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Th~lG'ION . The results presented in this paper ~e abtainai in

the course of an investigation on transient flOll of fluids in porous

media but they are equally applicable to other problans governErl by the

heat diffusion equation.

Variational principles have been lisen extensively in ground water

hydrology.

Recently, they have servoo as basis for the developrent of

1, 2].finite el6'nent techniques for fluid flON proolems in PJrous media

A variational principle is an assertion stating that the derivative

or variation of SOI1E functional vanishes if am only if a given equation

is fulfilled. An extrEmJIn principle is one which establishes the

equivalence be~ an equation and the fact that SaTE functional attains

Variational andan extrEm1In value, either a maxim.1rn or a mininum.

extrEm.1m principles be::aoo interrelated when the fuoctionals involved are

differentiable, for then a ne::essary corrlition for the existence of an

extre:rnJm is the vanishing of the variation. Naturally this roooition is
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not sufficient and, therefore, the class of all extre:num principles is a

proper subset of the class of all variational principles. Fbr linear

variational principle to beoperators, a sufficient condition for the

'Illis result can beextranal is that the operator involve:i be IX>sitive.

generalized to nonlinear equations intrcrlucing the notion of convex

3] .functionals; it is then required that the functional involved be convex

II

II Traditionally the theoretical foundations of variational n-ethoos have

been placErl on the theo:ry of differentiation on Hilbert spaces, or ll¥)Te

4] , am, in p3rticular, on the resultsBanach sp:lcesgenerally, on

pertaining to the notion of potential operators [ 5] . Essentially, one

can say that a sufficient condition for an operator equation to admit a

variatonal formulation is that the o~ator be I;X)tential, and this will be

so if and only if its derivative is a symretric bilinear functional. When

the operator is not potential it is always possible, at least in principle,

to transform the problem into an equivalent one for which the operator

Though it has been clafuel that thisinvolved satisfies this condition.

is the key to obtaining a very wide class of variational principles,

j
!
I

I"
6, 7], one has to be aware of its limitedapplicable to any equation

practical value due to difficulties involvoo in finding such transformations.

Dual prmciples, also calloo canplen-entary or reciprocal, fonn

E>camples are the Lagrange amanother class of variational principles.

In elasticity and the thoory ofHamilton principles in nEchanics.

II
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structures the energy principle am the principle of c..'anplarentary energy

have been used extensively. When a dual principle is available, the pro-

blem oonsida-ej is fo:m1Ulaterl variationally in tYJO different but ll1terrelatoo

In one formulation a solution is characterized by a maximum principle

ways.

The m3Ximum and minimum values ofand in the other by a minim..1nl principle.

the re!;'~tive functionals are the SaIre.

The value of dual variational principles in applications is great,

because the difference between the values of both functionals for ~ dif-

ferent trial functions can be used as a ~sure of the accuracy of approxi-

nate solutions. In n'any cases the significance of dual variational prin-

ciples is enhanced because the ftmctionals involved hav'e by thenselves

SaTE relevant physical neaning, e. g. the energy. Applications of the

principles have aboundErl and arxounts of than are available [ 8-12]

'I'he work by Noble and Sewell 12] is especially relevant. 'Ihese

authc.)rs have derived dual variational principles in the fom, of generalizerl

Lagrange principles applyLagrange and generalized Hamilton principles.

to a systen of equations of the fo:I:In

T*u=Y

ay

'ay

ay

au
T -

Where T is a linear operator, To. its adjoint and Y a nonlinear functiQ~a1
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Hamil tcm principles apply t.o the system

'aX

'ax

T* u = (2.:1)

'CiX

{ J!'" J,~=-
au

Here X is a nonlinear f1;rri:ionul. ~1e e.xtreImJrr\ l;).cinciplcs are estc\i):"i~1~

if sanE functionals definffi in terms of Y and X h1,re prope'Ities oonnectErl

with r.he notions of convex, ooncave and saddle-slii'~A):.1 functionr1] :~;.

Variational and extrE!rD.:ml principles of the various types descrjbE::..:1

have heen developed for steady-state probl6T1S in fluid flON through ~"'X1l"(;II!"1

merlia. They are associated with the classical results of potential tr,POllr

Fbr initial value probl6t1S theand elliptic differential equations.

