles of the generalized
Hamilton type into a functional-analytical framework. However, the main
point that remains to be clarified in order to place dual variational princi
ples in perspective within the general framework of calculus of variations

is concerned with the establishment of clear relations between dual varia
tional principles and other kinds of variational principles, and Rall's work

is not concerned with this question.

In this article a general formulation of variational principles
is developed, including dual variational principles. In this manner the ‘
cormections between dual variational principles and other kinds of principles

can be better understood. Also, a new class of variational principles isobtained,

First, the basic notions and notations that will be used are
introduced. As mentioned previously, the theory is developed for operators
defined on a linear space in which neither an inner product nor a norm is
assumed to be present. The operators are supposed to be functional valued
and to possess additive Gateaux variations {1}. To keep the formulation of
the theory as simple as possible, and in thig manner emphasize 1ts most rel
evant aspects, all the operators are assumed to be defined in the whole lin
ear space considered. For operators which are only defined in a subset of
a linear space, the development of the corresponding modifications of the

theory is straight forward.

Potential operators are discussed in this setting and the sym
metry condition is established. When the operator is linear, this condition
is equivalent to requiring that the operator itself be symmetric. Extremal

principles are obtained for positive or alternatively negative operators.
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These results for linear operators are generalized to nonlinear cnes introduc

ing the notion of convex and concave functionals.

In general a symmetric linear operator L, is neither positive
nor negative. However, the linear space D can frequently be decomposed into
two subspaces D, and D_ such that L is positive in D, while negative in D_
and b =D_ + D_. Tor example, if L is a self-adjoint (continuous) linear
operator of a real Hilbert space into itself, such a decomposition is guar
anteed by the spectral theorem. When this decomposition is available, it is
shown that the variaticnal equation corresponding to the equation associated
with the operator L can be split into two. To this end partial variations
associated with D, and D_ are introduced. This pair of equations is used
to define a new class of dual variational principles. These variational
principles are generalized to nonlinear equations introducing the notion of
saddle functionals. It is then shown how Hamilton dual variational princi
Ples can be derived from them. In the last section some applications are
carried out to illustrate the theory. In particular scme dual variational
principles for initial value problems of the heat equation are obtained;

apparently they were not available previously.

To sumarize, the formulation of variational principles presen

ted in this paper has the following features:

£) Tt is developed in terms of operators defined on a linear space
(without inner product or norm), which are only required to possess an addi
tive Gateaux variation (not necessarily continuous). This formulation is
very suitable to the handling of boundary conditions in a direct and rigor
ous manner {5}.

L) A new general kind of dual variational principles is introduced.
It constitutes a link which makes a unified formulation of the different

classes of variational principles so far known, possible.
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{{L) This new class of dual variational principles introduced, yields
valuable results in specific applications. To illustrate this point, dual
variational principles for initial value problems of the heat equation are

derived.

{v) The theory is based on very simple mathematical facts. This fea
ture has didactic value, because the theory can therefore can be grasped by

people with only a limited background in Functional Analysis.

Tt is convenient to recall that the terminology applied to
different kinds of derivatives of functionals and operators changes very much
with different authors. In this paper the terminology presented by Nashed {1}

in his account, is followed to a large extent.

2. PRELIMINARY NOTIONS AND NOTATIONS

All the linear spaces to be considered will be defined on the
field of real numbers R!. Given two linear spaces D, and D,, the set D; x D,

is defined by:

D; x Dy = {(Xl, Xz) \ x1 €D, and XQEDz} (2.])

The set D; x D, becomes a linear space 1f the operations of

sun and multiplication by a real number are defined by:

x +y = x; +vy1, x2 +y2) (2.2.a)
ax = (ax;, axz) (2.2.b)
whenever x = (xy, x2), y = (y1, y2)eD; x D, and aeR'. 1In view of the fact

that the product between linear spaces is an associative operation, the

product Dyx...xD between n linear spaces Di,..., D, is well defined.




If D=1Dyyeu., D = D, the notation

D = Dlx...an (2.3)

will be used.

Each of the spaces Dj’ J=1,...,n, is isomorphic to the linear

subspace:

p. = {(0,...,0, X 0,...,0)}= Dyx...xD (2.4)

Observe in addition that

Djﬂ Dk = {OeDlx...an} , whenever j # k (2.5.a)
e = e 2.5.b
Dyx...xD =Dy + Dy + + D (2.5.b)

These properties will be used in the sequel. On the other hand, Dy, D, =D

are called a decomposition of D if they are independent and span D,

Given two linear spaces D and D', an operator

P:D->D (2.6)



is said to be linear if it is additive and homogeneous+. The value of a

functional:

o : D" > R? (2.7)
at an element x = (xl,...,xn) e D" will be represented by u(xl,...,xn).
Such a functional is said to be n-linear in D if a(xl,...,xn) is linear

in each o when all the other arguménts are kept fixed. For n-linear func

tionals the notation

Oy Xpseee,X > = a(xl,...,xn) (2.8)

will be used. It must be recalled that no inner product will be used in
this paper and that the notation introduced by equation 2.8 does not imply

that an inner product in the linear space D is assumed to be present.

