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ABSTRACT: The integrodifferentiill equations approach to leaky aquif\lr mec~anits hils been
developed as part of a program of research which IS being carried out at the National University
of Mexico. In this paper a, review' ()[ this theory in its present state of development;iis pre-
sented. First the integrodifferential e,quations formulation is given. Then, appro~imate
theories are derived by developing appro~imations of the memory and influence functions. A
critical discussion of these theories is made, from the point of view of its adequacy for nume~i-
cal treatment. An exact numeri~l method is presented and its advantages over stand~d
methods is exhibited. An application of the integrodifferential equations to carry out error
analysis is also explained.
(KEY TERMS; groundw;lter; aquifermechanics; modelling; <;omputer applications..)

l..I.NTRODUCTION : -;

The as~um ptions of horizon tal flow in' Ihe aquifers and of vertical flow in the aqui-
tards characterize the mathematical description of the behavior of leaky aquifer sys'tem&,
because the validity of these C assumptions is well established for most cases of practical

interest (Neu,man and Witherspoon, 1969). Under these assumptionsil(}aky aquifers are
goverried' by a sytein of integrodifferentlal equations (Herrera and Rodarte, 1973); each
of these equations constitu te a partial differential equation with memory, because some
terms depend on the past history of the drawdoWn.

The interest of this system stems from several sources. It can be used as a very flexible
tool for preliminary analysis before a complex model is advanced. This use is possible be-
caUse the memory and influence- functions have universal sh~pe~ i. e., their shape does not
depend on the particular problem'considered. Therefore much information about a given
situation, can be derived before carrying out computations; for example, ifhas been shown
(Herrera, 1970, Eq. 30) that the influence function of one aquifer on the next one has the
shape of a unit-step function (Figure 3) with a lag time t*, given by

,2t* = b !6a'
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Therefore, one can conclude immediately that the system can be treated as uncoupled at
times <t*. For a system of two aquifers (Figure 1) this implies that the drawdown in the
unpumped aquifer can be neglected at times <2t*. These results agree well with those

derived using more elaborate methods (Table 1).
In applications it is frequently advantageous to use approximate expressions for the

memory functions instead of the exact ones. Approximate theories developed in the past
(Jacob, 1946; Hantush and Jacob, 1954, 1955; Hantush, 1960,1967) can be shown to
correspond to suitable approximations of the memory functions (Herrera and Rodarte,
1973). Some of these approximations were previously limited to the solution of some
particular problems (Hantush, 1960); however, by exhibiting the approximate memory
functions it is possible to construct corresponding equations (Herrera and Figueroa, 1969;
Herrera and Rodarte, 1973) which can be used to solve other problems. The use of modi-
fied memory and influence functions as starting point for constructing approximate
theories is more direct and convenient than applying the implicit methods previously
employed. In this manner new approximate theories have been developed (Herrera, 1970;
Herrera, et al., 1976; Herrera and Yates, 1976).

Another advantage of exhibiting the approximate memory and influence functions is
that in this manner it is more easy to carry out the error analysis and to establish the
applicability of such theories. This can be done comparing the exact and approximate
memory functions; this method has been applied to some approxima1e theories (Herrera,

1974).
In the past, attention was centered mainly on approximations leading to analytical

simplifications (Jacob, 1946; Hantush, 1960; Hantush, 1967). Now, the main interest
lies on approximations which simplify the numerical treatment of hydrological problems
(Herrera and Figueroa, 1969; Herrera, 1970, Herrera, et al., 1976; Herrera and Yates,
1976). The formulation of leaky aquifer mechanics in terms of integrodifferential
equations is very well suited to develop simple and accurate numerical methods. This is
so, because the drawdowns in the aquitards are eliminated from the basic system and the

remaining equations for the aquifers can be easily uncoupled.
In this paper the present state of development of the program of research on this

