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SYNOPSIS

"lnternal state variables” have received much attention in recent years, but as it has happened with

other developments of Continuum Mechanics, there has been a time lag between the formulation of this theory and
its application to Soil Mechanics. In this paper, preconsolidation is defined as an internal state variable and
a theory of stress-strain behavior of soils based on this definition is then developed, establishing its connec-
tion with elastoplastic behavior. As an application, the Cambridge theory of "wet" clays is discussed, demons-
trating that it is inconsistent, because the assumed volumetric behavior implies non-vanishing elastic shear

distortion which is independent of effective pressure.

This is precisely the actual behavior observed in the

laboratory and the results here presented prove that the introduction of a second yield locus is not necessary.

INTRODUCTION

In spite of some more recent investigations, the two
most widely used theories incorporating the princi~
ples of plasticity theory are Rowe's stress dilatancy
theory and the Cambridge theory of "wet" clays [S].
The first one of these theories does not consider
elastic strains while the second one is unable to
redict any clastic distortion. In previous work

1,2] one of the authors has proposed a method to
develop constitutive relations for soils whose main
characteristics are: rheological models based on
clearly stated postulates; implications of the )
postulates must be explored as widely as possible;
models must be constructed in succesive steps going
from simpler postulates to those of greater complexity
and development of artificial soils satisfying more
closely the postulates. This approach has led him to
revise the concept of preconsolidation [ﬂ. showing
that it constitutes an "internal state variable".
The concept of "internal state variable" developed
within the realm of Continuum Mechanics, has received
much attention in recent years Dﬂ, because it ‘has
demonstrated already its theoretical and practical
value. Just as it has happened with other develop-
ments of Continuum Mechanics, there has been a time
lag between the formulation of this theory and its
application to Soil Mechanics, in spite of the fact
that it can contribute much to a better understanding
of many properties of soils. In this paper a new
definition of preconsolidation as an intermal state
variable is given and it is shown that a proper under
standing of the phenomenon of preconsolidation
exhibited by many soils, requires treating precon-
solidation as such a variable. A theory of stress-
strain behavior of soils, based on this definition is
then developed and applied to clays; its connection
with elastoplastic behavior is explained. The wmodel
is applied to the Cambridge theory of "wet" clays and
it is shown that the hypothesis of vanishing elastic
shear distortion is inconsistent; indeed, it is shown
that the assumed volumetric behavior implies non-
vanishing elastic shear distortion which is
independent of effective pressure. This is precisely

the actual behavior observed in the laboratory and

the results here presented prove that the introduction
of a sccond yield locus is superfluous. The cheory
permits to determine easily the distortional response
once the volumetric behavior is kmown. Previous
experimental work is supplemenced with tests on clays
from the Valley of Mexico and some artificial soils,
obtaining results which confirm the predictions of

the theory.

2. THE BASIC CONSTITUTIVE EQUATIONS

For simplicity attention will be restricted to
isotropic soils, subjected to axially symmetric stress
states. The ideas presented are however, of more
peneral applicability. The stress parametcrs used by
Roscoe and Burland [5] are the deviatoric component q
and the mean normal stress p, while deformation is
specified by compressive volumetric st(gin v and
deviatoric (shear distortional) strain £. These
parameters are enough to specify stress and strain
states of the soil, because of the isotropy of the
material and the assumed axial symmetry of the
stresses. The relation between the volumetric strain
and the voids ratio e is

5""% (1)

When a clay is subjected to stresses at levels occur-
ing in engineering applications, neighbouring
particles can get so close to each other that new
internal forces develop. These forces are such that
when stresses are removed they remain acting and there
fore, the soil elastic properties are modified; this
is the case, for instance, wnen a clay is isotropical=~
ly consolidated and then expanded. The development of
the internal forces just mentioned characterizes the
phenomenon of preconsolidation. On the other hand,

if a preconsolidated clay is subjected to varying
stresses it behaves elastically as long as the current
yield curve is not reached, but when the level of
preconsolidation is changed the elastic properties

are also changed. Thus, two samples of the same clay
differing only on their level of preconsolidation
constitute two different elastic materials.
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there will be an elastic material. Therefore, an
approach similar to Hill and Rice h], is appropiate,
because this is precisely the type of situation
described by them. For every ¢, deformations are
given by