The set of n-linear functionals will be represented by 0",
When n = 1, this is the dual space of D that will be represented by D*. In

addition, ‘the notation

D°* = Rl (2.9)

will be adopted. With the usual definitions of addition and multiplication

of functions, by a real, the set p"* is a linear space for every n = 0, 1,...

In this article, functional valued operators
P:p-p"" (2.10)

+ For some authors such as Vainberg {2} the term linear operator includes
the hypothesis of continuity. Observe that this is not required in the
sense the term is used in this paper.
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play an important role. Notice that when n = 0, the operator P given in
equation 2.10 is by virtue of equation 2.9 a functional. When n = 1, for
every x, yeD, <P(x), y> € R'. As a matter of fact <P(x), y> defines a
functional on D? linear in y. Obviously, every functional on D? which is

linear with respect to the second argument defines an operator

P : D~ D*

In particular, if P = L is linear, the corresponding functional is bilinear
in D. Therefore, given L : D + D%, the adjoint operator L* : D - D* can be

defined by:

<L X,y> = <Ly, x> (2.]1)

which holds for every x, yeD.

For operators of the type equation 2.10 the notion of continuity

can be introduced without a toplogy in D.

2.1 Deginition

L

Let P : D> D", Given xeD, P is said to be bidimensionally
continuous at x, if for every vy, z, El,...,gnab the function f(n,\) of the

two real variables n and A defined by:

f(n, A) = <p(x + ny + Az), Erave,E > (2.12)

i1s contimuous at n = A = 0.
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Given x, v, gl,...,gneo let g be a function of the real

variable t defined by:

g(t) = <P(x + tY)9 g19"'»g > (2-13)

Fixed xeD, if the derivative g'(0) exists for every y, &1,..., EneD, it is

vecessarily linear in each one of gl,...,gn, so that

9'(0) = <VP(X; Y)! El:"-,gn> (2‘1A)

e

where Vp(x, y)ed" . Tn addition, g'(0) is also necessarily homogeneous

iny. If g¢'(0) is additive in y, one can write:

g'(0) = <P (x), v, &1sevnhE > (2.15)

where P'(x)aD(n + ])*.

2.2 Depinition

(n + 1)%

Given xeD, if a functional P' (x)eD exists such that

with g(t) given by equation 2.13, equation 2.15 holds for every y, £i1,...,
EnED, then it is said that the Gateaux variation of P exists and is additive+

at x.

Tor the additive Gateaux variation, the alternative notation
— (x) = p'(x) (2.16)

+ Observe that P'(x) is only assumed to be additive but not continuous.
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will be used. The nth-order additive Gateaux variation is defined induc

tively and will be deroted by P™ (x)ep""

When the linear space D is the direct sum of two independent
subspaces Dy and D, then for every yeD there exist y;eD; and vy,eD,

uniquely defined such that

Y=y ty; (2.17)

In this case, if the additive Gateaux variation exists at xe€D,, two func

(n + ,)*

tionals P,y (x)epln * 1% and P, (x)eD can be defined by:

<P,1(X), Ys El;---;gn> = <P'(X), Y1, Els---)€n> (2-18.8)

P2, Vs ErpeensE = <P, va, Erpeen,E (2.18.b)

for every y,gl,...,gnED. The functionals P,;(x) and P,,(x) will be called
the partial Gateaux variations of P in the subspace D; and in the subspace

Dy, respectively. Observe that

P'(x) = P, (x) + P,,(x) (2.19)
The altermative notation

%—)’:—1- (x) = P,;(x) (2.20.a)

P () =p,,(x) (2.20.b)
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will be used. Higher order partial variations are defined inductively.

The following theorems and definition are quoted for further

reference.

2.3 Taylon's theorem

Let

£) ¢ : D~ R!

AL} ¢ have additive Gateaux variations up to order n + 1 in D

(n + 1) (n + 1)*

AL ) the operator Y : D> D be bidimensionally

continuous in D.

Then given x, yeD, there exists £ belonging to the segment

that joins x with y such that:

ED(Y) = q)(X) +<¢'(X), y = X2 + ... +'r"|1T<ll)(n)(x)’ Y = Xyeves Y - x>
+ TF"%"TTT'<w(n ' ])(E), Y T Xyeee, ¥ T X2 (2.21)

2.4 Definition

An operator P : D -+ D* is said to be potential if there exists

a functional

such that

¥ (x) = P(x) (2.22)
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for every xeD. In such a case the functional ¥ is said to be a potential

of P.