subject, which has been developed at the National University of Mexico since 1968, is
revised. In Section 2, the integrodifferential equations and some other preliminary no-
tions are introduced. In Section 3, relevant approximations for the memory and in-
fluence functions are discussed. By combining them, approximate theories are con-
structed in Section 4. A critical discussion of numerical methods derived from these
theories is presented in Section 5. Section 6 is devoted to explain an exact numerical
method; by this it is meant a method that can be made as accurate as desired. This pro-
cedure possesses many advantages over standard methods (Javandel and Witherspoon,
1969), because it requires the introduction of a smaller number of nodes, it uncouples
the system and leads to smaller matrices, but at the same time only present values of
the drawdowns are required at every stage of the computations and therefore, the com-
puter memory needed is not enlarged. In Section 7 an application (Herrera, 1974) of the
integrodifferential equations to carry out error analysis is presented. Although this
paper is a review of research most of which has already been published, some new

material is also incorporated.
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The theory is presented for a system of two aquifers separated by an aquitard
(Figure I) but its modification to a system with more aquifers or with aquitards limited
by impermeable layers can be carried out easily (Herrera, 1970).

y

Figure}. The Aquifer System.

2. THE fNTEGRODlFFERENTIAL EQUATIONS

Under the assumptions of horizontal flow in the aquifers and of vertical flow in the
aquitards, the mathematical description of leaky aquifers is given by Hantush's (19-60)
equations, which in turn can be replaced by the integrodifferential equations of leaky
aquifer mechanics. (Herrera and Rodarte, 1973). For a system of two aquifers separated
by an aquitard (Figure 1), when the initial drawdowns vanish, the dimensionless equa-
tions are (Herrera and Rodarte, 1973):

a2SI

o~i

a2s I-1-f

311I 0
+

t' 

~ (t'-i)f(r)dr + l
at'

t' 

~ (t'-T)h(r)dT
at'

-L~

aa 1 at'
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or alternatively
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as}-
aal at'

~"(t'-T)h(T)dTat'
t":~{t':-T}g(T)dT ~T

at'

-1--~
aa2 at'

(3)
i' asz '

~(t-,.)w(I..-\".)d,.at' ,

;' 

(r,t')::: f
0

In Equations (1) to (-3), ~i111i' ~ and t' are dimensionless yariab,les, while

(4a)OX)

f(t') == 1+2 }:;
n=1

(4b)g(t') :: f(t')~
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n21T2t'
~

+:2 ~
n=

h(t') :: {-It e-'

e-n2~2t'
~

-'\"-2 ~
n=

w(~,t': sin n1T~
n1T

Equations (1) or (2) can be interpreted as equations with memory, because the integral
terms depend on the past history of the drawdowns si (i= 1 ,2)~ Either of the functions f
or g, gives the influence of the past history of the drawdown of one aquifer into itself;
they are called memory functions. On the other hand, the function h gives the influence
of the past history of the drawdown of one aquifer into the other one; It will be called
influence function. The functions f,g,h and w, play an important role in theory of leaky
aquifers and therefore deserve study. They are illustrated in Figures 2, 3 and 4. Some
relevant features must be recalled:

i} f behaves like (1Tt').~ 1(2 at t' = o. Thus, g is also singular there;

ii} f goes to one as t' gOes to infinity; correspondingly, g goes to zero;
iii) Function- h together with its derivatives of at! orders, vanish at t'-=O; ana
iv) Function h goes. to one as tl- tends to infinity.

Property r) follows from Equations (4a,b). Properties ii) and iv) foflow by inspection of
Equations (4a) to (4c}. Property iii) can be proved applying Cesaro summabiHty criterion
(Apostol, 1957) to Equation-(4c) and its time derivatives of all orders.