V=F(p,q,$) E'G(P)qv¢) (2)

Preconsolidation is frequently characterized by the
maximum effecrive pressure ever supported by the
so0il; although such characterization is suitable
when attention is restricted to isotropic paths of
stress (i.e. when q=0), it is not so when anisotro-
pic stresses are included (i.e. when q#0). To
overcome this difficulty, here it will be assumed
that there is a function 6(p,q) such that

¢(t)=grlg§9(p(1).q('r)) (3
where the shape of the function 8 is to be determined

experimentally. It will also be assumed that elastic
deformation is derivable from a potential [4]; i.e.

Fq(pth¢)=cp(an|¢) (4)

where subscripts stand for partial derivatives with
respect to corresponding arguments. It is straight
forward to show that eqs. ! and 2 imply that

e=H(p,q,¢) (5)
where H and F are functionally related.

3. RELATION WITH A PLASTIC MODEL

If elastic response is defined by

£ 9F,  3F, E_3G, ,3G
T TR I T T ©)
and plastic response by

P _aF P_ 06
SV =55d0 5 be =50 (7

then dv=6vE+&y’ and de=6c+6eT. With these defini-

tions the three basic postulates of a plastic model
are satisfied [4]. An increment of stress is called
"loading" if © increases and "unloading” if 6
decreases; the current yield locus is defined by

6(p,q) = ¢, (8)

where~¢° is the present value of ¢.

4, THE STATE BOUNDARY SURFACES AND THEIR POTENTIAL
Let f,g and h be defined by

£(p,q)=F(p,q,8(p,q)); &(p,q)=C(p,q,6(p,q));
h(p,q)=H(p,q,6(p,q)) (9

Then, stress states on the current yield locus
satisfy

v=£(p,q) ,e=g(p,q),e=h(p,q) (10)

The last of egs. 10 defines a surface (fig 1) on the
p—-q—e space which separates those states which are
accesible to a given clay from those which are not.
Roscoe and Burland [5] have called it the “state
boundary surface'. Similar considerations apply to
the surfaces dzfined by the other two equations;
therefore, it is natural to extend this concept and
say that each of the surfaces defined by eqs 10
constitute a state boundary surface in each of their
respective spaces. '

Plastic models are usually supplemented with Drucker's
orthogonality condition., It has always been recofniz-
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Fig. 1 1Illustration of state boundary surface

on p-q-e space.

ed that his condition is not a law of nature
and that therefore, the class of materials
satisfying it, is necessarily restricted.
Drucker's condition will be incorporated in
the constitutive equations here developed,
because the class of materials satisfying it,
is wide and because its application to clays
has been satisfactory. Drucker's normality
condition states that plastic deformations
are orthogonal to the yield curve; using eqgs
7 and B8 it is seen that this is equivalent
to:

30 36

£ = £

BqF¢ ch¢ (11)
whenever p,q satisfy 8. Now, from 9 it
follows that:

30
fq(p.q>=Fq(p.q.9(p.q))+r¢(p.Q.e(p.q)3—> (12a)
= +G

Bp(prQ) Gp(qu'e(PDQ)) r¢(P|qae(qu)ap) (12b)
Eqs 4, 11 and 12 together imply that

f = ’ 13

e " & (13)
Eq 13 is the condition for the existence of
a potential function I(p,q) such that

dL . oL _

3; = f and sa =g

(14)

S A MINIMAL SET OF EXPERIMENTAL DATA

Define the function py(¢,q) by the condition
6(py(¢,q).q) = ¢ (15)