Only variational principles ufdevelopment has been less satisfactory.

the simplest type are available, am up to nON neither extrenulm oor dtla]

principles have been obtainoo.

The available variational principles for transient flOli of grolmd

13, 14] using an approadlwater were formllaterl by Neuman and Wi therst:x)on

deve l.')ped by Gurtin [ 15] . Glrtin's variational principles were originally

obtainE'rl fran considerations regarding the Laplace transforms of the basic

differential equations, and he did not establish the connecticln of his

Sarrlhuresults with the general theory of variational rnethcrls. later,
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d

dA
.{"2 (U + )..V) (4)< ~ I (U), v > =

x= 0

It can be verifioo readily that for every real a,

a < 11' (U), v > (5)< .\")., (U), aV> =

'Ihe G:l.teaux derivative is additive if in addition,

(6)

for every VI am V2 belonging to D.

Given a functional .\"2:D + Rl
"

, for each U E: E am V E: E we define the

variation of ~ in U as a linear functional 8~ (tJ) on E such that for every

Ve: E,

< o.s:"2 (U), v > = ~ (U + A V)
d

dA A~ 0

Note that

< O~(U), v> = <~, (U), v>

for every V e: E.
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fur functionals l:x:)ssessmg an additive, am consequently Imear

G3.teaux variation, it is convenient to introduce the concept of convexity

as an extension of that usually utilized for functions of several variables

in eleTentary calculus [12] .

1\
Given ~ elenEnts U+ and U- of E, the follo.ving notation will

)e

adoptoo.

~ Q = Q (U + -~(U_) (9a)

ilU=U -U £E+ - (9b)

(o.\];)+ = O~(U+J (9c)

(om = o57.(U- (9d)

V e 6 -£n-<:,uo 11 0 A functional Q is convex if

il Q -< (om ilu> ~o (ia)

for every pair of elffiEnts U+ arrl U- of E. It is strictly oonvex if the

inequality is strict whenever u+ * U_8 'n1e concept of concave or strictly

ooncave functionals ~s obtainro by reversing the inequality sign in (10).

Alternatively, an equivalent definition of concave and strictly

concave functionals can be given by replacing (10) by the inequality

~ n -< (on) + ' ~ > ;;,: o. (11)

"
"I'.

,4
(8





.
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In defining a saddle functional it is convenient to use, in

addition to the p-r:-evious notation,

(16a)= <5 Q(U1 .(°1 m -

(1Gb)(O2m+ = °2Q(U+J

Ve.6~no Let {El' E2} be a d~antx::>sition of E. Then, the

functional .{"I; is said to be saclile, convex in El' and concave in E2' if

(17)~ ~ -< (0 ~)
1

-,

1\

for every U+ arrl U- belonging to E. 'l11e saidle is strict if the inequality

=#=u-holds strictly whenever U+

'Ihis defjnition is e:jUivalent to re:jUiring (2 to be convex in El

To derive dual variational principles for transient diffusion

18], in the fo.r1n presente:lproblems we will use results obtainerl by S~l

They. are containe:1 in the follo.oling:

3] 

.by Herrera

let {El' ~} be a decaTlp:)sition of E and S1 a sa&ileTheolte1l'1 1.
A

'nlen, if U e: E:functional, convE'X in El and ooooave in E2 .

on (U) = 0

i)



if and only if

°1 .Q (u) = 0

and
°2~(U) = o.

that satisfy (19a) and (19b), respectively,A

E EFbr any Ua' ~ii,

we have

Q(%:O(U- ~

a'

iii) If U is a solution of (18), then:

a) The rnaxiIm.1In value of ~ arrong all admissible states that satisfy

(19a) is attainoo at Vi

S) The minimum value of ~ amJng all admissible states that satisfy

(19b) is attaine:1 at Vi

y) The respective m:iXiliu..1m arrl miniIrn.1In values coL'1Cide.

18,3] , butPJtoo 6. This theoran has been establish8:l previously

Part i) of the theorem is an llmediate consequence of
canpleteness.

On the other hand, relation (17) is satisfied for any given
Eq. (14).

am'!hus if ~ set U+ = ~pair of admissible functions U + and U_.

u = u , this inequality rerluces to
-a

(21)=~~ ~O ,-,Q (u '
a'Q(%:

'..
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Nbw, if U is a solution of (18), then U satisfieswhich implies (20).

