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1. Introduction. The results presented in this paper were obtained in the course
of an investigation on transient flow in porous media, but they are equally applicable to
other problems governed by the heat diffusion equation.

Variational principles have been used extensively in ground water hydrology.
Recently, they have served as basis for the development of finite-element techniques for
fluid flow problems in porous media [1, 2].

A variational principle is an assertion stating that the derivative or variation of some
functional vanishes if and only if a given equation is fulfilled. An extremum principle
is one which establishes the equivalence between an equation and the fact that some
functional attains an extremum value, either a maximum or a minimum.

Dual principles, also called complementary or reciprocal, form another class of
variational principles which have received much attention recently, mainly due to the
work of Noble and Sewell [3]. When a dual principle is available, the problem considered
is formulated variationally in two different but interrelated ways. In one formulation
a solution is characterized by a maximum principle and in the other by a minimum
principle. The maximum and minimum values of the respective functionals are the same.

The value of dual variational principles in applications is great, because the difference
between the values of both functionals for two different trial functions can be used as
a measure of the accuracy of approximate solutions. In many cases the significance of
dual variational principles is enhanced because the functionals involved have by them-
selves some relevant physical meaning, e.g. the energy. Applications of the principles
have abounded and accounts of them are available [3-7].

Noble and Sewell [3] have formulated dual variational principles as generalized
Lagrange and generalized Hamilton principles. Lagrange principles apply to a system
of equations of the type

T*u = Y, T(aY jay) = -(aY jau) ,

where T is a linear operator, T* its adjoint and Y a nonlinear functional. Hamilton
principles apply to the system

T*u = ax/ax, Tx = ax/au.

Here X is a nonlinear functional. The extremum principles are established if some
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functionals defined in terms of Y and X have properties connected with the notions of
convex, concave and saddle-shaped functionals. More recently Sewell [8, 9] developed
a framework which allows to generate this kind of principle from a single functional,
thus unifying the theory.

A particular case of Sewell's results [8] implies that a variational principle formulated
in terms of a single functional is a dual principle, whenever the functional is Eaddle.
Using this result, it is possible to give a unified formulation of a large class of principles
and to interrelate them [10]. For differentiable operators and functionals, such formulation
can be summarized as follows., A sufficient condition for an operator equation to admit a variational formulation is

that the operator be potential, and this will be so if and only if its derivative is a symmetric
bilinear functional. Variational and extremum principles are interrelated because a necessary
condition for the existence of an extremum is the vanishing of the variation. Naturally,
this condition is not sufficient and, therefore, the class of extremum principles is a proper
subset of the class of all variational principles. A sufficient condition for a variational
principle to be extremal is that the involved functional be either convex or concave [3, 10].
In general, a functional is neither convex nor concave; however, if the linear space in which
the functional is defined can be decomposed into two subspaces, one in which the functional
is convex and another in which it is concave, then the functional is saddle and Sewell's
results [8] can be applied,. hence, the variational principle becomes a dual principle. Such a
decomposition can be expected to exist under very general conditions, at least locally, because
as is well known in differential geometry, this is the case for finite-dimensional spaces.

For linear operators the theory becomes especially simple: "A sufficient condition for
a linear equation to admit a variational formulation is that the operator be symmetric.
If the operator is either positive or negative, then the associated functional is either
convex or concave, and consequently the variational principle is an extremal one. In
general a symmetric linear operator is neither positive nor negative, but under very
general conditions (e.g. when spectral theorems are applicable), the linear space D can
be decomposed into two subspaces, one D+ in which the operator is positive and another
one D- in which it is negative; thus, the associated functional is saddle and the varia-
tional principle becomes a dual variational principle of Sewell's type [8]. Accordingly,
under very general conditions a dual principle can be constructed for linear equations
formulated in terms of linear symmetric operators. In specific applications, the formula-
tion of such dual principles can be complicated by the fact that the construction of the
decomposition of the linear space into the subspaces D+ and D- may be difficult. The
fact that such decomposition is not unique, however, gives greater flexibility to the
method."

Traditionally the theoretical foundations of variational methods have been placed
on the theory of differentiation on Hilbert spaces, or more generally, on Banach spaces
[11, 12]. The formulation of variational principles can actually be carried out in linear
spaces in which neither an inner product nor a norm is present. To this end it is convenient
to formulate the problem in terms of functional-valued operators. Such approach has
already been used in a previous work [13] and later developed systematically [10].

