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INTRODUCTION,. The results presented in this paper were cbtained in
the course of an investigation on transient flow of fluids in porous
media but they are equally applicable to other problems governed by the

heat diffusion equation.

Variational principles have been used extensively in ground water
hydrology. Recently, they have served as basis for the development of

finite element techniques for fluid flow problems in porous media 1, 2].

A variational principle is an assertion stating that the derivative
or variation of some functional vanishes if and only if a given equation
is fulfilled. An extremm principle is one which establishes the
equivalence between an equation and the fact that some functional attains
an extremum value, either a maximum or a minimum., Variational and
extremum principles became interrelated when the functionals involved are
differentiable, for then a necessary corndition for the existence of an

extremum is the vanishing of the variation. Naturally this condition is



not sufficient and, therefore, the class of all extremum principles is a
proper subset of the class of all variational principles. For linear
operators, a sufficient condition for the variational principle to be
extremal is that the operator involved be positive. This result can be

generalized to nonlinear equations introducing the notion of convex

functionals; it is then required that the functional involved be convex 3].

Traditionally the theoretical foundations of variational methods have

been placed on the theory of differentiation on Hilbert spaces, or more

generally, on Banach spaces 4], and, in particular, on the results
pertaining to the notion of potential operators [5] . Essentially, one

can say that a sufficient condition for an operator eguation to admit a
variatonal forrulation is that the operator be potential, and this will be
so if and only if its derivative is a symmetric bilinear functional. When
the operator is not potential it is always possible, at least in principle,
to transform the problem into an equivalent one for which the operator
involved satisfies this condition. Though it has been claimed that this
is the key to ocbtaining a very wide class of variational principles,
applicable to any equation 6, 7], one has to be aware of its limited

practical value due to difficulties involved in finding such transformations.

Dual principles, also called cozrplementai’y or reciprocal, form
another class of variational principles. Examples are the ILagrange arnd

Hamilton principles in mechanics. In elasticity and the theory of



structures the energy principle and the principle of camplementary energy
have been used extensively. Wwhen a dual principle is available, the pro-
blem considered is formulated variationally in two different but interrelated
ways. In cne formulation a solution is characterized by a maximum principle
anG in the other by a minimm principle. The maximum and minimm values of

the resvective functionals are the same.

The value of dual variational principles in applications is great,
because the difference between the values of both functionals for two dif-
ferent trial functions can be used as a measure of the accuracy of approxi-
mate solutions. In many cases the significance of dual variational prin-
ciples is enhanced because the functionals involved have by themselves
same relevant physical meaning, e.g. the energy. Applications of the

principles have abounded and accounts of them are available [ 8-12]

The work by Noble and Sewell [12] is especially relevant. These
authors have derived dual variational principles in the form of generalized
lagrange and generalized Hamilton principles. Lagrange principles apply

to a system of equations of the form

™u=Y

aY Y
T — == —
Yy u

where T is a linear operator, T* its adjoint and Y a nonlinear functional
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Hamilton principles apply to the system

X
™us=s — (2a)
ox
X
X = (2)
an

Here X is a nonlinear furctional, The extremum peinciples are estavliished
if some functionals defined in terms of Y and X have properties connected

with the notions of convex, concave and saddle-sharaxt functionals,

Variational and extremum principles of the various types describext
have heen developed for steady-state problems in fluid flow through porcas
media. They are associated with the classical results of potential theory
and elliptic differential equations. For initial value prcblems the
development has been less satisfactory. Only variational principles cf
the simplest type are available, and up to now neither extremum nor dual

principles have been obtained.