Thus, p, is the pressure corresponding to the point
on the Current yield curve for which the deviatoric
component of stress is q; it will be assumed that
there is only one such point. By direct integration
it is seen that for any p,q and ¢

p
G(PnQv¢)‘g(py(¢vQ)»Q)+[ cp(qu'¢)ds (16)
py(¢.q) )

where s is a parameter of integration.
eq 4, eq. 16 becomes

In view of
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g(r,q) s(l,q)+[ sp(s,q)ds (18)
1

which can be transformed into
P

S(P»Q)'Ea(Q)+[ fq(s,q)ds a9)
1

using eq 13 and writing €_ for g(1l,q). Therefore . .

py(¢,q) p
G(p.q.¢)-ea(q)+I fq(S.q)ds+( Fq(s,q.¢)ds (20)
Py(¢tQ)

The function p_(9,q) is determined by the function 0,
which in turn {s determined by the yield curves.
Thus, eq 20 shows thatwhen the volumetric behavior of
the clay is known, it is only necessary to determine
cﬂ(q) in order to know the deviatoric behavior.

A manner of specifying the function H that will be
used in the sequel is:

p_(¢) P

H(P-Q.¢)=h(l,0)+f P hp(s.O)ds+I Hp(S.0.0)d5+

q 1 pp(®)
+ I Hq(P.S.qu (z21)

o
where the function p,(¢) is defined as the pressure
corresponding to the point of intersection of the
virgin isotropic line with the elastic surface
determined by ¢ (point A in fig 1). Eq 21 can be

obtained by integration along a psth like CABD in
fig 1.

It is worth noticing that the only condition that the
function O(p,q) has to satisfy is that ir be constant
on each yield curve. If the finction p (p,q) is
defined by the condition that p_be the pressure
corresponding to the point where the yield locus
passing through the point (p,q) meets the p-axis
(fig 1), then the function p (p,q) has the property
of being constaant on every ofie of the yield curves;
thus, 0 can be taken identically equal to p_. When
this is done the preconsolidation parameter ¢, turns
out to be identical with p_,. If artention is.
restricted to paths of isotropic stress, then p_3p
and p,=max p; however, in general, p differs from p
and it will be called "équivalent consolidating
pressure'’. The parameter p, will be called
"equivalent preconsolidation pressure” and it is
given by

(t) = max (t) (22)

Pp Tor L

Notice that a clay is preconsolidated if the
equivalent consolidating pressure p_ is smaller than
the equivalent preconsolidation pressure p,; other-
wise, it is norwally comsolidated. Another fact
worth noticing is that a clay can be preconsolidated
even if the present value of the pressure p is the
maximum that it has ever sustained.

6. APPLTICATION TO THE CAMBRIDGE THEORY

The Cambridge theory of the stress-strain behavior
of "wet" clays [5], as developed for triaxial (axi-
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based on a set of hypotheses which were introduced in
an ad hoc manner {5]. However, it will be shown that
these hypotheses are inconsistent. A minimal set of
hypotheses for the basic (i.e., before it was modifi-
ed) Cambridge theory of stress~strain behavior of
"wet" clays is: :

i) Wet clays possess comstitutive equations with
preconsolidation as an internal state variable of the
type that have been hene desenibed, which satdisgy
Daucken's nowmality condition.

£{) Fon eveny p

hp(p.O) = - = (23)
where A 44 a constant.
{{{) Fon every p and ¢

Ho(,0,0) = - © (24)
whene K {8 a constant.

o>

{v) Elastic surfaces are vertical {in the p-q-e space;
{.e.
Hq(P.Q.O) =0 (25)
v] The afope of each yield Bocus {& a function of
q/p only; L.e.