It is not possible to assess the importance of this result at this stage. The authors
feel, however, that a systematic development of the theory is useful because:

i) Most of the work done thus far in this field [3-9, 14-18] gives the impression that
an inner product or norm is required for the formulation of variational principles. In
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some applications the introduction of an inner product leads to unwarranted compli-
cations, not only in the definition of the inner product itself, but even of the function
spaces considered. Indeed, many times the spaces are defined as pairs of functions, one
defined in a region and the other on its boundary. This is not required when functional
operators are used.

ii) The introduction of superfluous hypotheses in the development of a theory is
always inconvenient, because frequently they needlessly restrict its applicability.
Vainberg [12] points out, for example, that Golomb narrowed the applicability of the
concept of gradient of a functional by imposing unnecessary continuity conditions.
Further work by Lusternik, Sobolev, Tsilanadze and Vainberg himself was necessary
before this concept was freed from such restrictions and made suitable for applications.

iii) The symmetry condition for the potentialness of an operator can be extended
to linear spaces for which no inner product nor norm have to be defined-a fact not hard
to prove yet not evident. This fact makes it possible to formulate a theory which is
rigorous and at the same time not complicated.

After presenting a summary of this theory, in the second part of the paper we apply
these advances to problems of interest in ground water hydrology.

Variational and extremum principles have been developed for steady-state problems
in fluid flow through porous media. They are associated with the classical results of
potential theory and elliptic differential equations. For initial-value problems the
development has been less satisfactory. Only variational principles of the simplest type
are available, and up to now neither extremal nor dual principles have been obtained.

The available variational principles for transient flow of ground water were formulated
by Neuman and Witherspoon [19, 20] using an approach developed by Gurtin [21].
Gurtin's variational principles were originally obtained from considerations regarding
the Laplace transforms of the basic differential equations, and he did not establish the
connection of his results with the general theory of variational methods. Later, Sandhu
and Pister [14] and Tonti [15, 16] suggested how Gurtin's approach can be set within this
framework, and a general formulation of linear initial-value problems was given by
Herrera and Bielak [13].

To derive variational principles for initial-value problems it is necessary to llltroduce
the initial conditions into the governing equations. In Gurtin's method, the inverse of
the time operator is applied to obtain a system of integrodifferential equations which
contains the initial conditions implicitly and for which variational principles can be
derived with use of convolutions. This transformation is not required if the problem
is formulated in terms of functional-valued operators, the resulting variational principles
[13] being simpler than those that Gurtin's method yields.

In this paper the problem of transient flow of ground water is formulated in three
alternative fashions and for each reciprocal relations are established. With these, the
problems are reformulated in terms of functional-valued operators which are linear and
symmetric. Variational principles are then derived; they are a simplification of those
due to Neuman and Witherspoon [19, 20]. Taking into account the theoretical framework
discussed earlier, one would expect that it would be possible to go further and transform
the variational principles into dual principles. This is indeed the case, because the linear
spaces in which the problems are formulated can be decomposed into two subspaces,
which are made essentially of even and odd functions with respect to the middle point
of the time interval considered; in these subspaces the operator satisfies the required
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positiveness and negativeness conditions and, therefore, the stationary variational
principles become dual extremum principles.

2. Mathematical preliminaries. All linear spaces to be considered will be defined
on the field of real numbers RI. The outer sum of two such spaces DI and D2 will be
represented by DI Ef) D2 .On the other hand, if a linear space D is spanned by two linearly
independentsubspaces DI and D2 , the space D is isomorphic to DI Ef) D2 and we will
write D = DI Ef) D2 ; the subspaces DI , D2 are called a decomposition of D. In this case
given any xED there is a unique pair of elements (Xl, X2) such that Xi E Di (i = 1,2)
and X = Xl + X2 ; this pair is called a representation of x. The notation Dn will be used
for the outer sum DI Ef) .., Ef) Dn when Di = D, (i = 1, ...,n).

The value of an n-linear functional a : Dn -t RI at an element X = (Xl' ...,Xn) E Dn
will be represented by (a, Xl , ...,Xn)2. The notation Dn* will be used for the linear space
of all the n-l.inear functionals. The alternative notation D* will be used for DI*, and DO*
is defined as RI. Notice that Dn* ~ (Dn)*.

Functional-valued operators P : D -t Dn* are considered in this work. Special atten-
tion will be given to the case n = 1; i.e. to operators of the form P : D -t D*. When P = L
is linear, its adjoint L* : D -t D* is defined by (L*x, y) = (Ly, x) which holds for every
x, y E D. Observe that the adjoint of such linear operators always exists.

For operators of the type P : D -t Dn*, the notion of continuity can be introduced
without a topology in D. The operator P : D -t Dn* is said to be bidimensionally con-
tinuous at xED if for every y, Z, ~(IJ, ...,~(n) E D, the real-valued function 1(1],}.) =
(P(x + 1]Y + M), ~(l), ...,~(~» is continuous at 1] = }. = O.