The available variational principles for transient flow of ground
water were formulated by Neuman and Witherspoon 13, 14] using an approach
develnped by Gurtin [15]. Gurtin's variational principles were originally
obtained from considerations regarding the laplace transforms of the basic
differential equations, and he did not establish the connection of his

results with the general theory of variational methods. Iater, Sandhu



and dister [ 1] and Tonti " suggested hew Gurtin  approach ha et
within this framework and general formulation of inear ir tia wval

prab given by Herr and Bielak [ 1]

To tional principl for initial-value probl is
necess ry to introduce the initial conditions into the governing equatic
In (3irtin  method the inverse of the time operator is appl ed to obtain

gystem of integro-dif ential eguations which tains the initial

ronditions implic tly, and which jational principles can be derived
with of comvolutions This transformation is required if the pr
Kl is ormlated in terms of functional valued opera [ 1

This pproach which is quite suitable to tr inif ial and
bourdary condi gystematically results in variational pr iples

impler than those which Gurtin method vields 1 and ha: been

within Functional analytical ramework by Herrer [ 1] has ecently
presented  general formilation of iational principl nonlinear
prob the main features of the theory being tha only requir

the operators to be defined in  linear space (no Hilbert Banach spa

is assumed Thi: theory incoroorates kind of dual -iational
principl to Sewell 19] which estabhlishes ink betwesn lagrange
and Hamilton principl and iational principles tha not extremal

In this paper apply the advances in the theory of iational

principles just described to problems of interest in ground water hydrology



the ir part ecall thematical =sults and notatis tha wil

be 1sed in the seque Ir. the second part two kinds of iaticnal

pr.  ipl tahlished of tationary dational
ar iples whizh impl than those already known [ Jand
Aual =xbremm grincipl ilab previcusly

MATHEMATTICAT, PRELIMINARIES  Each time—dependen probl to be
idered in this study -1l be dated with system of partial dif

tial squations together with iitable boundary and initia conditid

There wil be in add tion of systems functions whose elements
will be called tates The sets describe inear space We will id
subsets whose elements will be -alled admissib  states
It will be assumed systematically tha is af subspa
ther =xist inear subspace C  and elerer such tha
Zlearly and incide if

We will deal excl ively with the prablem of inding luti

kha admissihle tates
functional is defined aal valued function whose damain
is the inear space D. G elemen of say tha the Gateaux

derivative 0} of axists U if  (d4/d)) U  AV] exists for

ayery V of In tha adopt the notation




d
<Q U, v> =[—Q(U+>\V):| (4)
da A=0

It can be verified readily that for every real a,
<Q W, av> = a<Q'(W), V> (5)
The Gateaux derivative is additive if in addition,

<@, v+ Vv, >=<2, v, >+ <@, v, > (6

for every V1 and V2 belonging to D.

Given a functional Q:D + R! , for each U e £ and V € E we define the
variation of Q in U as a linear functional 6Q(U) on E such that for every

V e E,

d
<8y, v> = [——Q (U + )\V)]
dx A=0
Note that

<sqo, v> = <Q'(m, v>

for every V € E.



For functionals possessing an additive, and consequently linear
Gateaux variation, it is convenient to introduce the concept of convexity
as an extension of that usually utilized for functions of several variables

in elementary calculus [12].

Given two elements U+ and U_ of ﬁ, the following notation will e

adopted.
Aq=a(U -Q(U) (9a)
AUu=U -U €E (9b)
((SQ)+ = GQ(U+] (Sc)
(89) = 8(u_ (9d)

Definition., A functional f is convex if

AQ-<(8Q) AU> =0 (10)

for every pair of elements U+ ard U_ of B, It is strictly convex if the
inequality is strict whenever U+ #* U_. The concept of concave or strictly

concave functionals is abtained by reversing the inequality sign in (10).

Alternatively, an equivalent definition of concave and strictly

concave functionals can be given by replacing (10) by the inequality

AQ-<(GQ)+,AU>>O. (11)
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In defining a saddle functional it is convenient to use, in

addition to the previous notation,

(8,9 _

8 . QU (16a)

(6,0, 6,8(u,] (16b)

Deginition. lLet {E1 , Ez} be a decamposition of E. Then, the

functional © is said to be saddle, convex in E1 , and concave in E,, if

AqQ-< (619)_’(A U)1> - < (8,2, Av,>=0 (17)

for every U, and U_ belonging to £. The saddle is strict if the inequality

holds strictly whenever U +U_

This definition is equivalent to requiring Q to be convex in E,

when (A U), =0 and concave in E, for A0, =0([3and 12].
To derive dual variational principles for transient diffusion

problems we will use results obtained by Sewell 18], in the form presented

by Herrera 3]. They are contained in the following:

Theonem 1. let {E, E2} be a decamposition of E and Q a saddle

functional, convex in E1 and oconcave in E2. Then, if U e Es

i) & (U =0



if and only if

§,2(0) =0
and
5,2(0) = 0.
i1, For any U, U € £ that satisfy (19a) and (19b), respectively,
we have

awu, < oy

iii) If U is a solution of (18), then:

o) The maximm value of Q among all admissible states that satisfy

(19a) is attained at U;

8) The minimm value of { among all admissible states that satisfy

(19b) is attained at U;

v) The respective maximum and minimum values coincide.