2.5 Theorem
Let

4L P D> Dy
L) P have an additive Gateaux variation P'(x) for every xeD;
L) the bilinear functional P'(x) be bidimensionally continuous for

each xeD.

Then a necessary and sufficient condition for P to bea potential

operator is that for every xeD the bilinear functional P'(x) be symmetric; i.e.

PHX), vy, 2> = <Pl(x), z, y> (2.23)

for every y, zeD.

Proofs.~ The proof of Theorem 2.3 follows from a straight
forward application of Taylor's theorem with residue for functions of one
variable. The proof of Theorem 2.5 can be carried out in a similar manner
to that suggested by Vainberg {2, pp. 56}; the details are given in the

Appendix.

Of special interest is the case when the operator P = L is
linear.
2.6 Conollany

Let L : D~ D* be a linear operator. Then L is potential if
and only if L is self-adjoint.

Proof.- It is an obvious consequence of Theorem 2.5.
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3. VARIATIONAL PRINCIPLES

The general problem to be considered consists in finding xeD

such that

p(x) = f (3.1)

where P is a functional valued operator P : D - D*, feD* and D is a linear

space.

By a variational principle is understood an assertion that
establishes that the variation of a functional vanishes at a point if and
only if the equation 3.1 is satisfied. A sufficient condition for the
construction of variational principles is formulated in the theorem that

follows.
3.1 Theonrem

Let P be potential and ¢ : D » R! be a potential of P. Define

Q: D~ R' by

Qlx) = plx) - <f, x> (3.2)

Then, x €D is a solution of equation 3.1 if and only if

—(x)=0 (3.3)
Proof.- The proof follows from the fact that:

1]
dx

(x) = P(x) - f (3.4)
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In the case of potential linear operators

-;—<Lx, x> (3.5)

<=
x
1

and consequently

%—<Lx, x> = <f, x> (3.6)

)
x
ft

4, EXTREMAL PRINCIPLES

In what follows a point xOED will be said to be a maximum of

a functional  if

alx ) > alx) (4.1)

for every xeD. The maximum will be said to be strict if the inequality holds

whenever x # X Minimun and strict minimum are defined in a similar manner.

By a maximum principle is understood an assertion establishing
that a certain functional attains a maximum at a point if and only if equa
tion 3.1 is satisfied there. An analogous definition is given for a minimum
principle. An extremal principle is one which is either a maximum or a mini

mum principle.

As is well-known, under very general conditions any extremal

principle is a variational principle.
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4,1 Theohrem

Let O : D - R'possess an additive Gateaux variation at x eD.

If Q attains either a maximum or a minimym at X then

d (x ) =0 (4.2)

dx 0

Proof.- Because, for every yeD:

Qlx + ty) - lx)
Sy, y> = tim S ° <o (4.3.2)
dx o) t -
t >0
and
alx = ty) - QAx )
- <-g% (x)), y> = lim o °© <y (4.3.b)
t >0
Thus
a9 _
<'a‘;(“ (XO)’ y> = 0

for every yeD.

A linear operator L : D - D* is said to be positive if

4.5)
<lx, x> > 0 (
for every xeD. It is strictly positive if the inequality holds in equation
If .5 whenever x # 0. For positive operators it is easy to formulate minimum

principles.
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4.2 Theonrem

Let the operator P = L : D » D* be linear and potential.
Assume further that L is positive. Then © : D - R! as given by equation 3.6

attains a minimum at x €D if and only if X satisfies equation 3.1.

Proof.- First, a convenient notation is introduced. Tor any

X_» *,ED, the following definitions are given

AR

Q(x+) - nlx ) (k.6.a)

Ax = x - x (4.6.b)

e _ dn
x I (x+) (h.6.¢)
+
o _ d
E?;__ pm (x_) (4.6.d)
Then, set X_ = X and observe that
0 < l-<LAx x> = AR - 4 Ax> (4.7)
__2 H dx—’ hd
But
9@ _ i - ¢ (4.8)
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Thus, if X satisfies equation 3.1 then

alx,) > alx) (4.9)

for any x_ eb and consequently X 1s a minimum.

Conversely, if X, is a minimum equation 3.1 is satisfied by

virtue of Theorem 4.1.

There are two obvious corollaries to Theorem Y4.2; namely:
4.3 Conollany

If in Theoren 4.2, L is assumed to be strictly positive then

Q attains strict minimum at x €D if and only if X satisfies equation 3.1.
4.4 Cornollany

Tf L is strictly positive, then equation 3.1 possesses at

most one solution.