The concept of derivative of an operator will be used in the sense of additive Gateaux
variation [11]. More precisely, an element P'(x) E D(n+l)* will be called the derivative
of P at xED, if for every y, ~(l), ...,~(n) ED,

g'(O) = (P'(x),y,~(l), ...,~(~» (1)

whenever the function g(t) =0 (P(x + ty), ~(l), ..., ~(~». Partial derivatives P,l(X)'
P'2(X) E D(n+lJ* will be considered when D = Dl Ef) D2. Using the unique representation
(YI , Y2), Yi E Di (i = 1,2), of every y E D, they are defined by:

(P'i(X), y, ~(l), ...,~(n» = (P'(x), Yi ,~(l), ...,~(~», (i = 1,2) (2)

which holds for every ~(l), .,. , ~(n) ED.
An operator P : D -t D* is said to be potential if there exists afunctionalI/;: D -t

R1 = DO* such that I/;'(x) = P(x) for every xED. It is well known [12] that a sufficient
condition for potentialness is that P'(x) be symmetric for every xED. This result
remains valid for the class of operators P : D -t D* considered here if P'(x) is assumed
to be bidimensionally continuous at each xED, as has been shown [10] in a manner
similar to that suggested by Vainberg [12]. For a linear operator L, this requirement
reduces to the condition that L be symmetric. Such L will be said to be non-negative
if (Lx, x) ~ 0 for every xED and positive if in addition (Lx, x) = 0 only when x = O.
Non-positive and negative operators are defined similarly.

I Russian authors usually include continuity in the definition of linearity [121. On the other hand,

for most American authors this concept includes only additivity and homogeneity. In this paper we
follow American usage.

2 This notation does not imply the existence of an inner product. As a matter of fact, no inner product

or norm will be used in this paper.
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The general problem to be considered consists in finding solutions to an equation

P(x) = f (3)

where P is a functional-valued operator P : D --+ D* and f E D*. The solutions x will
be restricted to be in a subset 11 C D. The elements belonging to £ satisfy some addi-
tional boundary or initial conditions and are called admissible states. It will be assumed
that they constitute an affine subspace; i.e., there is a subspace E C D and an element
wED such that £ = w + E. Clearly, E = 11 when wEE.

Given a functional X : D --+ R1, for each x E 11 we define the variation of X at x

as a linear functional c5X(x) E E*, such that

(c5X(x), y) = {X' (x) , y) (4)

for every y E E. When a decomposition El , E2 of E is available, at every x E £ the
partial variations c5iX(x) E Ei* (i = 1, 2) are defined in a manner similar to partial

derivatives.
Following Noble and Sewell [3], given any two elements x- ,x+ E £ define

~X = X(x+) -X(x_) , (5a)

~x = x+ -x- .(5b)

Observe that ~ E E. Thus, if a decomposition El , E:I of E is available, let ~iX E Ei
(i = 1,2) be the unique representation of ~ in terms of an element of El plus an element

of E2.
When the functional X is differentiable, it is said to be convex on £, if

~X -(c5X(x-), ~x) ~ 0 t~.;~'(6)

or equivalently
~X -(c5X(x+), ~) ::$: 0 (7)

for every x+ , x- E 2. It is strictly convex if the strict inequality holds whenever x+ ~ x- .
In addition, X is concave or strictly concave if -X is convex or strictly convex

respectively.Furthermore, X is saddle on 2, convex on El and concave on E2 if

~X -(c51X(x-), ~lX) -(c52X(x+), ~2X) ~ 0

for every x+ , x- E 2. It is strictly saddle if the inequality is strict whenever x+ ~ x- .

(8)

3. Formulation of variational principles. By a variational principle is understood
an assertion stating that the variation ~X(x) of a functional X vanishes at a point
x E E if and only if x is a solution of (3). When.2 = D, a sufficient condition for the
construction of variational principles is that the operator P be potential, because if
1/1 : D -+ R1 is a potential of P, then the functional X(x) = I/I(x) -(/, x) will have the

required property.Variational principles which hold when the set of admissible states is D itself but
which remain valid when the set of admissible states is restricted to be .2 C Dare
known in many instances. The validity of such procedure frequently depends on the

next obvious fact.
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LEMMA 1. Assume
i) X' = P -f where I E D*j
ii) For every x E .2, (P(x) -I, y) = 0 for every y E E, if and only if (3) is satisfied.
Then for every x E .2, X'(x) = 0 if and only if oX(x) = O.
An element Xo E D is said to be a maximum of a functional X : D -+ R1 if

X(xo) ~ X(x) (9)

for every xED. The maximum is said to be strict if the inequality holds whenever
x ~ Xo .Minimum and strict minimum are defined similarly.

Obviously, if X possesses a derivative at x~ ,then X'(xo) = 0 whenever Xo is a max-
imum or a minimum of X. Conversely [3], if X is convex or concave, then Xo is a maximum
or a minimum respectively of X whenever X' (xo) = O. The maximum or minimum
will be strict if the convexity or concavity are strict.