Finally y) is a directEqS. (19); therefore a) and B) follow fram (20).

consequence of a) and 8).

An attractive feature of m3.ny dual principles is that any nember

Va satisfying (19a) provides an u~ bourrl and any member ~ satisfying

(19b) supplies a lo..ler bound of the carm:>n value of the functional S1 at

The results of 'Iheorem 1, haNever, do not allOil to inferthe solution U.

from the difference .\'2 (%) -.\'2 (Va) an estiIlBte of the closeness be~ an

approximate solution am an exact solution. 'lheorem 1 states that the

rniniImJrn value of the functional Q on solutions of (19a) is equal to its

naxiIm.1m value on solutions of (19b) when a solution U of (18) exists.

Though in this case both maxim.Im and minjJnum are attained at U, there ImY

be elements vI satisfying either (19a) or (19b) on which ~ achieves the

This difficulty does rotSaIre value and which are not solutions of (18).

arise if ~ is strictly saddle, as the follOlling corollary shows.

If in 'nleoren 1 .\1 is strictly saddle, then:Co/toliall.tj 1 0

i) There is at most one solution of Eq. (18);

ii} The equation

(22)= Q(%J~ (U '

a'

= ~ is the solution of (18).holds if an only if Ua
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iii) If the solution of (18) belongs to D, the nBXimlm\ value of

.("I. arrong all admissible states that satisfy (19a) is attained exclusively

The minimum value of the functional arrong all admissibleat the solution.

states that fulfill (19b) also is attainErl only at the solution.

In this case relations (21) and (22) imply ua = %' and
Pfl.OOno

'!histhereforc: equations (19) are satisfied simultaneously by Ua = ~.

The result i) is obviously implied by ii). FiJ1ally, tosha.-lS ii).

prove iii), let U be the solution of (18) and let ~ (U ) be the maximum

a

value of ~ among all admissible states that satisfy (19a); then

(23)= ~ (U)~(U '

a'

The second part of iii) can be proved in aand consequently U = U.
a

similar narmer.

relevance for the construction of approxinBte solutions, for they shCM

that the functions ,that yield the maxjI1'DJIn am the minjI1'DJIn of the dual

This coIrli tion is required to assure that thesolution of the problem.

can be used as an estiIrate of the error of an

1hus, the practical usefulness of the results is

difference .Q (%) -.Q (Ua'

approximate solution.

The initial-valueALTERNATIVE FORMULATIONS OF THE FLa'J ProBLEM.
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region, i.e., a completely saturated elastic porous medium that has well

def inffi goorretr ic oolUldaries. It is asstmro that an oJ::en region R witll

The nroium

through which the flCM

initial state am roundary data are kno.-m. The l:oundar'j data are given in

two canplerrentary (:arts ~ am ~ of A. ~ is the {X)rtion of the bourrlary

Three alternative descriptions of the ootion will be considerro

let h be the hydraulic

v. The physical laws governing the notion of the fluid are the equation of

continuity

avo
1.

ax.
1.

ah

at
s. + R (24)= q ons
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everywhere in R, while v are continuous in space am t~ arrl havei

131 havecontinuoos first spatial derivatives. NetmEn and Witherspoon

discussErl SCire of the advantages gainerl by forIm1lating the flail problem

as in Eqs. (24) -(28), which peDnit evaluating head and IE.rcy velocity

s inul taneous 1 Y .

ii) Equ~o n6 ;.n t~ 06 head. In dealing with flCM in pJrous

Iredia it has been custanary in hydrolCX]Y to characterize the proolem olil:,!

in terms of head. 'Ib arrive at such formulation it. is necessary to make

use of Eq. (25) to eliminate v. fra11 the rffilaining equations in the
].

systan (24) -(28). This process leads to

ah
s--

S at

ah
(K..-

1.J 'ax.
(29)on R x [0, tl=q

a

ax.
1. j

(30)h(x, 0) = h (x) on R
-0-

h (!' t) = H (~, t) (31~ x [0, tl]on

ah
K, (32)ni == -W (~, t) on ~ x [ 0, tl]

ij ax.
j

The set D of states for this formulation will be made of the con-

..], such tl1at tlleir secondtinuous functions h (~, t) defined cn R x [0, t

space derivatives am first tiIre derivatives are continuous everywhere
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'I'he hydraulic head m3.y be
iii) Equa.t.i.ol1.6 .in teJt.m6 06 ve1.0c.,Uy

'lhe resulting system is:problem in terms of velocity [ 14] .