The physical meaning of functions f and h is relevant. Assume a constant drawdown
of unit magnitude is imp()csed in one of the aquifers starting at t'=Q Then, f(t') gives
the rate of flow of water from the aquitard into that aquifer at time t' and h(t') is the
rate flow of water from the other aquifer into the- aquitard. The steady state valUe for
both of tnem is 1. Before the steady,state condition is achieved the rate of flow from the
aquitard inte the same aquifer exceeds its asymptotic value by g(t'), while the rate- of
flow from the other aquifer into the aquitard is smaller than its steady state value, the
deficiency being I-h(t'}. If the unit magnitude drawdown is kept fixed indefinitely.-the
total yield in the corresponding infinite time interval is not finite; however, both the total
excess and the total deficiency are finite. They are:

00 ~
~ -L=ln=l ~ 3g(t')dt" :: -1--

7[2

f

0
(5a)

n2

1=~2 =

n

~

~
n=

fOO {I-bet')} dtr = -1-
0 2

1T

1
6

3. APPROXIMATIONS FOR THE MEMORY AND INFLUENCE FUNCTIONS

There are many instances in which it is advantageous to use approximate expressions
for the memory and influence functions. Before the formulation of leaky aquifer
mechanics in terms of equations with memory, this was Gone implicitly. Indeed, some
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f

Figure 2. The Memory Functions f and g.

Figure 3. The Influence Function h.
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Figure 4. The Function w when t = 0.2, 0.4, 0.6, 0.8.

of the differential equations that have been used (Jacob, 1946; Hantush and Jacob, 1954,

1955; Hantush, 1960, 1967) imply suitable approximations of the memory functions, as
has been later recognized (Herrera and Figueroa, 1969; Herrera and Rodarte, 1973). More
recently some other approximations have been formulated explicitly (Herrera, 1970;
Rodarte, 1976; Herrera, et 01., 1976; Herrera and Yates. 1976).

i) The Function f -The simple~t approximation is to take it identically zero; this
leads to the theory of a confmed aq!lifer.

Another possibility is to take:

f(t') ~ fftt' -
(6)

An approximation valid for small values of time suggests itself by inspection of Equation
(4a), it is:

f(t' (7)

By truncating the first series expansion in the same Equati9n (4a) another family of
approximations for f(t') is obtained:

e-n27f2t' (8)

However, any such ex pression is unable to reproduce the singular behavior of f(t') at
t'"=O. The error implied by Equation (8) is

, 1\ 00 22
f(t ) ~ fN<t') == 2 }:; e-n 1! t'

NT! (9)
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This is a singular function which gets sharper as N increases; thus, the larger N. the more
suitable to be approximated by a delta function. Writing

(10)

leads to a new family of approximations

N
}:; e-n21f2t'
n=l

f(t' ""' fN(t' +AN8(t')+2-

Here fJ(t') is Dirac's delta function and

N
~

n=l

~

~
N+l

2A =-
N 1T2

-
n2n2 3

-
"

?To.

This 

choice of AN is made in order to satisfy (Sa); I.e

00

gN(t')dt' =
3-0

where gN is fN-I. It is seen that any approximation of this family preserves total yield,
but its time evolution is modified by incorporating the contribution associated with the
terms eliminated when truncating the series expansion at the initial time. The suitability
of the approximation is now evident: The contribution to the yield of the function
appro.x:imated ~ya delta. is concentrated in a neighborhood of zero which gets smaller as
N increases. Thus, as N is increased the improvement of the approximation stems frqm
two sources: firstly, more tenns are included in an exact manner, and secondly, those
which are not taken exactly are more suitable to be approximated by a delta function.

The approximation fo(t') obtained by setting N=O has special interest because it has
already played an important role in the theory of leaky aquifers. For this case Equations
(11) imply that' ; I

f(t'

1 

8(t'~ [oCt' = } + (13)

This equation corresponds, in view of Equation (Sa), to supply the total excess yield in-
stantaneously, at the initial time.

ii) The Function h -For this function the simplest, approximation is to take it as
identically zero as has been done in all those studies for which the drawdown in the un-
pumped aquifer has been neglected.



A Review of the Integrodifferential Equations Approach fo Leaky Aquifer Mechanics 37

Next in simplicity is to tak~ it as identical to its steady state value

h(t' ~ hJ(t') =

Figure 3, illustrating the shape of the influence function h suggests the approxima.
tion

h(t': ~ hD(t' := H(t' -t*)

where H is Heaviside unit step function (equal to one if t' ~ t* and zero otherwise) and

* =
(15b)6

Th~ 

tim~ lag t* was chosen in this manner to satisfy Equation (Sb); i.e

~

The approxkmation (15a) has the interpretation that the effect of the interaction be
tween aquifers is delayed by the time t*.