In general, a functional X is neither convex nor concave, but under very general
conditions can be expected to be saddle-shaped-bilinear functionals illustrate this fact,
as will be seen. For this reason, the extension by Sewell [8] of the foregoing results to
saddle-shaped functionals enlarges considerably the applicability of dual extremum
principles. Our version of a special case of Sewell's results is contained in the following
theorem and corollary.

First recall that

oX(x) = OlX(X) + 02X(X) = 0

at x E .E if and only if

fl1X(x) = 0

and simultaneously

02X(X) = o. (lIb)

THEOREM 2. Assume a decomposition El , E2 of E is available and X : D -+ R1
is a saddle functional on 2, convex in El and concave in E2 .Then

i) For any x" , Xb E 2 that satisfy (lla) and (lIb) respectively, we have

X(x,,) ~ X(Xb); (12)

ii) if x E .2 is a solution of (10), then:
a) The maximum value of X among all admissible states that satisfy (lla) is

attained at x;
,8) The minimum value of X among all admissible states that satisfy (lIb) is

attained at x;
'Y) The respective maximum and minimum values coincide.

Proof. This theorem was established by Sewell [8], but because of its simplicity
the proof is presented herein for the sake of completeness. To prove part (i), observe
that relation (8) is satisfied by any given pair of admissible states x+ and x- .Thus,
if we set x+ = Xb and x- = x" , relation (12) follows. Now, if x is a solution of (10),
then x satisfies Eqs. (11); therefore (a) and (.8) follow from (12). Finally, 'Y) is a direct
consequence of (a) and (.8).

An attractive feature of many dual principles is that any member x" satisfying (lla)
provides an upper bound and any member Xb satisfying (lIb) supplies a lower bound
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of the common value of the functional X at the solution x. The results of Theorem 2,
however, do not allow to infer from the difference X (xa) -X (Xb) an estimate of the
closeness between an approximate solution and an exact solution. Theorem 2 states
that the minimum value of the functional X on solutions of (lla) is equal to its maximum
value on solutions of (lIb), when a solution x of (10) exists. Though in this case both
maximum and minimum are attained at x, there may be elements x' satisfying either
(lla) or (lIb) on which X achieves the same value and which are not solutions of (10).
This difficulty does not arise if X is strictly saddle, as the following corollary shows.

COROLLARY 3. If in Theorem 2 X is strictly saddle on 11,
i) There is at most one solution x E 11 of Eq. (10);
ii) The equation

X(Xo) = X(Xb) (13)

holds if and only if Xo = Xb is the solution of (10);
iii) If the solution of (10) belongs to p., the maximum value of X among all admissible

states that satisfy (lla) is attained exclusively at the solution. The minimum value
of the functional among all admissible states that fulfill (lIb) also is attained only
at the solution.

Proof. In this case the proof of part (i) of Theorem 2 yields (ii). The result (i) is
obviously implied by (ii). Finally, to prove (iii), let x be the solution of (10) and let
X (xo) be the maximum value of X among all admissible states that satisfy (lla); then

X(xo) = X(x) (14)

and consequently x. = x. The proof of the second part of (iii) is similar.
This corollary, and in particular parts (ii) and (iii), are of special relevance for the

construction of approximate solutions because they show that the elements that yield
the maximum and the minimum are unique and equal to each other and correspond
to the solution of the problem. This condition is required to assure that the difference
x (x,,) -X(x,,) can be used as an estimate of the error of an approximate solution.
Thus, the practical usefulness of the results is greater for problems associated with
functionals that are strictly saddle.

4. Dual variational principles for linear symmetric operators. An advantage of
introducing the class of variational principles formulated in Theorem 2 and Corollary 3
is that this class has a clear connection with other kinds of principles, thu.~ permitting
a unified formulation of the theory. For the linear case such procedure yields a general
class of dual variational principles applicable to symmetric operators under very general,
conditions [10].

Let L : D -+ D* be a linear and symmetric functional-valued operator. The condition
of symmetry on L implies that the operator L is potential, and therefore the equation

Lx = I, (15)

with! E D*, admits a variational formulation. Indeed, Eq. (15) is equivalent to X'(x) =0,
where

X(x) = !(I"x, x) -(1, x) (16)
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On the class of admissible states FJ, Eq. (15) will be equivalent to oX(x) = 0 as long
as the hypotheses of Lemma 1 are satisfied, This variational principle is extremal if
the class of admissible states FJ is such that L is non-negative or non-positive on FJ,
When this is not the case, the fact that a linear space E can, under very general condi-
tions, be decomposed into two subspaces El , E2 such that L is non-negative on El and
non-positive on E2 can be used to construct dual variational principles, For example,
if E possesses a basis of eigenvectors, El and E2 can be taken as the subspaces generated
by the eigenvectors corresponding to positive and non-positive eigenvalues, respectively.
With this decomposition the functional X is saddle on FJ, convex on El and concave
on E2 ; Theorem 2 is therefore applicable. If L is positive on El and negative on E2 ,
X is strictly saddle and Corollary 3 also can be applied,

Observe there are other ways in which the decomposition of E can be carried out
This is a useful fact because it adds flexibility to the procedure in specific applications.,

5. On the treatment of boundary conditions. The formulation of variational
principles presented here is applicable to an equation of the form (3) which is defined
in terms of functional-valued operators. To apply it to systems of partial differential
equations, it is therefore necessary to express them first in this form. Boundary conditions
that have been treated by other authors [3,17,18] can be included in the present frame-
work and the general ideas of the procedure are explained herein. The variational
principles developed in the following sections, as well as some obtained previously [13],
illustrate the way in which it can be used.