'av.
J

'av.
J-1 -

Kij -:;;

1
(33)0, tl= f.(x,t) on R x

1-
s

d
--
dX-, sJ.

-1
where Kij

are the elements of the inverse of K..r i.e. r
lJ

-1

K. .
1)

'avo
J

'ax.
J

1

5S

0, t}M (~, t) on A, x=

v. n.
1 1

equations nero to be prescrirel.

in

d
fi(~ t) = -dXi on R x [0, t ] (37a)

1q (~I t)
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ah (x)0-

ax.
J

x e: R (3Th)

aR (~, t)

at
M(~, t) = - + q(~,t) on Ax

1 0, tl (37c)

'!he set D of states will be made of the continuous filllctions

such that their secorrl space derivatives

The hydraul ic

define it.

VARIATIa;JAL PRINCIPLES IN TERl'-1S OF HEAD AND VELOCITY. In this

principle obtained previously by Neunan am Witherspoon 13, 14], the

Wi th this

of head and Darcy velocity.

TheoJz.eYrI 2. "Let the set of admissible states be E = E = D. Fbr

every elenElt {h, y.} of D define the functional

1
S"2 (h, v)=-

-2

ah

ax.
].

f
ah

{S h* --2 V.*
s at 1 v.

J
R

(38)
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(39)<5 ~ (h, ;::.) = 0

A rotation rn:>tivaterl by the convolution notation has been adopterl

in Eq. (28), i.e., for every pair of functions f, g:

tl

J
0

f(-r} g(tl- or} d-rf * g =

With
P/tOObo

the notation defined by Eq. (7) we obtain

'av.
J.

'ax.
J.

q ]< () Q (U), v > =

R

'ah

-+ K-l'a i. v
x. J

1

d~-
-v. *

l

j"

J h* (W- v.n.) dx.1.1. -

Az

(40)
J v.n. * (h -H) dx +1.1. -+

~
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'!he functional definerl by Eq. (38) is sjJnpler than that given by

Netman and Witherspoon 14, F.,q. (9)]. The latter is obtaine:1 when tIle

fO:rn1er is oonvoluterl with the constant function -1, if q is set equal to

'n1e dual variational principle associated with the present for-

mulation of the proble11 is given in the follONing:

Th eo/t em 3. let the set E of admissible states coincide with t..he

whole set D of states. let ~ be definej by (38) for any aJrnissible state

{h, ~}. 'lhen :

i)

An admissible state {h, ~} is a solution of the system (24) -

(28) if am only if

avo
1

ax.
1

-q] e = 0
ah

s-+
S at R x [ 0, t,on

'ah

'ax.
J

]0 = 0 Rx 0, tl ]on

(41a)

h(x, 0) = h (x) ,
-0- x e: R

h-H]O a= on

e-W] = 0v.no
J. J.

on
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arrl s iIrn.ll tanoous 1 y

ah avo
1 0

S-+--q]5 at ax.
1

0= on

'ah

'ax.
J

e
0= on

x e: R (4lb)

[h-H]e=O on

0
v .n. -W ]J. J. = 0 on

'Ihe su~scripts e am 0 denote, res~tively, the even and cxid canponents

aba.1t the midpoint in the interval [0, tl] of the te:rms enclosed by brackets.

ii)

satisfy (41a) and (4lb) , respectively, we have

n(h , v )
a -a

(42)

iii} let {h, yJ be an admissible state that satisfies (24-28).

'n'len :

a} '!he rnaximJIn value of ~ arrong all admissible states that

satisfy (41a) is attainoo at {h, ,y};

S) 'nle miniImJrn value of Q arrong all admissible states that

satisfy (41b) is attaine:1 at {h, yJ;
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y) '!he respective maximIm arrl minil1:nJm values coincide.

as the subset of EPJr.oo6. !\k)te that E is equal to D. ~fine E,

wtX)se elarents {h, v} are such that h is even while v is 00d, and define

as the subset of E whose elements {h, ~} are such that h is odd whileE
2

is a d~arJf:t)sition of E.v is even. With these definitions {El' E2

'nle theoran folla.;s nON fran 'nleoeI:111S 1 am 2 arrl the fact that inequality

(17) is satisfied. Indeed, if U = {h+, v+} am U = {h-, v-}, then:
+ --1-

il ~ -< (Ol~)-' (il U)1 >-< (O2~)+' (il U)2 >

=-=-f2 R
(43)

A variational principle inVARIATI(IIW. PRINCIPLES rn TERr-1S OF HEAD .