The extension of the results of Theorem 4.2 to non-linear
operators is straight forward if use is made of the notion of convex and
concave functionals. To introduce these concepts, it is convenient to retain

the notation used in the proof of Theorem 4.2.
4,5 Deginilion

A functional Q : D -~ R! possessing an additive Gateaux

variation for every xeD, 1s said to be convex if

AQ - il , Ax> > 0 (4.10)
dx -
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for every x, » x_eb. It is strictly convex if the strict inequality holds
whenever x, # x_ . In addition Q is concave or strictly concave if - Q is

convex or strictly convex respectively.

It is converient to observe that the inequality 4.10 can be

replaced by

b - < e <o (4.11)
dx —_
+
Indeed, equation 4.10 and 4.11 are obtained from each other, interchanging

the roles of x, and x_.

4.6 Theorem

Let P and Q be as in Theorem 3.1. Assume Q to be convex.

Then x €D satisfies equation 3.1 if and only if X is a minimum of Q.

Proof.- The inequality equation 4.10 is the same as inequality
equation 4.7. Thus, the proof can be carried out along the same lines as

that of Theorem 4.2.

The results contained in corollaries 4.2 and 4.3 follow from
Theorem 4.6, in the case when  is strictly convex. It is also convenient

to observe that O is convex if and only if ¥ is convex, because:

o0 d¥y
AD - <§.;(_ , Ax> = AY - <a’ , Ax> (L}.IZ)
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The concept of a convex functional is a natural generalization
of the concept of positive operator and therefore Theorem 4.6 is natural
generalization of Theorem 4.2. This can be better appreciated by recalling

the theorem that follows.

4.7 Theonrem
Let © : D > R! be such that:

£) © has second order additive Gateaux variation at every Xe€D;

i) Let @' : D~ 0¥ be bidimensionally continuous in D.

Then a necessary and sufficient condition for (I to be convex

is that for every xeb, 2'(x)ed?” be positive.

Proof.- 1In view of Taylor's Theorem 2.3 for every x_ , x €D,
we have:
M- <, b = Laqn(e), bx, be> (4.13)
N 2

where £ belongs to the segment joining x_ with X, - Therefore, if Q"' (E)
is positive for every £eD, @ is convex.
To prove the converse, assume that for same yeD, 2" (y) is not
a positive bilinear functional. Then, there exists some zeD such that
< (y), z, z> <0. The function of the real variable X given by <Q"(y + Az),z,z>
is continuous and consequently there is some real Ay<0 with the property that

for any real A; such that |A;|<Xq:

<y + A\z), z, 2> <0 (h.1h)
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Chose a Ay satisfying this condition and set X_=y - \z ; X, =y + hz.
Then, by Taylor's Theorem 2.3, for some real A» which satisfies the condition

A2 < [A1], we have

A - <.g% , Ax> = 2)\f <My + Apz), z, z> <0 (4.15)
+

Thus, 2 is not convex and the Theorem is proved.

Evidently, the concepts maximum-minimum, covex concave, Pos.
itive-negative constitute dual couples and it can be seen that the theory
developed in this section remains valid if each of these concepts is inter

changed with each of its duals.
5. DUAL VARIATIONAL PRINCIPLES

Theorem 4.2 by establishing extremal principles for positive
linear operators, has restricted applicability because there are many linear
operators of interest which are neither positive nop negative. A theorem

will now be formulated that has a larger range of applicability.

Consider a linear and potential operator P = L : D - D*. As

sume there exists a decomposition D;, D, of D, such that

¥(x) = 5 <Lx, x> > 0 (5.1.a)

whenever xeD; and

Y(x)

1

> <Lx, x> < 0 (5.1.b)
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whenever xeD,. On the other hand, the definition of partial Gateaux varia
tions equations 2.18,can be applied because D;, D; are a decomposition of

D. When this is done, equation 2.19 implies that

w_m L m
dx 9x1 * 9X 2 (5.2)

Therefore, equation 3.3 is fulfilled if and only if

= (ki xe) = 0 (5.3.2)
95
Bxo (x1 » x32) = 0. (5.3.b)

Here the direct sunm of D; and D, has been identified with their cartesian
product, in view of the fact that D, D, constitute a decomposition of D.
Accordingly, every xeD has here been written as x = (x;, x;) where (x;, 0)eD,;

and (0, X2)ED2.

Using this notation a dual variational principle for linear

operators can be formulated.