Let D be a linear space of functions defined on a compact connected subset R of RR
with smooth boundary oR. Let L : D ~ D* be a linear differential operator. A formal
adjoint L is an operator LW : D ~ D* such that for any x, y E D:

(Lx, y) = (LWy, x) + cf>(x, y) (17)

where cf> : D2 ~ R1 is a functional whose support is contained in aE. In applications,
an equation of the form (17) is usually given by a reciprocal theorem (see [3, 13]) and
in that case (Lx, y) is given in terms of a differential operator applied to x, integrated
after multiplication by y. (LWy, x) is given similarly. Clearly, cf> is a bilinear functional
because (Lx, y) and (LWy, x), are bilinear functionals (compare with Komkov [17] and
Arthurs [18]). It is therefore possible to define operators fJ : D ~ D* and fJW : D ~D*
with support in aE such that for every x, y E D:

(Lx, y) + (fJx, y) = (LWy, x) + (fJWy, x). (18)

This can be done in many ways, because all that is required is that

(fJWy, x) -(fJx, y) = cf>(x, y) (19)

for every x, y E D. However, if the operator L in (15) is to be defined by L = L + fJ,
there must be a one-to-one correspondence between the range of the operator L +
fJ : D ~ D* and the possible data of the problem. A necessary and sufficient condition
is that (L + fJ)x vanishes if and only if x satisfies null data. In particular, fJx vanishes
if and only if x satisfies zero boundary data. If this is achieved, f E D* defined by
f = 1 + 1B is known when the data of the problem are specified and the problem can be
formulated as in (15), where L = L + fJ, 1 = Lx and 1B = fJx.
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It must be observed that there is not a unique manner of formulating the problem
in terms of functional-valued operators and consequently, given one variational principle,
other principles can be associated with the same problem. Indeed, let P : D -+ D* be
self-adjoint such that Px = 0 if and only if x satisfies zero boundary conditions. Then,
if L is self-adjoint, L + aP is self-adjoint for every a E R1 and it can be seen that

(L + aP)x = f + ag (20)

is equivalent to (15), for some a ~ O. Here g E D* is given by g = Px.

6. Alternative formulations of the flow problem. The boundary initial-value
problem to be studied is the transient flow of water in a confined flow region, i.e. a
completely saturated elastic porous medium that has well-defined geometric boundaries.
It is assumed that an open region R with boundary A is occupied by a porous and
permeable medium completely filled with a slightly compressible liquid such as water
or oil. The medium through which the flow occurs has a specific storage S,(.x) and a
symmetric permeability tensor K; j (x), properties which are dependent upon the position
vector x. S,(x) is positive and continuous on Rand K;j(x) is assumed to be positive
definite and continuously differentiable on R. The problem consists in finding the dynamic
state of the liquid at any instant when an initial state and boundary data are known.
The boundary data are given in two complementary parts Al and A2 of A. Al is the
portion of the boundary on which the head is prescribed and A2 is the remaining portion
of the boundary, on which flux is prescribed.

We do not discuss the existence of solutions, assuming, therefore, that a solution
exists, i.e. that the data are in the range of the operator.

Three alternative descriptions of the motion will be considered depending on the
variables used to characterize the problem:

i) Equations in terms of head and velocity. Let h be the hydraulic head and v; denote
the cartesian components of the Darcy velocity vector v. The physical laws governing
the motion of the fluid are the equation of continuity

S,(iJhjiJt) + (iJv;jiJx;) = q on R (21a)

and Darcy's law

ahv. = -K.. - on R, " !} .
uX.,

These equations are supplemented by the initial condition

h(x, 0) = ho(x) on R

and the boundary conditions

h(x, t) = H(x, t) on AI, (2Id)

v,(x, t)n,(x) = W(x, t) on A2. (2Ie)

In Eqs. (21), q(x, t) denotes the external sources, the function ho is the prescribed initial

head, while Hand Ware given surface head and surface flux. n, are the cartesian com-ponents 

of the outward unit normal vector n. Here and in what follows the range of

Latin subscripts will be {I, 2, 3} and sum over repeated indices is understood.
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)n. = -w ~A, 1,) Ull ~2 A l~, "lJ'

Kij~

The set D of states for this formulation will be made of the .continuous functions
h(x, t) defined on R X [0, tJ, such that their second space derivatives and first time
derivatives are continuous everywhere on R X [0, tJ, and will be referred to as DA .

iii) Equations in terms of velocity. The hydraulic head may be eliminated from
Eqs. (21) to obtain a characterization of the flow problem in terms of velocity [19].