Proof. This theorem has been established previously 18,3}, but
because of its simplicity the proof is presented herein for the sake of
campleteness., Part i) of the theorem is an immediate consequence of
Eq. (14). On the other hand, relation (17) is satisfied for any given
pair of admissible functions U, and U_. Thus if we set U= Ub and

U_-= Ua’ this inequality reduces to

a, -, =48 >0, (21)
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which implies (20). Now, if U is a solution of (18), then U satisfies
Egs. (19); therefore o) and 8) follow fram (20). Finally y) is a direct

consequence of o) and B).

An attractive feature of many dual principles is that any member
U, satisfying (19a) provides an upper bound and any member Ub satisfying
(19b) supplies a lower bound of the camon value of the functional 2 at
the solution U. The results of Theorem 1, however, do not allow to infer
from the difference Q(Ub) - Q(Ua) an estimate of the closeness between an
approximate solution and an exact solution. Theorem 1 states that the
minimum value of the functional £ on solutions of (19a) is equal to its
maximum value on solutions of (19b) when a solution U of (18) exists.
Though in this case both maximum and minimum are attained at U, there may
be elements U' satisfying either (19a) or (19b) on which Q achieves the
same value and which are not solutions of (18). This difficulty does not

arise if Q is strictly saddle, as the following corollary shows.

Corollarny 1., If in Theorem 1 Q is strictly saddle, then:
i) There is at most one solution of Eg. (18);
ii) The equation

QU = 2y (22)

holds if an only if U, = g, is the solution of (18).
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iii) If the solution of (18) belongs to D, the maximum value of
Q among all admissible states that satisfy (19a) is attained exclusively
at the solution. The minimum value of the functional among all admissible

states that fulfill (19b) also is attained only at the solution.

Proof. In this cése relations (21) and (22) imply Ua = Ub’ and
therefore equations (19) are satisfied simultanecusly by Ua = Ub. This
shows ii). The result i) is cbviously implied by ii). Finally, to
prove iii), let U be the solution of (18) ard let Q (Ua) be the maxirmum

value of Q among all admissible states that satisfy (19a); then

Q(Uaj = Q(U) (23)

and consequently Ua = U. The second part of iii) can be proved in a

similar manner.

This corollary and in particular parts i) and ii) are of special
relevance far the construction of approximate solutions, for they show
that the functions that yield the maximum and the minimum of the dual
principle are unique and equal to each other and correspond to the
solution of the problem. This condition is required to assure that the
difference Q(Ub) - Q(Uaf can be used as an estimate of the error of an
approximate solution. Thus, the practical usefulness of the results is

greater for problems associated with functionals that are strictly saddle.

ALTERNATIVE FORMULATIONS OF THE FLOW PROBLEM. The initial-value

prablem to be studied is the transient flow of water in a confined flow



region, i.e., a campletely saturated elastic porous medium that has well
defined geometric boundaries. Tt is assumed that an open region R with
boundary A is occupied by a porous and permeable medium campletely filled
with a slightly compressible liquid such as water or oil. The medium
through which the flow occurs has a specific storage Ss (x) and a symmetric
permeability tensor Kij (x), properties which are dependent upon the position
vector x. S_(x) is positive and continuous on R and K5 (x) is assumed to
be positive definite and continuously differentiable on R, The problem
consists in finding the dynamic state of the liquid at any instant when an
initial state and boundary data are known. The boundary data are given in
two camplementary parts A and A) of A. A is the portion of the boundary
on which the head is prescribed and A, is the remaining portion of the
boundary, on which flux is prescribed.

