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SOIL~STRUCTURE INTERACTION AS A DITFRACTION PROBLEM
by

Jsmael Herreraz’II and Jacobo BielakII

SYNCISIS
A mathematical formulation i¢ presented for the preblenm
of dynamic socil-structure interaction considering linear
behavior of the scil material and arbitrary nonlinear structural
properties. Using the unperturbed soil motion as a point of
departures, the problem is formulated in a fashion similar fo
that for diffraction. Conditions for traction and displacement
jumps are established that define a minimal set of data requirved

_to determine the resulting wmotion of the structure.

INTRODUCTION

Counsiderable attention has been devoted in recent years to
the investigation of various aspects of dynamic soil-structure
interaction [4-8], since it has been recognized that compliance
of the s0il foundation can be an important factor in design of
earthquake resistant structures. In dealing with this problem
it is wcustomary to assume that the ground motion is known in
the absence of the structure; it is then required to evaluate
the structural response and perturbed motion of the soil with
the unperturbed ground motion as excitation. The information
abount the excitation usually is supplied in the form of seismic
records obtained at one or several locations and it 1s not
sufficient to determine completely the characteristics of the
incoming seismic waves; the direction of propagation of the
waves, for instance, is not determined by a single seismic
record. Although the available information has to be
extrapolated in almost every application one can think of,
knowledge of the unperturbed wotion in the entire soil medium
is not required. Precisely what information is essential to
compute the structural response is, however, not clear.
Considering the scarcity of available data, it is important to
establish what are the minimum data required for this problem;
this would allow carrying out the necessary extrapolation of
available information in a more efficient manner.

In the present paper a formulacion of the problem of
dynamic soil-structure interaction is presented on the
assumption that the ground motion is known in the absence of
the structure. Under this assumption the problem consists in
determining the effect that a region with different mechanical
properties (i.e., the structure) has on the overall motion.
Posed in this way, the problem appears as one of diffraction,
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for which the incident and reflected waves make up the
unperturbed soil motion and the diffracted wave is the motion
that needs to be added to the former to obtain the actual
motion.

Diffraction problems have been treated extensively in
seismology and the method to formulate them though used
primarily for linear systems [1—3], is equally applicable to
nonlinear ones. In this work the problem is formulated for an
arbitrary nonlinear structure, assuming linear soil behavior.
This formulation can also be applied if the soil behaves non-
linearly within a bounded domain, provided the region
representing the structure is enlarged sufficiently to enclose
the nonlinear region of the soil.

It is assumed that at the comstruction site the excavation
for the foundation is not necessarily filled completely by the
structure (fig. 1) and it is shown that a minimal set of data
required for the treatment of the problem is made of the
displacements that the base of the excavation would have if
structure and excavation were not present. A systematic
procedure is established to incorporate this set of minimal
data into the formulation of this class of problems; it appears
as prescribed jump conditions that supplement the usual set of
partial differential equations, initial and boundaty conditions.
The resulting system is amenable to solution by the finite
element method or some other numerical technique.

THE DIFFRACTION PROBLEM

~
Let R be the region occupied by the sQil before the
excavation and structyre were built, and 3R the bgundary of R.
In most applications R will be a half-space and 9R the free
surface of the soil; this case is illustrated in Fig. 1.

It will be assumed that the building or structure is made
up of an excavation E and a structure S; the region occupied
by both the excavation and the structure will be called the
region of construction C. Two parts of the excavation E will
be distinguished, the excavation occupied by the structure,
denoted by Eg and the part of the excavation that remains free,
denoted by Ep. This way of formulating the problem includes
the case when there is no excavation; i.e. when E is empty
(Fig. 2). The region occupied by the soil after building the
excavation and the structure will be denoted by R. The
boundaries of E,S,C and R will be denoted by 9E, 35S, 9C and 3R
respectively. On the other hand, 9pR and 9gR will be the parts
of the boundary of R that are shared with Ep and Eg respectively.

Let §(§,E) be the motion due to an earthquake; it will be
assumed that u defined on R for every t>0, is such that at
t=0 the region of construction C has not been perturbed; i.e.
initial displacements and velocities vanish in this regjion.
The soil will be assumed lipear elastic and therefore, u. and
the corresponding stresses [Tjj satisfy in R the linear equations
_of motion and the usual linear comnstitutive relation between
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stress and deformation tensors, along with a traction free
boundary condition on k.

A

The unperturbed motion uj of the earthquake will be
modified when a structure is built on the soil. The problem
of soil-structure interaction consists in finding a motion
u (x t) defined on RVS for t>0, such that its initial
dlsplacgments and velocities coincide with those of the
motion u on R, and vanish on the structure because it has not
been excited at t=0. Of course, ul is required to satisfy in
addition the same equations of motion and constitutive
relations on R, as u, along with the traction free boundary
condition on 8R-S. The properties of the structure are
arbitrary and therefore, the field equations of motion satisfied
by the displacements u?(g,t) at the structure will be left
unspecified. Irrespectively of these, displacements and
tractions must be continuous across the surface that separates
the s0il from the structure; thus,

[u?] = 0 on BSR (1.a)

[TT In; = on 3 R (1.D)

Here, brackets refer to the jump of the function contained
within; i.e. the value of the function on the positive side
minus its value on the negative one. The unit normal vector
nj; is directed outwards from the soil (i.e. from R) and
therefore the positive side faces the structure, while the
negative one, the soil. ’

If the structure consists of an inviscid fluid, as when
studying the seismic response of a dam, equations (1) are mot
satisfied, because in such case only the normal components of
tractions and displacements are continuous. The modifications
required in the above formulation to include this case are
straight-forward, but will not be included here for the sake
of brevity.