The resulting system is:

(23a)aVj a ( 1 avo)at -ji;. s:~ = P.(x, t) on R X [0, t1)
Kil

where Kii-l are the elements of the inverse of Kii ,i.e., Kii-lKik = Oik .The correspond-

ing boundary and initial conditions are:

(23b)xER,Vi(X,O) = N i(X),

(23 c)1- ~ = M(x, t) on Al X [0, tl],
S, ax;

(23d)on A2 X [0, tJ.Villi -= W(X, t)

The functions P.(x, t), N .(x) and M(x, t) appearing in these equations need to be
prescribed. If the problem is formulated originally in terms of head and velocity, these

functions are given by

(24a)on R X [0, tllPi(X, t) = -

every t E lO, tlj.In this formulation the set D of states will consist of all possible systems of functions
I h(x, f), v(x, t)} defined on R X [0, tJ such that h together with its first spatial and time
derivatives are continuous everywhere in R, while Vi are continuous in space and time
and have continuous first spatial derivatives. This space will be denoted by D. .Neuman
and Witherspoon [19, 20] have discussed some of the advantages gained by formulating
the flow problem as in Eqs. (21), which permit evaluating head and Darcy velocity

simultaneously.ii) Equations in terms of head. In dealing with flow in porous media it has been
customary in hydrology to characterize the problem only in terms of head. To arrive
at such formulation it is necessary to make use of Eq. (21b) to eliminate Vi from the

remaining equations in the system (21). This process leads to

;)h ;) ( ;)h)S. at = a;;: Ki; a;; = q on R X [0, tl], (22a)

h(x,O) = ho(x) on R, (22b)

h(x, t) = H(x, t) on Al X [0, tJ, (22c)

__;)h TTrl_'\ A v If) ,_1 (22d'
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xER (24b)

+ 1 v,n. * h dx -1 Ji * v,n, dx
A. A.

r [h * S. ~ + h * ~ -v, * ~ -v, * K'j-lVj + S.Ji(x, O)h(x, tJ
] dx

JR at ax, ax,

+ r v,n, * Ii dx -1 h * D,n, dx (25)
lA, A.

A notation motivated by the convolution notation hM been adopted in this equation,
i.e., for every pair of functions k, g:

k(x, t)g(x, t1 -t) dt.

Proof. Integration by parts with respect to t and use of the divergence theorem
on the left-hand member of (25) yields directly the right-hand member.

Given U = {h, vI E D. , the left-hand side of Eq. (25) defines a linear functional

of V = {h, v lED. .The functional so defined is identically zero if and only if U satisfies

null data. Therefore, according to the remarks of Sec. 5, the functional-valued operators
.L, n : D. -+ D.* can be defined by

(.Lu, V) = l [ Ii * S, ~ + Ii * ~ -Vi * .!!E.. -Vi * Ki;-IV; ] dx (26)
.R at aXi aXi

(nU, V) = 1 S,h(x, O)Ii(x, tJ dx + 1 vini * h dx -r Ii * Vini dx (27)
R A, -A,

The set D of states will be called D. and will consist of the continuous functions
V,(X, t) defined on if, X [0, t1] such that their second space derivatives and first time
derivatives are continuous everywhere on R. The hydraulic head does not enter into
this formulation but Eq. (21a) can be used to define it.

7. Variational principles for the flow problem. To derive the variational principles
associated with the flow problems under study by use of the results presented in the
previous sections, it is first necessary to reformulate these problems in terms of func-
tional-valued operators. The aim here is to cast each of the three flow problems in the
form of Eq. (15), with a symmetric operator L. This accomplished, it is then a simple
matter to establish the desired variational principles.

In the remainder of this paper the letter x will be reserved to denote the space
coordinates. Specific notations for the elements of the linear spaces of states will be
given in each section.

i) Formulation in terms of head and velocity. A functional-valued operator associated
with this formulation can be obtained from the following reciprocity relation.

THEOREM 3. Let U = Ih, vI and V = Ih, vI be two elements of the set D. of
states defined in Section 6 i). Then
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which hold for every U, V E Dc .Applying these equations to a solution of the system (21)
leads to defining 1 and lB by

(28)

and

(29)<JB , V) = 1 S.ho(x) Ii (x , tJ dx + r Vini * H dx -J
R 'A, 4,

which hold for every V E Dc .Defining now L as L + tJ and f as ! + !B , and using
arguments similar to those presented by Herrera and Bielak [13] which are standard
in calculus of variations, it can be shown that Eq. (15) is fulfilled if and only if Eqs.
(21) are satisfied. Since L clearly is symmetric, we have

THEOREM 4. Let the set of admissible states be .e = E = D. .For every element
{h, v} E Dc define the functional

X(h,v) = ~ L {S.h * ~ -2Vi * oh -Vi * Kij-lVj + S.h(x, tJ-
ax;

(h -H) * Vini dx + i h * W dx.

