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Sununary

The integro-differential equations for leaky
aquifer systems are here used to formulate a numerical
method for studying their dynam!cal behavior. The
advantages of this approach over standard methods are
exhibited, apply~ng it some specific examples. The main
advantage of the method is that the system of equations
is uncoupled and the storage capacity of the computer
not large.

~~~~r~~qt1on
In the study of leaky aquifer systems, the

assumptions of horizontal flow in the aquifers and of
vertical flow in the aquitards have been extensively used,
and Neuman ana Witherspoon (1969a) have confirmed their
validity for most cases of practical interest. Under these
assumptions, it has been shown (Herrera and Rodarte, 1973)
that the transient behavior of drawdown is governed by a
system of integro-differential equations. It has been
shown (Herrera and Rodarte, 1973; Herrera, 1974) that this
system constitute a powerful method of analysis.

In a first paper (Herrera and Rodarte, 1973) the
nature of approx~ate theories of leaky aquifer dynamics
was.ana1yzed, and in a second one (Herrera, 1'7() the
error analysis of those theories was carried out. Here,
the integro-differentLa1 equations are used to construct
a numerical method for analyzing the transient behavior
of leaky aquifer systems.

Standard numerical methods for this kind of systems
{Javandel and Witherspoon, 19691 make use in a directmanner 

of finite el~nt formulations Y1thout~rGf1t.1Rq of
the special features of leaky aquifers. With such approach,
the resulting equations for the aquifers and aquitards are

co"
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coupled. 

On the contrary, when the integro-differential
equations for leaky aquifer dynamics are used, the
resulting system of equations is uncoupled and one has to
deal with a problem whose complexity is not greater than
one corresponding to a single confined aquifer. This
implies great advantages from the point of view of
computing requirements and precision that can be achieved

2. The 1ntegro-differential equations for le~ky aquifers

In this section the set of integro-differential
equations, equivalent to the partial differential equations
governing the transient behavior of multiple-aquifer
systems, will be presented for the par~icular case of a
two-aquifer system (Figure 1) separated by a sem1pervious
layer (aquitard or aquiclude).
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FIGURE 1:- THE AQUIFER SYSTEM
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Here 

no contribution to the drawdown by distributed wellshas 
been considered, but the analysis can easily modified

to include it. In any particular problem, appropiate
boundary conditions have to be added to (1) and (2).

It has been shown (Herrera and Rodarte, 1973) that
the system (1,2) is.equivalent to

3s1

a;~

a2S1 a2S1 It aS1
~ + ~ -C1 ~ (t-T) f(a'T/b' 2)dT

t as 0
~ (t-T)h(a'T/b'2)dT = 1-

C1 J
0

a2s a2S2 .2
ax--z- + ay-z-- -C 2

t
dS2~ (t-T)f(a'T/b'2)dT +

t as 0
1~ (t-T)h(a'T/b'2)dT = ( 3b)~2 f

0

and

(3c)

-n21f2t

e

00where 
w(~,t) = 1-~-2 r sin nn~.

n=l nn

A dimensionless version of the system (3) is given in
(Herrera and Rodarte, 1973), when the drawdown in one ofthe 

aquifers can be neglected, i.e. when
s 2 (x, y, t) = 0 (4)

this takes the form

r,O,t},b' 

,t)<,y,O)<,y,O)
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W+aT)T-
.1 oS~ (t'-T}f(T)dT =-a;-a""fTot' 

aJ
0

(5b)
to as 1

afT (~,n,t'-T}W(~,T)dT

S' 

(E;,n,c;,t') =

0

Here, the subindex of S1 has been droped out because it is
irrelevant in this case. The set of dimensionlessvariables 

used in these equations are:

; = X(K'/K1b1b,)1/2 (6a)

n = Y(K'/k1b1b,)1/2 (6b)

1; = z/b' (6c)

t' = Ct't/b'2 (6d)

together 

with

For the developments that follows, it is important
to recall that the value f(t') of f at t', gives the rate
of flow of , water from the aquifer to the aquitard when a
constant drawdown of unit magnitude is imposed on the
aquifer starting at t'=O. Thus the function

-t'

f(,)d,

(9)F(t') =

.0 ,is 
the total yield of water of the aquitard up to time t'under 

those conditions.

3. ,A family of approximations for the meIOOry function

In this section an infinite family of approxLrnations
{f (t'); N=0,1,2...} for the rneIOOry function f(t') will be
pr~sented such that everyone of them preserves the total
yield from the aquitard to the main aquifer; more
precisely, such that

t' t'
lim { J f('[)d'[ - J fN('[)d'[} = 0 (10)

t'-+-Q)
0 0

5'a = - (6e )a 5 .
1

A dimensionless vari.able suitable for axisymmetric problems
is R = (~2+~2)1/2 (7)

Using this variable, equation (Sa) becomes



359

for every N=O,1,2,... .This property is important in
numerical applications, because it has been observed that
the accuracy of approximate solutions are highly sensitive
to the fulfilment of such condition.

Observe that definition (9) implies that F(O)vanishes. 