5.1 Theonem
Let L : D > D* be a linear potential operator and  be given

by equation 3.6. Assume further that a decomposition Dy, Dp of D exlsts

which satisfies relations 5.1. Define the sets

A = {xa = (x, , X2a) ] X satisfies equation 5.3.a} (5.4%.a)
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and

B = {x = (X1 » X2p) | x, satisfies equation 5.3.b)}. (5.4.b)

Then:

4}  Each x_EA and X, €B satisfy

Qx5 5 X2a) < Qlxip » Xab) . (5.5)

AL) VWhen a solution £ = (&,, E,)eD exists which satisfies the system

of equation 5.3 (or equivalently equation 3.1), we have:

a) The maximun in the set A of Q is achieved at £
B) The minimum in the set B of 0 is achieved at £

v)  The maximun value of Q in A coincides with its

minimum value in B.

Proof.- First, a convenient notation will be introduced. Given

any two elements x, = (x,, , x,4) €D and x_ = (x;- , x,-)€D, define:
Dxy = X, = X (5.6.a)
DX, = Xpp = X, (5.6.b)
A = Q(xl+ , x2+) - Qxq_ X,-) (5.6.¢)
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on _ o0
&-1_ = _3X1 (Xl_ s Xz_) (5.6.d)
9 _ 9fd
—8_x'2+ B aXz (X1+ ’ X2+) (5.6.6)

Now let ¥ be the functional given by equation 3.5. Then

R R e TR (5.7)

Thus, 1f x_eA and x €B it follows that

Qlx,) > alx) (5.8)

+ —

and consequently equation 5.5.

On the other hand, if a solution & of the system equation 5.3
exists, then necessarily EeAMB. In view of this fact, o and B are imme:

diate consequences of equation 5.5. TFinally, Y 1is now obvious.

5.2 Corollany

If in Thecrem 5.1, L is assumed to be strictly positive in Dy

and strictly negative in D,, then

) (5.9)

whenever x €A, x, eB and x_# x
a b a b
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44)  There is at most one solution of the system equations 5.3.

L) IF the maxdmum value on A and the minimun value on B of 0, are
both achieved and they are equal, then the solution of the system equation 5.3

ex1sts.

Proof.=- The proof of () is straight forward, because in
equation 5.7 only the strict inequality can hold when Ax, # 0 or Ax, # O.
L) follows from £} because any solution belongs to A and B. Finally, if
the maximum on A is achieved on X and the minimun on B is achieved on Xy

and

then x, @nd x, cannot Le different by £). Consequently x, = x EANB and this

13 a solution of the system equations 5.3,

The proof of Theorem 5.1, was based on relation equation 5.7.
Consequently the generalization of the results of that Theorem to non-linear
operators can be carried out for functionals satisfying that relation. The
notation introduced in the proof of Thecrem 5.1, will be retained in what

follows,

5.3 Deginition

Let D = D; x D, be the product space of two linear spaces
Dy and D,. Consider a functional X : D - R! which possess an additive Gateaux
variation for every xeD. Then X is said to be saddle, convex in D; and

concave in D, if

A ‘
AX - <%)X? , Axy> - 5’-3— , hxy> > 0 (5.10)
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for every x_ , x_gD. X 15 said to be strictly saddle if the inequality is

strict whenever X, # X_.

There is a close connection between the concepts of saddle

functional and those of convex and concave functionals.

5.4 Theonrem

A necessary and sufficient condition for X : D + R' to be
(strictly) saddle, convex in D, and concave in D, is that for each fixed
x,€D,, X be (strictly) convex in Dy and for each fixed x;eDp, X be (strictly)

concave in Dj.

Proof.- Assume X is saddle. Then if X,_ = Koy o relation

equation 5.10 bhecomes:

, 2 X
X(xy, s %, ) = Xk oxp ) - S, Axy> > 0 (5.11.a)
Similarly, if x,_ = x, , then:
X( ) oo Xy, o, xpo) = <X x> > 0 (5.11.b)
X1+ ’ )(2+ 1+ °? D - 8X2+ y 2 - . .

The inequality equation 5.11.a shows that X 1s convex in x; while equation
5.11.b shows in view of equation.u.ll +hat X is concave in x,. This completes
the proof of necessity. Conversely, if the inequalities equations 5.11 hold
simultaneously, by adding them one obtains equation 5.10. All these arguments
can be carried out when only the strict inequalities hold and therefore the
assertions of the theorem are valid when the strict properties are conside

red.
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Let X : D > R! possess an additive Gateaux variation in D. The
condition that the Gateaux variation of X vanishes at a point x = (x1, x5)eb

= D1 x Dy 1s equivalent to the system:

X

X (x1, x) = 0 (5.12.a)
%{—2 (x1, x5) = 0 (5.12.b)

For such a functional the following theorem is established.
5.5 Theonrem

Let Dy, D, be two linear spaces and D = D; x D,. Consider a
functional X : D - R! which has a Gateaux variation in D. Assume X is saddle,

convex in D; and concave in D,. Define the sets:

A = {xa = (x,_, x, )ed | x satisfies equation 5.12.a} (5.13.a)

and

B = {x = (x1b » X, )ed | x, satisfies equation 5.12.b} (5.13.b)

A4) Each x €A and x, B satisfy

20x) < alx,) (5.14)



29

i) When a solution & = (&1, &2)eD of the system equations 5.12 exists,

we have:

o) The maximum in the set A of X is achieved at g
v) The minimum in the set B of X is achieved at &
v) The maximum value of X in A coincides with its

minimum value in B.