A more systematic manner of approximating the function h is given by

N+ 
~

n-=1
h(t' ~ hN(t'

where N conditions can be imposed on h, for each N, in order to determine the coeffi-
cients BNn (n=l, ..., N). It is natural to require that the total deficiency [Equation
(5b)] be preserved. Additional conditions can be that the function hN(t') and its first
N-2 derivatives vanish at t'=o.

4. APPROXIMATE THEORIES

Corresponding to every manner of ap"proximating the merf1ory function f and the in-
fluence function h, it is possibre to construct an approximate theory, but not all of them
are equally interesting. In the past, attention was centered mainly on approximations
leading to analytical simplifications of the problems (Jacob, 1946; Hantush, 1960; Han-
tush, 1967). Recently, attention has been shifting toward approximations which simplify
the numerical treatment of hydrological problems (Herrera and Figueroa, 1969; Herrera,
1970; Herrera, et af., 1976; Herrera and Yates, 1976). For its discussion theories which
are relevant for any of these reasons, will be grouped into two large categories: one for
which the influence function is &et equal to zero and one for which it is not.

The theories without interaction to be considered are:
a) Confined aquifer;
b) Jacob (1946) approximation;
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c) Infinitely thick aquitard;
d) Instantaneous excess yield approximation; and
e) Exponential approximations with instantaneous yield.
The theories with interaction to be considered are-:

a) Jacob-Hantush approximation;
b} Instantaneous excess yield with Jacob interaction;
c) Instantaneous excess yield with delayed-interaction;
d) Exponential approximations with interaction; an4 instantaneous yield.

The equations governing each of these theories are obtained by replacing functions f,g
and h by their corresponding approximations in Equations (1) or alternatively Equations

(2).

4.1 

Theories Without Interaction
In all these approximations the influence function h is set equal to zero.
a) Confined Aquifer -As mentioned previously, the behavior of leaky aquifers can

be approximated by treating them as if they were confmed. The differential equation'.*

is obtained by taking

£(t') = 0

(18b)a2s a2s -1 as-+ ,
a~2 a112 aa at

~

[(t'):". [1<t'):;=

which leads to

2 2
h+~-s=-LL
0~2 01/2 aa at'

(19b)

Jacob (1946) formulated this approximation, Hantush and J&cob (1954) obtained first,
the steady, state solution for a well pumping at a constant rate and later (Hantush and
Jacob, 1955) the npn-steady solution, for the saflle problem. The latter is generally known

as Hantush-Jacob formula.
c) Infmitely Thick Aquitard- The approximation

(20a)
f(t'

*For theories without interaction the subindexes 1 and 2 are not, relevant and will be dropped out.
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yields the equation

t' .QL'(1T r)1/2 atJ (t -r)dr =l ~
aa at'

a2s a2s I
-+--f
a~2 a1/2 0

It has been shown (Herrera and Rodarte, 1973), that the exact fundamental solution of
this equation corresponding to the problem of a well pumping at a constant rate, is
Hantush (1960) approximation for small times. Equation (20b) is exact when the aqui-tard is infinitely thick. C .

d) Instantaneous Excess Yield Approximation -This is obtained by setting

+JJJll
3

f(t') ~ fo(t') E (21a)

which gives the equation

h + A -s =-1-..DL
a~2 aT/2 Vo at'

(2Ib)

where

3aa

3+aa
(21c)u =

0

The fundamental solution for this equation corresponding to a well pumping at a constant
rate is Hantush (1960) approximation for large values of time (Herrera and Rodarte,
1973). Equation (2Ib) has remarkable simplicity and it has been shown that can be
transformed into the equation of a confined (non-leaky) aquifer (Herrera and Figueroa,

1969).
e) Exponential Approximations with Instantaneous Yield ~ The integrodifferential

equations obtained when exponential approximations with instantanequs.yield are used
for the memory functions, are very well suited for numerical treatment (Herrera, et al.,
1976; Herrera and Yates, 1976). In view of Equations (11), they are:

.2 2k (r)en 1T r dr = L ,9.:L
at' ~ at'

32s 32s N -n21T2t' 1
-+--s:-2 ~e f
3~2 3112 n=l 0

where for every N=O,1,2,. ..

aa~ = 1 +aaAN
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Observe that the instantaneous yield approximation is a particular case of this more

general family of approximation-s.