On the otller hand, it can be seen that condition

(2c) implies that ~(O) also vanishes. Using these condi-
tions, integration by parts yields:

t' as It' a2sarr(t'-,)f(r;)dT = w-z- (t'-,)F(T)d, ---

0Therefore, 
if F {t'

tion (11) beco~s

0

is any approximation of F(t'), equa~

to

0

Here, F~ is the derivative of Fa and the term containing
Fa(O) has been retained because for the approximations to

be used it will be different to zero in spite of the fact
that F(O) vanishes.

The memory function is given by (Herrera and Rodar-
te, 1973): c» 2 2

f(t') = 1+2 L e-n w t' (13

, n=l

Integrating this equation from zero to t', it is obtained:

c» -n2w2t'
F(t') = t'+~ -~ L e_z ft (14

.-' w 1n=

Here the fact that
1 2 00 1
_3 = =-r E ~ (15)

1T n=1 nhas 
been used. The family of approximations to be

considered is obtained from (14) by truncating the series
expansion and defining

-n21T2t'
FN(t') = t' + nz; N=1,2,...

1 2 N e
"j"-"1fT 1: -

n=l

is defined by

(16}

The function F (t'
0
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Substitution of FN in (12} yields

-t' as as
a"fT (t'-,)f(,}d, .FN(O}a"fT(t'} +

J
0

(18)

In view of (15), here
N
I: 1

=-rn=l n (19a)

and
(19b)

F' 

(t')=1+2
N

When N=O, equations (19) become

FN(O) = 1/3

F' (t') = 1
N

(20a)
and

(20b)

Consequently, equation (Sa) reduces to

a2s ' a2s 1 1 as
W + W -S = (! + a) ~ (21

a
which is the generalization of Hantush's approximation for
large valu~s of time that was previously obtained by
Herrera and Figueroa (1969), and Herrera and Rodarte
(1973) .

Everyone of the approximations defined by equations
(18) and (19) has a simple interpretation which will nowbe 

established.

Q)

E ~=1_2n=N+l n 3"" ;-r

-Let fN{t') be the approximation of f(t') yieldingFN{t') 
by means of (10); i.e., such that

t'
FN(t') = J fN(T)dT {

0

In view of (16) and (19a), such would be the case, if
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where 6(t') is Dirac's delta function. Camparing (23)
(13), it is clear that the approximation implied is:

(X) 2 2 (X)
2 E e-n 1T t' '" (b- E ~)6(t')

1T nn=N+1 n=N+1 (24)

1dT z ::'2"
1T

E .:?:or
-n=N+1 n

0

it is clear that the total flow from the aquitard is
preserved by approximation (24), but the time evolution of
flow is modified by incorporating the contribution coming
from the terms neglected in the infinite sum (13) at the
initial time. In view of the fact that in each term of the
series the negative exponent increases with n, they
decrease more rapidly with t as n increases and their
contribution to the flow is concentrated in a neighborhood
of the initial time which gets smaller as n increases.
Thus, when more terms of the series are included (i.e.
when N is increased)" the improvement of the approximation
arises from two sources: first, the terms that have been
incorporated in an exact manner, and secondly, the fact
that those remaining are more suitable to be approximated
by a delta function

Taking into account that
f <XI <XI -n21T2T

E e
n=N+l
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As mentioned before, the exact yield of the
aquitard up to time t' is F(t') and therefore FN(t') is
the approximate value of this same yield. Thus, at t' the
relative error implied by the approximation is

F (t') -F(t')
E(t') = NF(t') (26

The evolution with time of this quantity is informative
and is illustrated in Fig. 2.

4. The numerical treatment

The numerical solution of the aquifer system can be
obtained from the differential equations (1) or from the
integro-differential equations (3). If we consider the
case when S2=0, the first formulation requires the
simultaneous calculations for S1 and s' while the latter
allows the computation of first s and then s' as an
integral of s (5). However, the presence of the convolution
integral

t'

(27)~ (t'-,)fl,)d,
atf

0

implies that the determination of the value s(R,tl.+t.tl.) is
dependent upon all previously calculated values of S(R,T),
T<tl.+~tl. and would increase both memory and processing
time.

The use of the approximation F of F (16) resolvesthis 
difficulty in that the convoluti~n can be removed.

From (18),. it is readily obtained that

t

f
0

This representation of the integral permits the
calculation of s(R,t'+At') in terms of the value obtained
for s (R,t') .

5. Comparison of results

To test the validity and efficiency of this method,
~he numerical solution to (5) was obtained for the case of
a~steady well, by using a finite element technique
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together 

with the approximation (28). A Crank-Nicholsonprocedure 
was used for the solution of the resulting

system of ordinary integro-differential equations in the
time variable t'.

The solution was obtained taking N-S and compared
with the analytical solution for this problem (Neuman
and Witherspoon, 1969)

(29)

Comparing these figures with the analytical solu-
tion due to Neuman and Witherspoon (1969b), it is seen
that there is satistactory agreement between them.
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