We do not discuss the existence of solutions, assuming, therefore,

that a solution exists, i.e., that the data are in the range of the operator.

Three alternative descriptions of the motion will be considered

depending on the variables used to characterize the problem:

i) Equations in terms of head and velocity, Let h be the hydraulic
head and v, denote the cartesian componentes of the Darcy velocity vector

v. The physical laws governing the motion of the fluid are the equation of

continuity
sh 93
Ss—-— + = gq on R (24)
ot X




ard Darcy

These aquations are  pp Fmen :ed by the in. ond

and the boundar, rond

(x
In Eas enotes the external the functicn
is the ibe initial head whil and he A
the cartes COIMpOnen the ou
to ard in wha, foll the range of tin subscripts
nd um repeated ind unde  tood
Usually the problem posed ther inf te ime interval
rery al i on ir int
the probl 11 rmal ked the interva Th =
and need be sl ert,
In th ormalatic  the tates is al posib
functions vix, } ined on h t

h together with irst tia. and tiv inon
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everywhere in R, while v, are continuous in space and time and have
continuous first spatial derivatives. Neuman and Witherspoon 13] have
discussed some of the advantages gained by formulating the flow problem
as in Egs. (24) - (28), which permit evaluating head and Darcy velocity
simultanecusly,

1i) Equations {n tems of head. In dealing with flow in porous
media it has been customary in hydrology to characterize the problem only
in terms of head. To arrive at such formulation it is necessary to make
use of Eg. (25) to eliminate v, from the remaining eqqations in the

system (24) - (28). This process leads to

oh ] sh [ (29)
S - (K. . =q onRx [0, t 29
S ot oax, 1o !
i j
h(x, 0) = ho(ﬁ) on R (30)
hix, t) =HEX, t) on AxI[0, t] (31
3h , 5
Kij Bx n, == W(x, t) on axl[o, t ] (32)
]

The set D of states for this formulation will be made of the con-
tinuous functions h (x, t) defined on Rx [0, t ], such that their second
space derivatives and first time derivatives are continuous everywhere

onRx /[0, t1]
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iii) Equations in terms o velocity The hydraulic head may be
eliminated from Egs. (24) - (28) to obtain a characterization of the flow
problem in terms of velocity [14]. The resulting system is:

ov.. oV,
-1 J 3

1 J
K,, — = — ( ——) =f_(x,t) onRx 0, t (33)
13 9 ax; S 1 !

-1
where Kij are the elements of the inverse of Kij’ i.e.,

The corresponding boundary and initial conditions are:

v (%, 0) =N;(®), xeR

1 v
]
_— = M(x, ) on A X 0, t,
S ox
s
v.n. =W (x, t) on A [0, t
il - 1

The functions fi(3<_, t), Ni (x) and M(X%, t) appearing in these
equations need to be prescribed. If the problem is formulated originally
in terms of head and velocity, these function are given by

3 1

£.(x, ) == —

i
x; Sg (X)

g{x, t) onRx [0, £1(37a)
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8ho(§)
Ni (x) = - Kij (x) X X €ER (37b)
X..
J
dH(X, t)
Mx, t) =« —m8 — + q(x,t) on Ax 0, t (37¢)
at

The set D of states will be made of the continuous functions
Vi (5 , t) defined onR x[o0, tl such that their second space derivatives
and first time derivatives are continuous everywhere on R. The hydraulic
head does not enter into this formulation but Eq. (24) can be used to

define it.

VARTATIONAL PRINCIPLES IN TERMS OF HEAD AND VELOCITY. In this
section we formulate first a simpler version of a stationary variational
principle obtained previously by Neuman and Witherspoon 13, 14], the
derivation being similar to the procedure proposed in [17]. With this
principle and Theorem 1 we establish a dual variational principle in terms

of head and Darcy velocity.