4.2 Theories With Interaction

a) Jacob-Hantush Approximation -In this case

[(t') ~ [}(tl-) := 1 ~ h(t') ~ hl(t') = 1

The corresponding differential equations are

02s 32s~+~
3~I 0111

-sl + s2 = -L ~
aal at'

-52 + 5} = -1- ~
aa2 at'

~+
')

a~2

~
all~

The fundamental solution for this theory was given by Hantush (1967).
b) Instantaneous Excess Yield with Jacob Interaction -Next in complexity is a

theory in which the total volume of water due to the excess yjeld is supplied instan-
taneously at the initial time. This is obtained by setting

~ h(t') ~ hJ(t') ::

The equations governing this theory are:

~+
3~I

02S1

0111

~
vI,O at'

-sl+s2 =-!-

(24c)
2

32s2 + ~ -~+sl =
-2

3112

-L~

~,o at'
a~~

where

=3-L v = 3L
vI,O 3+aal' 2,0 3+aa2

The fundamental solution can be easily deduced from that. obtained by Hantush (1967)
for Equations (23b,c}, but has never been reported.
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; c) Instantaneous 'Excess Yield With Delayed Interaction -The previous theory can

be improved by using delayed interaction. When this is done

+.00

3 'f(t') ~ fo(t') ~ h(t') ~ ,hD(t') :=, l::I(t'-1'*)

and the equations become

--L~

vI,O at'

2
aSI(t')+

azSI ,', ,(t ) -sl (t ) +sz(t -t*) =-

o~I
-

2
01/1

2
.a s2 (t') + *) = -:-L ~

112,0 at'S2(t~) +s.I (t'-

a~~

a2S2"( "
-to

a11~

This approximation, was; originally proposed by Herrera (19.70) and it represents an, im-
proved ver~i9n of Hantush-Jaqob approximatiof}, because i~ takes into account the
s,torage of: the aquitCJ~d, both through the instantaneous exc~ss yield and the delayed
respon~e. A manner of constructing the fund3;mental.solution for t~is problem ~as given
by Herrera and Rodarte (1972). ,

d) Exponential Approximations With Interaction and Instantaneous Yield:": This
approximation is the result of taking ~..,' , ,'," "

f(t'

M
== I + ~ BMn

ry=l

e-n21T2t'h(t' ~ hM(t'

which leads to

2a 5}-+

2
a~l

02s}

0111

~i:~2;~ ~-n2ir2t'
11=}'

:' 

as} c n2i2T

-;-(T) e dr
ot' 'I0

M
~ Bn=Q Mn e-n2rr2t' OS2

t'

2 2)en 1T T dT .= L ~
" .'t'+

0
VIN

, 2 2
t OS2() fi1TT dT.-'Te

at'0

~I OS 2 2 ' ,

i( ~ )en 1T T. dT :;
M .'

~
b BM e-n21T2t' 1

n- n f
0 at'

3
1 .52

-,.,-,--;'-"

v2N 3t'
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Equations (26) are very well suited for numerical solution of problems, as is explained
tater.

5. APPROXIMATE NUMERICAL METHODS

As mentioned previously the relevance of approximate theories depends at present to
a large extent on its adequacy for numerical treatment of problems. If Equations (1) or
(2) as they stand, were solved numerically by any of the standard procedures to integrate
them step by step in time, it would be necessary to evaluate at each step the convolution
terms. For this purpose on~ could use the exact values of the functions f ,g and h. How-
ever, if this were done it would be required to carry out tlie integration form 0 to t' a
new on each step, because the integrand depends on t' and this variable is being changed.
This is inconvenien t by two reasons: firstly, the number of computations required in-
creases beyond reasonabre limits and secondly, it is necessary to keep at hand the whole
past history of osl!ot' which enlarges very much the memory requirements of the com-

puter.
In view of these facts, the value of approximate theories depends on the extent to

which they remove these inconvenient features. In this respect, the exponential approxi-
mations are the best suited and they have been used to construct a very efficient exact
numerical method (Herrera, et al., 1976; Herrera and Yates, 1977) that will be discussed
in Section 6. A brief critical review from this point of view of the other theories, is
presented in this section.