13,14] usinternlS of hydraulic hood was obtaine:l by Neuman and Withers~n

A simpler version of this principle

15].

a technique developerl by Gurtin

is presentoo herein and a corres~rrling extramm1 principle is established

subsequently.

"-
let the set E of admissible states coincide with theTheoJr..em 4.

For every state h, define the functional Q bywhole set D of states.
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'ah

'ax.
J

'ah1
~(h) =-

2

ah

at
h(~, 0)+ S h(x, t l5 -+K *

R

f h*W ~.f 'ah (h-H) *K. .-n. dx +

1J 1-
'aX~

-2h (x)] -2h*q} ax-0- -
~~ J

'!hen

0(2 (h) = 0

of the problem specified by Egs. (29) -(32).if arrl only if h is a solution

'Ibis is a particular case of a general theorem given byP/too6.
It can be proved also byHerrera and Bielak ('l11eoran 6.1 of 17] } .

calculating the ~teaux variation o~ (U) directly, as in Theorem 2

""
In the s~ial case in which the set of admissible states E is

restrictoo to satisfy boundar:{ condition (31) the integral over ~ disappears

'Ihe corresponding linear sub-and the expression (44) for ~ is simplified.

condition
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Theo/tem 5. of the
'"

let the set E of admissible states consist

elements of D that satisfy Eq. (31) and let Q be given by Eq. (44), which

with the constraint irnp:>sed on the admissible states, OOcares

1 f ah ah
{S h* -+ K. .-

R S at J.) axi

'ah

'ax.
J

+Ssh (~, t} ) [ h (~, 0) -2ho (~n(h)=- *
2

f-2h * q} ~ (47)dx.+ h * W

~
Then

An admissible state h is a solution of the system (29) -(32)i)

if and only if

ah

ax.
J

e
-q] =.0(K. .

1J
s

ah

S at

a

ax",
J.

(48a)

ah e
[W + Kij -.;;.

J

= 0n..
1.

on

and siImlltaneously

'ah

'ax.
J

0
-q] =0(K. .

1)
on R x [0, tl

ah[8 -
S at

a

ax.
J.

(48b)x e: R

ah

ax.
J

0[W + Kij a on ~ x [0, t]n.
1

=
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'dVj

'dXj

d

dXi

1

55

aVj< o~ (U) ,v> = f -1{ -
V *[ K. .
i 1J at

]f i

R

-
v.n.*

]. ]. s ':\X'a J
s

'aV'
-2*

'ax.
1

1

s-+f
(52)

dx.

W -v-,n.
1 i-

~ s

admissible v

given by the following

of the"'-Let the set E of admissible states consistThe.oILeJrI 1.

dVj

dXj

1 'aVi
+ --*

aXiss

(53)

M*v.n. 

dx .1.1. -

Al

Then

i)
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1 dVj

S

e
-f

=OonRx[O,ti]

i'

s aXji

V. (x, 0) =
].- f\1 .(x) ,1- X ~ R (54i1)

on
s, ax.Js

and simultaneously

dVj d 1 avoJ 0

-f,,] = 0 on R x [ 0 t ], 1l.at axi sax-
s J

v. (x, 0) = N. (x) ,1- 1- x e: R (54b)

1

S

avoJ

aXj

0

-M] = 0 Al X [0, tI]on
s

ii)

(54a) 

and (54b), rest:ectively,

&1 (v :-a ~ .\"I;(Yi)) ; (55)

iii) If there exists an admissible state v which is a solution

of the system (33) -(36), then,
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a)

(544) is attainoo at Vi

~)

(54b) is attamro at ~; arrl

y)

PJl.oo6.
as the subset of E whose elerrents

Define E,satisfy (36) with vanishing W.

v are such that v is odd.--
The theorem follo.A/S fran Theoran 1 and fran the fact that Q

tion of E.

is s~dle, as may be verified readily.
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