Proof.- This can be carried out along the same lines as the

proof of Theorem 5.1.
5.6 Corollarny

If in Theorem 5.1, X is assumed to be strictly saddle, then:

L)

Kx) < x(x,) (5.15)

whenever x €A, x, €B and x_ # X5
a b a b

{{) There is at most one solution of the system equations 5.12

i4{) If the maximum value on A and the minimum value on B of X, are
both achieved and are equal, then the solution of the system equations 5.12

exists.
Proof.- This is the same as that of Corollary 5.2.

Theorem 5.5 is a natural generalization of Theorem 5.1. As a
matter of fact, the requirement that the functional X be saddle, is nothing
elee but the requirement that a decomposition of D into D, and D_ hold local

1y, as can be seen in the Theorem that follows.



30
5.7 Theorem
Let X : D; x D > R' be such that

4) X has additive Gateaux variations up to the second order

£4{) The operator X' : D > D?* is bidimensionally continuous in D.

Then a necessary and sufficient condition for X to be (strictly)

saddle, convex with respect to D; and concave with respect to D,, is that

2 b . . .
for every xeD, g—é-(x)ebz“ be (strictly) positive and that at the same
9x1 »
time for every xeD, — (x)}eD?* be (strictly) negative.
BXZ
Proof.- This follows from Theorem 5.4 in view of Theorem 4.7.

6. HAMILTON PRINCIPLES

In this section Hamilton principles {6 - 11} will be derived

from the results of section 5.

Let D = D; x Dy where D; and D, are two linear spaces. Consider

an operator T : D - D* and define a functional 6 : D -+ R! given for every
x = (x1, x3)eD by:

~

G(X) = <Tx; , Xp>» = <T#%xp, , X1> (6.1)

Here T* is the adjoint of T. Given a functional X : D - R! another functional

X : D> R' is defined, given for every x = (x;, x2)eD by:

X(x) = X(x) - 8(x) (6.2)



31

When Theorem 5.5 and Corollary 5.6 are applied to the func

tional X, one gets Hamilton's dual variational principles as given by Noble

and Sewell {11}. This can be seen in the next theorem.

6.1 Theonrem

A

Let X possess an additive Gateaux variation on D and X be given

as explained before. Then there exists a linear operator T : D =+ D* such

that:
X = X - T ;
T (x1 , x2) = 5 (x1 4 x2) = Toxg (6.3.a)
XLy X )
ggk (X1 s Xz) = g;é (Xl N XZ) TXl (6.3.b)

In addition, any x;eD; and x,€D, satisfies:

<Txy; , 3> =0 (6.4.a)
Tx, = 0 ' (6.4.b)
T*Xl = 0 (6.A.C)
<Thxy, Xp> = 0 (6.4.d)

~ Proof.- Before proceeding to prove this theorem, observe that
equations 6.4 show that T and T* can be interpreted as mappings T : D; ~ D?

and T* : D, > D} such that:

<Tx: , X2” = <Tdxy , X312 (6-5)
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for any x,eD; and x,eD,. This interpretation yields Rall's formulation {17}.

To prove the theorem, define T : D > D% for every x = (x1, x2)eD

and y = (y1, ya2)eD by:

N

<T(x), y> = <Txy , y,> (6.6.a)

Consequently T is linear and

-~

<T:‘:x’ y> = <Ty1 y Xp> (6.6.b)

Using these definitions of T and T+ the proof of the theorem is straight

forward.

Finally, it is worthwhile recalling that the correspondence

X +> X defined by equation 6.2, which is obviously one to one, preserves

the saddle property, because:

X X

AX - <$'1_ y Axp> = <"""+ y Dxp> =

AX - <§5- y Oxy> = <§£ , Ax, > (6.7)
ax, _ 0%y, 2

7. APPLICATIONS

Two applications will be made of the foregoing theory; in the
first boundary conditions of linear problems will be treated and in the second
dual variational principles for initial value problems of the heat equation

will be developed.
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£) Boundany conditions §on Linear probLems.  Boundary conditions that
have been treated by previous authors {11, 18, 19} can be included within
the present framework and a general formulafion for them will be presented
elsewhere. Here, only the general ideas of the procedure are explained and

applied to a linear problem.