The procedure that will be used to formulate soil-
structure interaction as a problem of diffraction is similar
to that used previously by one of the authors [1-3]. The
displacements u(x,t) on RUS and t>0, are defined by

u, - Gi on R (2)

on S

The stresses associated to u, will be denoted by T.

ij’
Using this definition, it follows that
aTij azui ~ du
axj - PRz < 0; Tij = Ciqu -—‘P‘axq on R (3)
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u.(x,0) = = 0 on R (4.a)
Tij nj =0 on 3R-S (4.b)
Ty5 By = _Tij n 7 on 3R (4.c)
{ui]= Gi , on BSR (5.a)
[Tij]nj = Ty By on R (5.b)

In addition, the displacements u which are identical with the
total displacements on the structure S, satisfy there the
equations of motion for the structure and suitable conditions
at t=0 and on its free boundary 93S-R. These conditions
"together with equations 3 to 5 define a well posed problem
for u(x,t) on RUS, assuming a very general kind of behavior
for the structure, which includes the possibility that it be
made of non-linear materials with memory. As mentioned
previously, if part of the structure consists of an inviscid
liquid (as when dams are analyzed), conditions 1 are not
fulfilled and consequently, equations 5 must be modified.

MINIMAL INFORMATION TO STUDY INTERACTION

The formulation presented in the last section has
implications worth discussing. When studying soil-structure
interaction problems, it is frequently not clear which are
the earthquake data that are essential for the analysis of
the structural response, Eqs. 3 to 5 supply a precise
answer to this question. Indeed, the total motion in the
structure is given by u(x,t), which is determined through the
problem formulated in the previous section. The only, data
appearing in the system 3 to 5 are the displacements uj and
tractions TjjRj associated with the motion of the unaltered
ground, that take place where the bottom of the construction
is to be built. Thus, when analyzing the problem of interaction
at a site, it is necessary to estimate, either by direct
observation or by some other means, the displacements and
tractions that an earthquake would produce at the bottom of the
construction, but any additional information is dirrelevant to
study the behavior of the structure.

This information can be reduced even further, because
tractions and displacements are not independent at the bottom
of the excavation (R NJ3E). Indeed, define for t>0

U, (5,t) = Gi(g,t); Ti(g,t)=’?ij(}5,t)nj on RNA3C  (6)
Then the displacements 4. and tractioms T, satisfy in the
region of the excavatlonlEc:ﬁ the linear equations of motion,
the usual linear constitutive relations between stress and
deformation tensors and, conditions of initially vanishing
dlsplacements and veloc1t1es. These, together w1th thﬁ
‘boundary conditions 1mplled by the fact that ENJR ¢ 3R is
‘traction free and ul is given on RN 3C by the first of Eqs. 6,
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define a well posed problem for ﬁi(g,t) which determines it on
E for t>0 when Ui(x,t) is prescribed. Once uj (x,t) has been
obtained on E, Tjj is determined by the constitutive relation
of the soil and Ti(x,t) by the second of eqs. 6. The preceding
discussion shows that a minimal set of data for the problem of
interaction are the displacements that the earthquake would
produce at the base of the construction if the ground had not
been yet altered. It can be shown that this result remains
valid when there is no excavation (Fig. 2).

A systematic procedure to incorporate the minimal set of
data is by means of eqs. 3 to 5. However, it is xequired to
express previously the traction T in terms of the displacement
data [J; this can be done solvin& on E the initial-boundary
value problem which determines y in terms of [.

THE LINEAR STRUCTURE

As an illustration the theory presented herein will be
applied to a case for which the structure S consists of a
linear elastic material. To keep the notation simple, it is
convenient to define the elastic temsor Cjijpq(x) omn RV S, so
that it corresponds to the structure or the soil depending on
whether x&€S or xe€R; thus

~
Ciqu(§) Ciqu(g) on R (7)
In this case the soil-structure interaction is governed by the
system of equations 3 to 5, except that eqs. 3 have to be
replaced by

aTi« Bzui au
3;;1 - PET < 0 ; Tij = Ciqu 3;? on RUS (8)

while eq. (4.a) holds on RV S and eq. (4.b) holds on B(RL)S)—BFE.

A minimal set of data for this problem are the displacements
Ui = ui on R/] 3C. To use it, however, it is necessary to
supplement the system of equations just mentioned, with the
system that determines the tractions T in terms of the displace-
ment data U. An alternative would be to prescribe U and T
separately, but when doing so it is required to make sure that
they are compatible, because otherwise they would lead to
absurd results.
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Fig 1. Soil-structure sys’remwwifh excavation
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Fig 2. Structure supported on the soijl surface
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