5.1 Theories Without Interaction

For numerical purposes the infinitely thick aquitard approximation is the worst. As a
matter of fact, Equation (20b) is quite unsuited for its numerical solution, because if does
not offer any advantage over the exact Equations (1) or (2); in a step-by-step numerical
solution procedure its use implies large memory requirements, as well as recalculation of
the convolution terms at every step.

The other approximate theories without interaction (except the exponential approxi-
matiun that will be discussed in Section 6) are governed by partial differential equations
without memory whose degree of difficulty when treated numerically, is the same as the
heat equation. Consequently, the choice of a theory for the treatment of a given prob-
lem depends only on its applicability; for example, when treating a case for which the
instantaneous excess yield approximation Call give more accurate results, it would be a
gross mistake to use Jacob approximation, only because supposedly this is a simpler

theory.

5.2 Theories With interaction

Again, the discus:sion of exponential theories will be presented in Section 6. Leaving
these aside, from the point of view of complexity for its nume-rical treatment, the Jacob-
Hantush and the instantaneous excess yield with Jacob interaction theories can be put to-
gether in one category, because they are governed by tlie same partial differential equa-
tions without memory [Equations: (23) and (24)1. As mentioned previously, the funda-
mental solution of the latter theory can be easily deduced from that obtained by Hantush
(1967) for the Jacob-Hantush theory. .
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The numerical treatment of the instantaneous excess yield approximation with de-
layed response theory (,Equations (25)], is more complicated in on~ respect; the occur-
rence in the equations of ten:ns evaluated with delay enlarge the memory requirements.
However, In many applications the time steps used are of the order ~f t* and in such
cases, this is not an important limitation. On the other hand, ~ue to the delay the
equations for this theory are uncoupled, a fact which represents a definite advantage
with respect to Jacob-Hantush equations (23).

, ,.
of Equation (26c) can be estimated using the value of 3s2/3t at t, which has already
been determined.

Numerical methods based on exponential approximations have been developed (Her-
rera, et ai., 1976; Herrera and Yates, 1977) and it has been shown that because of their
convenient features they lead,to smaller matrices and require much less computational
effort than standard methods.

6. AN EXACT NUMERICAL METHOD

All numerical methods are approximate; here, however by an exact numerical method
it is understood a procedure that can be made as accurate as desired. The exponential
approximations developed previously can be 'used to construct numerical methods of such
character (Herrera, et al.. 1976, Herrera and Yates, 1976).

Equations (22) and (26) present many advantages over Equations (1) or (2). In this
respect the use of exponentials to approximate the functions f, g and his essential,be-
cause it avoids many of the short-comings of sY,stems 1 and 2, mentioned at the beginning
of last section.

Systems 22 and 26 possess three features which make the numerical methods derivedfrom them especially valuable. They are: ' '

a) All the expressions within the integral signs are independent of t';
b) From a practical point of view systems 22 and 26 are exact; and
c) For a step-by-step numerical solutian .procedure. the system is uncoupled.
By inspection it is seen that systems 22 and 26 possess property a). The relevance of

this property stems from the fact that when using a step-by-step procedure to solve the
equations, the value of the integrals can be brought up to date by simply adding the con-
tribution of the time'interval (t', t'+.1t'); this allows reducing the number ofcompu'iations
and the computer memory requirements, 'because past values ()f the variables are not
needed. Regarding property b), frol1} a practical point of view Equations (26) constitutes
an exact system, equivalent to Equations (1) and (2), because just as in the case of the
series expansion of a function, the error can be made arbitrarily small by taking N andM
sufficiently large; as a matter of fact, it has been found (Herrera and Yates, 1976) that'N
and M can be taken less or equal than 2 in most applications and only for studies of a very
special character N or M> 5 is required. 'Property c) is a consequence of the shape of
function h (Figure 3), which as mentioned in Section 2, vanishes, together with all, its
derivatives at t'=O. Therefore, when applying a step-by-step method of solution (Herr:era
and Yat~s, 1976) terms such as --,
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1. ERROR ANALYSIS AND- APPliCABILITY