Theorem 2. Iet the set of admissible states be E = E=D. TFor
every element {h, v} of D define the functional
1

dh dh -
9105} =-— f{Sh*—-Zv.*——-—'.*K.. .
e o) 2 S 4t APV SR
R i
+Sh&, t) [hix, 0) - 2 h (x)] = 2 hxq} &

+ f (h-H)*vinid§+f hW dx . (38)
A A
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§Q (h, v) =0 (39)

if and only if {h, v} is a solution of the problem specified by Eqs. (24)-

A notation motivated by the convolution notation has been adopted

in Eq. (28), i.e., for every pair of functions £, g:

ty
fxg= f £(1) glt,- 1) drt
(@]

Proof. let U= {h, v} and V= {f, ¥} be two elements of f. with

the notation defined by Eq. (7) we obtain

oh Vi

<saw,v>= [Hs s — +— al

R ® 3t 0%

_ oh -1 _
7 ;}—{— + Kyt sh(x t, [h(x 0 - ho(§)]} ax
i
+ f v.n, (h = H) dX + f hx W- vini) dx . (40)
A B

An analysis which is standard in calculus of variations (see for
example [15]) can be used to show that (40) vanishes for every admissible

state {h, v} if an only if Egs. (24) - (28) are satisfied.
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The functional defined by Eq. (38) is simpler than that given by

Neuman and Witherspoon 14, Eq. (9)]. The latter is obtained when the

former is convoluted with the constant function -1, if g is set equal to

The dual variational principle associated with the present for-

mulation of the problem is given in the following:

Theorem 3. 1let the set E of admissible states coincide with the

whole set D of states. ILet Q be defined by (38) for any admissible state

{h, v}. Then:

i) An admissible state {h, v} is a solution of the system (24) -

(28) -if and only if

sh Wy .
Sq + -gl"=0 on RxI[0, t
ot 0X .
i
dh o
[ —— =
1+Kij | 0 on Rx O’t1]
ij

l' (41a)
hx, 0) = h,&® , XeR

h-H®= 0 on Ax [0, t

e
vini-W] =0 on Aax[o, t1]
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and simultaneously

sh Yy .
[Ss'—+ —— ~-ql” =0 on rRx![0, t, |
ot X,
i
oh e
[Vi+Kij ;] = 0 on RxI[O, tl]
3

h, 0) =h (¥ , XeR L (41b)

[h-H%=0 on A x [0, t1]

v.n. -W1°=0 on ISX[O, t1]

J

The superscripts e and o denote, respectively, the even and odd camponents

about the midpoint in the interval [0, tll of the terms enclosed by brackets.

ii) For any pair of admissible states {ha, v }, {hb, \_fb} that

satisfy (41la) and (41b), respectively, we have

Q(ha, \_fa) < Q(hb,' V_bj (42)

iii) Let {h, v} b= an admissible state that satisfies (24-28).

Then:
a) The maximum value of Q among all admissible states that

satisfy (41a) is attained at {h, v};

B) The minimm value of Q among all admissible states that

satisfy (41b) is attained at {h, v};
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Y) The respective maximum and minimum values coincide.

Proof. Note that E is equal to D. Define E as the subset of E
whose elements {h, v} are such that h is even while v is odd, and define
F, as the subset of E whose elements {h, v} are such that h is odd while
v is even. With these definitions {E1 » E, 1is a decamposition of E.

The theorem follows now fram Theoerms 1 and 2 and the fact that inequality

(17) is satisfied. Indeed, if U = {n', ¥'} and U_ = {h], ¥ }, then:

AQ-< (80, BU, >—< (5D, AV, >

= — f [-v] K-:_J v‘]?+ s.h” (x, 0) h° (x, 0)] dx >0. (43)

VARIATIONAIL, PRINCIPLES IN TERMS OF HFAD. A variational principle in
terms of hydraulic head was obtained by Neuman and Witherspoon 13, 14] usin
a technique developed by Gurtin 15]. A simpler version of this principle

is presented herein and a corresponding extremum principle is established

subsequently.

Theorem 4, Let the set £ of admissible states coincide with the

whole set D of states. For every state h, define the functional Q by
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1 sh s3h  oh
Q) =— [ {Shx —+K_ — » — +Sh(x t

2 7 R ot axj

1 h(x, 0)

- dh
"2h0(§)] -2h*q} d}_i - f (h=H) *Kij '5; ni d}_(_ + f haW d.}_i.

B ] A

8Q(h) =0

if and only if h is a solution of the prcblem specified by Egs. (29) - (32).