Let D be a linear space of functions defined on a compact con
nected subset E of R” with smooth boundary 9E. Let E : D> D¥ be a linear
operator. A formal adjoint of E is an operator E# : D » D* such that for
any x, yeD:

<Ex, y> = <[#y, x>+ ¢(x, vy) (7.1)

where ¢ : D? - R! is a functional whose support is contained in 8E. Obviously,
¢ is a bilinear functional in D, because <Lx, y> and <L"y, x> are bilinear

Fal

functionals. It is therefore possible to define operators B : D + D* and

B# : D - D* with support in 3E such that for every x, yeD:

A ~

<Ax ,y> + <Bx ,y> = <L*y ;x> + <B#y , X> (7.2)

Indeed, all that is required is that

<g#y y X> = <Ex L y> = olx, y) (7.3)

for every x, yeD. In view of equation 7.2 an operator L : D - D* and its

adjoint L* : D - D* can be defined by:

~ ~

<Lx ,y> = <Lx ,y> + <Bx ,y> (7.4.a)
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and
S - A# A#
<L4\x’ y> = <L X, y> + <B X, y> (7.Ll.b)

which hold for every x, yeD.

In applications, the equation

Lx = f ; , (7.5)
can frequently be established at the outset, together with some linear bound
ary conditions. To formulate the problem in terms of functional valued

operators it is necessary to construct L : D » D* and feD* in such a way that

Ix = f (7.6)

if and only if equation 7.5 and the boundary data are satisfied. Assume that
Lx + Bx = 0 if and only if Lx = 0 and Bx = 0. Then a further requirement for

B is that Bx vanishes if and only if x satisfies zero boundary conditions.

In this case
f=1f4+f (7.7)

where fBeD* is determined by the boundary data alone.

However, 1t can be seen that even after satisfying these
requirements, considerable arbitriness is left for the definition of the
adjoint operator. For example, if L is self-adjoint, then equation 7.3
becomes:

-~ ~

<By, x> - <Bx,’y> = ¢(x, y) (7.8)
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which obviously implies that ¢(x, y) is anti-symmetric. Let P : D - D* be
self-adjoint, such that Px = 0 whenever x satisfies zero boundary conditions.

Then
L+P=L+B+P , (7.9)

is also self-adjoint and can also be used to define the functional equation

which is equivalent to the given problem.

To illustrate the preceding abstract theory, consider the heat

equation

(7.10.a)

|
|

in a normalized region 0 < t < 1 and 0 < x < 1, with boundary condition

u(o, t) = fp3 0 <t <1 (7.10.b)

u(l, t) = fo5 0 <t < (7.10.¢)
and initial condition

u(x, 0) = uo(x) 3 0 < x <1 (7.10.d)

The linear space in which the problem is set, will be taken

to be
D= {u:[0,1} x [0,1] ~ R*|ueC?} (7.11)
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It has been shown previously {5} that in order to associate

to this problem a symmetric functional valued operator L, it is convenient

to introduce a transformation p which reflects the variable t of any function

at the mid-point of the interval [0,1]; i.e.(pw)(t) = w(1-t)

Then applying p to equation 7.10.a the equivalent equation

(7.12)

is cobtained.

Integration of the left-hand member of equation 7.12 after

multiplying by veD leads to define L : D -+ D* by

~ 1 2
<Lu, v> = [ [v=?§2-* v:EQ—Ede (7.13)
0 ot BXZ

(u*v) (x) = { ulx,t) vix,t - t)dt (7.14)

has been used. Integration by parts in equation 7.13 yields

A A 1

A - o % L iy - — |
+[3X v Ix u]x=0 [BX v 9x u:’x=1 (7.15)
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Clear this equation leaving on only cne gide all the data for

u of the problem, to obtain:

~ L Qv
<Lu, v> + |u * 5]

(7.16)

1l

R 1 L ou . . ou
<Lv, u> + g [V(X, 0) ulx, 1)] dx + [V h 5;'] [V T dx ]x =1

The left-hand side of this equation defines a functional of
v. Tt is the null functional if and only if u is a solution of problem

7.10 with zero data.

A

Therefore B can be defined by

. 1
<Bu, v> = [u * %%]x -0 [u * %ﬁf]x - 1 + { ulx, 0) vix, 1)dx (7.17)

and L = L + B. Applying equations 7.13 and 7.17 to a solution of the system

7.10 leads to define f and FB by

<f, v> = f f_ % vdx (7.18.a)
0

for every veD. In this manner equation 7.8 is fulfilled if and only if
equations 7.10 are satisfied. By inspection of equation 7.16 it is seen
that L is self-adjoint. However, let P : D = D* be given by

1
<Pu, v> = J u(x, 0) vix, 0)dx (7.19)
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and f b+ by

1
<fp,v> = { up (x) vix, 0)dx (7.20)

Then L + P is self-adjoint and
(L+Pu=fFf+ fl (7.21)

is equivalent to equation 7.10. Tn a similar marner additional terms asso

ciated with the boundary conditions can be introduced.