1) 30

whene n=q/p and ¥ 48 a function of n to be detewnined.

liypotheses i) to v) would be enough to determine the
rheological model, because when eqs 23 to 26 are
substituted into eq 21 it is obtained

H(p,q.pp)-ea+(«-k)log PpK log p @n

where as in [5], e, stands for h(1,0). Eq 26 can be
integrated to obtain

. P an
8(p,a)zp (pya)=p exp (| ooer) (28)
o
On the other hand at any time t,
O(K)Epp(t)=max PO(P.Q) Q9
1<t
Consequently q/p i
h(p,q)=H(p,q,p_(p,q)=e,-Alog p +(K-A>I Ty G0
o
Eqs 1,2 and 5 imply
o 'y
Fq=— T+H and fq=— T+h an

In view of eqs 28 and 29, it can be seen that the
function pY(q,pP) is the solution of

q/p
¢=pp=py exp(l Y_dn_, (32)

Y(n)+n
Substitution of eqs 27 and 30 to 32 into 20 detcrmines
G(p,q,9) leaving ea(q) as an arbitrary function.
However, the Cambridge stress-strain theory adds the
hypothesis:
v{) Efastic shean distontion vanishes identically;
{.e.

zo a3

qqnx

h-R{x]
m
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by virtue of eq 6.

It can be shown that hypothesis vi) is inconsistent
with the other five. 1Indeed, due to eq 33, G is a
function of ¢ only. But eqs 11 and 26 together, imply

F, (p,q,0(p,q))
vy = S0 7

G¢(9(qu))
where n=q/p.  Ib order for eq 34 to be satisfied, it
is required that when p and q move along & path on
which 6 remains constant, F,(p,q,0), be the function
Y of q/p only. If this would happen, it would be
very fortunate because F,(p,q,8) and y(n) were chosen
independently. By taking the derivative of eq 34
along a yield curve, it can be shown that for the
Cambridge theory of "wet" clays it would be required
that

l4e -Along-—-‘Lfm—r»(A-K)[n—d-E-— (35)
q V' () {y(n)+n V(E)+E

o
which is impossible unless X vanishes, because p and
n can be varied independently.

(34)

To remove the inconsistency, one has only todisregard

hypothesis vi) and apply eq 20 instead. Doing so
and using hypothesis iv), it is obtained

{Py(pp.q)
G(Q-PP)=Ea(q)+J fq(s,q)ds (36)

1
where the variable p was droped out from the left-
hand side of this equation because the right hand
side is independent of p.

The fact that the elastic'deviatoric deformation given
here by '

E
de” = Gq(q.pp)dq (37)

is a non-vanishing quantity independent of p, was
found experimentally by the Cambridge group [5].
However, in order to account for it, they introduced
a8 second yield surface which as it has been shown, is
not required. The. practical value of eq 36 stems from
the fact that deviatoric behavior can be deduced from
volumetric bebavior with economy of experimental work
required.

EXPERIMENTAL RESULTS

A series of laboratory tests were carried out on
clays from the Valley of Mexico, as well as in some
artificial ones. An example of the results is shown
in Fig. 2.

Tt is clear from this figure that except for a notice
able hysteretic effect, distortional deformations are
recoverable and therefore are non-plastic; this is
not surprising because experimental results obtained
by other authers also correspond to this kind of
behavior. 1Indeed, Roscoe and Burland introduced a
second yield locus to account for distortiocnal
deformatieon in spite of the fact rhat the clays they
used in theor own experimental work exhibit recover-
able distortional deformation beneath the first yield
curve (see for example fig 4 of reference [5]) and
therefore contradicts the assumption of plastic
behavior in this region.

Results obtained previously by other investigators

5] according to which distortional deformations are
independent of effective pressure beneath the yield
locus, have been confirmed in the clays tested in

Engineering, Tokio, Japan, Vol. 1, 1977.

1Dr

A .

/
/
/ 35%
. / ‘8’/0
T 4 .
I / 'S
a | |
2 | 1] (] ) I [ 1
0 - o . _4
€ %

Fig 2 Lload and unloading in a remolded sample from
the Valley of Mexico. Triaxial isotropically
consolidated test.

this work. Thus, the experimental results lead to
the following conclusions:

i) Keeping the equivalent preconsolidation pres~
sure fixed, distortional deformations are independent
of effecrive pressure; and

ii) Beneath the yield locus, distortional deforma
tions are recoverable and therefore, elastic.

This is precisely the behavier predicted by the
theory here developed.
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