Then
~X(h, v) = 0 (31)

if and only if {h, v I is a solution of the problem specified by Eqs. (21).
Proof. Substitution of Land f for this problem into (16) gives (30). On the other

hand, X' = ~X because 1- = Dc .
The functional defined by Eq. (30) is simpler, and slightly more general, than that

given by Neuman and Witherspoon [19]. The latter is obtained when the former is
convoluted with the constant function -1, if q is set equal to zero [13].

To obtain the dual variational principle associated with the present formulation
of the problem, define E I as the subset of E whose elements {h, v I are such that h is
even while v is odd about the midpoint in the interval [0, tJ, and define E2 as the subset
of E whose elements {h, vI are such that h is odd while v is even in the same interval.
With these definitions EI , E2 is a decomposition of E. The dual variational principle
follows from Theorem 2 because L is non-negative in EI and non-positive in E2 , as
can be verified by direct substitution in the definition of L.

THEOREM 5. Let the set 1- of admissible states and the functional X be defined
as in Theorem 4. Then

i) An admissible state {h, vI is a solution of the system (21) if and only if
[ ah aVi J.

S. at + a;:- -q = 0 on R X [0, tl],

[ ah J. Vi + Ki; ~ = 0 on R X [0, tl],

h(x,O) = h.(x), x E R, (32a)

[h -H]. = 0 on Al X [0, 4],

[vini -W]' = 0 on A2 X [0, 4]
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and simultaneously[ oh OVi Jo

S, at + ~ -q = 0 on R X [0, Ii]'

[ Oh J' Vi + Ki; ~ = 0 on R X [0, Ii]'

h(x,O) = ho(x) , x E R, (32b)

[h -H]' = 0 on Al X [0, Ii]'

[Vini -W]O = 0 on A2 X [0, Ii]'

The superscripts e and 0 denote, respectively, the even and odd components about
the midpoint in the interval [0, tl] of the terms enclosed in brackets.

ii) For any pair of admissible states Ih. ,v.}, Ihb ,Vb} that satisfy (32a) and (32b),
respectively, we have

X(ha I Va) ~ X(hb , Vb) (33)

iii) Let {h, vI be an admissible state that satisfies (21). Then
a) The maximum value of X among all admissible states that satisfy (32a) is attained

at {h, vI;
fJ) The minimum value of X among all admissible states that satisfy (32b) is attained

at {h, v};
'Y) The respective maximum and minimum values coincide.
Proof. The theorem follows from Theorem 2 in view of the remarks of Sec. 4;

it is only necessary to show that (32a, b) are equivalent to (11a, b), respectively.
To this end observe that for every U, V ED. we have

(8X(U), V) = (LU -f, V) = L {Ii * [ S. ~ + ~ -q ] -Vi * [~ + Kij-1Vj]

v,n, * (h -H) dx

-i. Ii * [v,n, -W] dx. (34)

Eq. (lla) states that the partial variation OIX vanishes. This condition is equivalent
to requiring that (oX(U),. V) vanish whenever V E El .In view of (34), this is equivalent
to (32a). Eqs. (32b) can be established similarly.

Corresponding results for the other two descriptions of the problem can be derived
in a similar manner and are given in the following paragraphs. Therefore, the proofs
are only sketched.

ii) Formulation in terms of head.
THEOREM 6 (Reciprocity relation). Let h and Ii be two elements of the set DA

of states defined in Sec. 6 (ii). Then:
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dxaJi -h *
h * S, at"=

The functional-valued operators L, B : D -+ D* corresponding to this reciprocity relation

are defined by

ah a ( ah )Ii * s. -a-i -Ii * ~ Ki; ~
(36)dx,

aJi

(Lh, Ii) = £. I
oR I

(.sh, Ii) = r S,h(x, O)Ii(x, tJ dx - 1 h. K;j"!I n; dx + 1 Ii. K;j ~ n; dx
JR A. uXj A. uXj

which hold for every h, Ii E D.
The functionals ! and! B can be defined by applying Eqs. (36) and (37) to a solution h

of the system (22):

(37)

(38)

for every ii E D.
If we define then L = L + tJ and f = J + J B , arguments similar to those used

in [13] can again be used to prove that an element h E D" will be a solution of the system
(22) if and only if Eq. (15) is satisfied.

Taking into account that L : D~ -+ D~ * so defined clearly is symmetric, a stationary
variational principle follows when the functional X is defined as in (16).