Define now

X{u) = = <Lu, u> - <f, w (7.22)

1
2
Theorem 3.1 implies that u satisfies the system 7.10 if and only if

X' (u) =0 (7.23)

This result was presented in {5} but now dual variational principles can be

formulated.

) Dual variational prineiples. For simplicity take D as before,
except that now its elements are required to satisfy homogeneous boundary
conditions equations 7.10.b and ¢). Consequently in what follows fBO and fB1

will be assumed to be indentically zero. In this case

—-l 1 :‘:ﬂ"— .ai 7':.a.li— * ]
X(u) = 5 { [u T + o = ZfR u |dx

s [u(x, 0) - 2u0(x)] ulx,1)dx (7.24)
0
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The sets

Dl = {UED | u('] - t) = U(t)} (725.3)
and

D, = {ueD I u(‘l - t) = - u(t)} (725b)
constitute a decomposition of D. In addition for every ueD;

- 1 1 ! au 2 2
<Lu, u> = 5 ST | = |dt + u?(x, 0)pdx < 0 (7.26.a)
0 0 X -

and for every ueD,

2 (7.26.b)

1.1
<Lu, uw = - f{f [Eﬂ}dt + u?(x, O)tdx < 0
o Lo Lox -

Furthermore, in equation 7.26 the equalities hold only if u is identically
zero. Thus, L is strictly positive in D; and strictly negative in Dsp.

Consequently Theorem 5.1 and Corollary 5.2 are applicable.

To obtain the dual equations, observe that

<X'(u), v> = <Lu - f, v> (7.27)
Then

OX (u), v> = <Llu - f, v;> (7.28.a)
Bul
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and

» V> =<Llu - f, v,> (7.28.b)

5% - g_}]s § [fR]s
’ (7.29.a)
u(x, 0) = ug(x) )

(7.29.b)

u{x, 0) = uo(x)
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APPENDI X

In this appendix the proof of Theorem 2.5 i1s given. Before

proceeding to develop it, a few remarks will be made.

Tor any fixed x, yeD, observe that <P(x + t(y - x)), y - x>
is a continuous function of the real variable t. Consequently, this function
can be integrated with respect to t and a functional G : D x D > R' can be

defined by

G(x, y) = { <P(x + tly - x)), y - x>dt (A.1)

A.1  LEMMA

Under the hypotheses of Theorem 2.5, the functional G given

by equation A.1 satisfies the relation

G(x, z) = G(x, y) + Gy, z) (A.2)

for every x, y, zeD, when P'(x)eD?* is symmetric for every xeD.

Proof.- Consider two functions of the real variables £, n

defined by

Fi(&, n) = <P(x + E(y = x) +n(z - y)), y = x> (A.3.a)
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FalE, n) = <P(x + E(y - x) +nlz - y)), z - y> (A.3.b)
Obviously
3F, 3F,
5;1— (E, n = S-é—-‘ (E, n) (A-L*)

because P' is symmetric. Consequently the line integral J Fid& + F,dn van
ishes for any closed curve on the £, n-plane. But equation A.2 is now obvi
ous when this relation is applied to the triangle joining the points (0, 0),

(1,0) and (1,1) of the £, n-plane.

Proof of Theorem 2.5.- Let ¥ : D » R be a potential of P,and

given any x, y, zeD define a function of two real variables by

fE, n) = ¥(x + &y + nz) (A.5)
> 3%f _ 3%f
Under the hypotheses of the theorem, feC® and consequently §E§H-= 3TAE

Using this fact it may easily be seen that the condition is necessary.

To show that the condition is sufficiert, the functional G given
by equation A.1 will be used. In addition, it is convenient to introduce

a functional ¥ : D -+ R! given by

1
¥(x) = { <P(tx), x> dt = 6{0, x) (A.6)



for every xeD. If given x, yeD, a function g of the real variable t is

defined by

g(t) = G(x, x + ty) = t{1<P(x, tty), y>dT (A.7)
then
g'(0) = <P(x}, y> (A.8)

because the expression under the integral sign in equation A.7 possesses

a first order continuous derivative.

Finally, given x, yeD, let h : R! > R! be given by

for every real t. Then
h'(0) =<P(x), y> ‘ (A.10)
which shows that the Gateaux variation of ¥ exists, i1s additive and

Y {x) = P(x) (A.11)
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