Proof. This is a particular case of a general theorem given by
Herrera and Bielak (Theorem 6.1 of 17]). It can be proved also by

calculating the Gateaux variation 8Q(U) directly, as in Theorem 2

In the special case in which the set of admissible states T is
restricted to satisfy boundary condition (31) the integral over A disappears
and the expression (44) for Q is simplified. The corresponding linear sub-
space E of D is obtained by requiring that its elements satisfy the boundary

condition

h(x, t) =0 onAX [0, tll
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Theonem 5. Let the set E of admissible states consist of the
elements of D that satisfy Eq. (31) and let Q be given by Eq. (44), which

with the constraint imposed on the admissible states, becomes

1 : oh oh oh
Q(th)=— / S.h* —+ K., — »— +S_h(x,t )[h(_}E,O)- 2h (%)
2 R S ot 1 ox.  ox. ° ! °©
1 J
-2h x ql dx + fh*ch_c. (47)
A

Then
i) An admissible state h is a solution of the system (29) - (32)

if and only if

sh 9 sh o
s.— — (K..— =~-gl =0 onrx [0, t]
St ax, I oax. !
1 J
h(x, 0) =h (x), x € R » (48a)
sh o
[W+Kij; n, =0 on Ax [0, t]
J

and simultanecusly

osh P oh o
[s§g — — &K;;— -gl"=0 onRx [0, t
3t ax. J ax.
1 J
h(x, 0) = ho (x), xeR + (48b)
oh o
[W+Klj'—a';n = 0 onAzx[O,t]] J
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_ -1 7\‘7j ] 1 SVj
< 8Q(U), Vv > = f {Vi*[Kij —_—— = — fi ]
R ot 3xl SS BXJ
Ly 4 _ 1 BVj
+ K5 Yy (%t )[v; (x,00 N, ()]} d§_+f vk — - Ml dax
S BX]
Pﬁ s
1 3'\_7-]'
+f — * W-v.n_ dx. (52)
S . . e
A s 1

This équation may be used to show that 6Q(U) vanishes for every

admissible v if and only if Egs. (33) - (36) are satisfied.

The dual variational principle associated with this formulation is

given by the following.

Theornem 7. Let the set E of admissible states consist of the
elements of D that satisfy Eq. (36) and let Q be given by Eq. (50), which,

with the constraint imposed on the admissible states, becomes

1 f —; V5 1 3vi vy -t
Qv) = — (v.*K.. — + — * — + K.. va(x, t)[v.(x, 0)
— 117 . ) ij 3 =" "1 i'=
2 R ot Ss 0X4 axj
-2 Ni(g)] =2 vi*fi} ax - f M*Vini dx . (53)
A

1

i) An admissible state v is a solution of the flow problem des-

cribed by the system (33) - (36) if and only if
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- 3‘3 0 1 BVj e
[}lj¥—¥ — — =~ f =OonRx[O,tl]
t d i ES BXJ
v, x, 0) = N.(x), xeR r (54a)
1 an e
[— — -M =0 on Alx[O,tl]

-1 BVj 3 1 Svj o)
1 — -f]=OonRx[0,t1]
ot Bxl Ss ij
Vi(_}il 0) = Nl(i)r 2<_ € R ( (54b)

_l 3Vj o]
— —— =M =0 on Alx[O, t1]

s Z)x_-j

]

ii) For any pair of admissible states Yy and Y that satisfy
(54a) and (54b), respectively,
‘\ < -
Q(\_/a ‘ Q(yb) ; (55)

iii) If there exists an admissible state v which is a solution

of the system (33) - (36), then,
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@) The maximum value of {1 among all admissible states that satisfy

(54a) is attained at v;

g) The minimum value of { among all admissible states that satisfy

(54b) is attained at V; and
v) The respective maximum and minirmum values coincide

Proo§. Observe that the set E is made of the elements of D that
satisfy (36) with vanishing W. Define E as the subset of E whose elements
v are such that ¥ is odd. With these definitions {E, E}isa decamposi-
tion of E. The theorem follows from Theorem 1 and from the fact that Q

is saddle, as may be verified readily.
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