THEOREM 7. Let the set .e of admissible states coincide with the whole set D~
of states. For every state h, define the functional X by

1 1 { ah ah ah }X(h) =:2 R S,h * at + K;j ~ * + S,h(x, tJ[h(x, 0) -2ho(x)] -2h * q dx-
ax;

(40)

Then

X(h) = ! r {s h * ~ + K.. E! * ~~h
2JR' at "ax,

-
ax;

8X(h) = 0 (41)

if and only if h is a solution of the problem specified by Eqs. (22).
COROLLARY 8. The variational principle of Theorem 7 remains valid if the set PJ

of admissible states is restricted to satisfy the boUlldary condition (22c) and the func-
tional X is given by
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Proof. The theorem follows from the fact that X'(x) = lJX(x) when B = D. The
Corollary can be established observing that the set B satisfies the hypotheses of Lemma 1
and Eq. (40) reduces to (42) when h E B.

It must be noted that the linear space E associated to B is made of those functions

h E D" such that

h(x, 0) = h.(x); x E R, (44b)

[ ah ] . W + K;;a;;n; = 0 on A2 X 10, t11.

ii) For any pair of admissible states hG and h" that satisfy (44a) and (44b),

respectively,
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which hold for every v, v E D. I and

(49)<J, v) = J Vi * Pi dx

Then

(52)oX(v) = 0

if and only if v is a solution of the flow problem specified by Eqs. (23).

X(h,,) -X(h.) can be used as an estimate of the error implied by the approximate
solutions h. and h" .This enhances the value of the results in applications.

iii) Formulation in terms of velocity.
THEOREM 9 (Reciprocity relation). Let v and v be two elements of the set D. of

states defined in Sec. 6 (iii). Then1
[ - K -1 iJv; -iJ (1 iJV;) + K -1 ( 0)- ( t )] dR Vi. i; at -Vi .~ ~ ~ i; V; X, Vi X, 1 X

+ f -1 iJv; d f 1 iJv; dVini ._8 -;-: x -Vini ._8 -;-: x
A, .uX, A. .uX,

1 [ .K -1 iJv; iJ (1 iJV;) + K -1- ( 0) ( )] d= R Vi i; at -Vi .~ ~ ~ i; V; x, Vi x, t1 x

+f .1-~ d - f -.1-iJ-!!-L d (46)Vini 8 ".x Vini 8 ".X.A, .uX, A. .uX,

The functionals L, fJ, J and JR corresponding to this problem may be defined in a manner
similar to the previous two cases by

(]B , v) = 1 K,;-lN ; (X)Vi (X, tJ dx + 1 v,n, * M dx -1 W * F ~ dx (50)
R A. A.. x,

For every v E D. , the substitution of the functional-valued operator 1" = L + tJ and
f = ! + !B into Eq. (15) yields the desired formulation. Thus, an admissible function
v E D. will satisfy (15) if and only if it also satisfies Eqs. (23).

The corresponding stationary and dual variational principles are contained in the
theorems given below.

THEOREM 10. Let the set £' of admissible states coincide with the whole set D.
of states. Ji'or every state v of D define the functional X by
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THEOREM 11. Let the set 1; of admissible states consist of the elements of D that
satisfy Eq. (23d) and let X be given by Eq. (51), which, with the constraint imposed
on the admissible states, becomes

X( ) 11 { K -1 av; + 1 av;
* av;

v-- v* -2 R; ;; at S, ax; ax;

M * v.n. dx.

Then
i) An admissible state v is a solution of the flow problem described by the system (23)

if and only if

1 aVj
l( i j- ""it"

() ( 1 ()V;) ].
~ s: a;;: -Ii = 0 on R X [0, t1],

Vi(X,O) = N,(x) , X E R,

-..!~-M

S ax..I

= 0 on Al X [0, tI]

and simultaneously

K..-i ~ -_a. (L .!!Y-i) -f" at ax, S. ax; ,

v,(x,O) = N,(x), X E R, (54b)

1 avo J.
s: ~ -M = 0 on Ai X [0, ti].

ii) For any pair of admissible states Va and Vb that satisfy (54a) and (54b) ,
respectively,

,Jo=o 

on RX[0,t1],

X(va) ~ X(Vb). (55)

ill) If there exists an admissible state v which is a solution of the system (23), then
a) The maximum value of X among all admissible states that satisfy (54a) is attained

at V',
a) The minimum value of X among all admissible states that satisfy (54b) is attained

at Vi and
,8) The respective maximum and minimum values coincide.
Proof. Notice that the set E is made of the elements of D that satisfy (23d) with

vanishing W. Define EI and E2 as the subsets of E whose elements v are such that
v is odd and even, respectively. With these definitions lEI, E2} is a decomposition
of E. The theorem follows from the results of Sec. 4, because L is non-negative in EI
and non-positive in E2 .
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