In previous sections, approximate theories were derived making suitable approxima-
tions of the memory and influence functions. On the other hand, the exact memory
functions are given by Equations (3). This knowledge has been used to carry out the

error analysis more simply.
Using this method the ranges of applicability of Hantush (1960) approximations for

large and small values of time were discussed (Herrera, 1914); similarly, the range of
time on which the drawdown in the unpumped aquifer can be neglected was established

and the resuhs are given in Table I.

TABLE 1. Range of Time on Which the Drawdown in the Unpumped
Aquifer can be Neglected.

a =

1 n--1a2 v aa2=IOO
a =00

a2

Pumped Aquifer
0.54
0.43
0.40

~1=100
~al =10t

aal=~

0.40

0.J3

0.32

0.43
0:34
0.33

1..23
0.96
0.93

Unpumped Aquifer
0.16 O.I!}0.£10.50

Aquitard at ~ =()'.2
0.44

0.40
0.39

aal=lOO
cal=lOl
a;.. 1 =00'

0.34
9.32
(}.31

0.3..1

0.3.1
G..10

1.10
0.88
0.87

Aquitard at ~ =0.5
0.32
0.31
0.31

aaJ=100
a 1=101

a

aa1=OO

0.22

0.22

0.22

0.23
0.23
0.23

0.88
0.80
0.79

Aquitard at ~ =0.8:

0.22

0.22
aal=lO"
aa} =00

0.14
0.14

(}.15
0.15

0.68
0.65

Hantush's approximation for small values of time can be applied according to this
criterion at any time t' smaller than the following values:

t!
dal

0.53
0.41
0.40
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Finally, Figure 5 gives the lower limit t( or the interval, of time t' on which Hantush
approximation for large values of time can be applied at the pumped aquifer.

10

L

0.001

0.01

0.1 10
R

Figure 5. The Range of Applicability of Hantush's Approximation f(
Large Values of Time.

A more thorough explanation of the results presented in this section is given in
Herrera (1974).
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NOTATIONS

~
=l_-1- ~ -1-=-1.

3' 1f2 n=N+l n2 'lf2

N
~ -1-;

n=1 2n
AN

BNn' undetermined coefficients in the expression for hN(t');

b., thickness of the ith aquifer, L;
I

It, thickness af the aquitard, L;
~ 22'

f(t'), memory function,equal to T+2 L e-n 1T t ;

n=1

f(}(t') = 1+fJ(t'i/3 ;

f t ~j(t ) = 1 ;

t -, N 22'fNft } = l-+ANt5(t )+2 ~ ~-n 7r t ;.-

n=1

fS(1') = (7rt')-1/2

~ 2?'
g(t'} = f{tr)-1 = 2 ~ e-n 'It!

n=I

"(t'), lleavisede unit step function;

00 22'
hIt'), influence function, equal to 1+2 ~ (-1)8 e-n 7r t

n-=1

, ~ .hD(t) = H(t -t*) ;

;
hJ(t') ;: 1 ;

~

Ssi' specific storage of the ith aquifer, L -J

S' , specific storage of the aquitard, L -1 ;

s

S., drawdown in the ith aquifer, L;
J

Ki' permeability of ith aquifer, L/T;

K', permeabilify ()f the aquitard., L/T;
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s', drawdown in the aquitard, L;

t, time, T;

t', dimensionless time, equal to a't/6'2

t*, lag time, equal to 1/6 when dimensionless;

77j = y(K' !K..b.b')1!2
I I

~ = lIb'

~i = x<K'!K:b.b')1!2
11

e-n21f2t'

n2

~
W(t,t') ,: I-t-2 ~

n=l
sin n1T!".
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