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Integrodifferential Equations for Systems of Leaky Aquifers and Applications
3. A Numerical Method of Unlimited Applicability

ISMAEL HERRERA1 AND ROBERT YATES

Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas
Universidad Nacional Autonoma de Mexico. Mexico 20. D. F.. Mexico

The integrodifferential equation formulation of leaky aquifer mechanics is used to develop a numerical
method of unlimited applicability based on the finite element technique. This approach reduces the
dimensionality of the problem and effectively uncouples the equations corresponding to each of the
aquifers. Thus the number of nodes required and the bandwidth of the matrices involved are significantly
reduced. Consequently, storage and computer time are decreased by a factor greater than 30 in axially
symmetric problems and by a considerably greater factor in the absence of such symmetry.

dimensionality of the problem is reduced, and second, the
equations corresponding to the aquifers are uncoupled. The
first property is due to the fact that the basic system of equa-
tions involves the drawdowns in the main aquifers only and
These are treated as being two dimensional. The second prop-
erty is due to the fact that interaction between aquifers is
delayed; therefore when the time numerical integration is car-
ried out step by step, the equations corresponding to the
aquifers are effectively uncoupled.

The adequacy of systems (I) or (2) below for numerical
computations has already been demonstrated by treating the
problem of a single aquifer [Herrera et al., 1976]. In this paper
a numerical method of unlimited applicability is presented; it
is based on the integrodifferential equations and possesses the
two features mentioned above. In its formulation, finite ele-
ments were used.

The main difficulty encountered in developing such a
method was the handling of the convolution terms occurring
in the integrodifferential equations (I) or (2). If these equa-
tions were solved numerically by any of the standard pro-
cedures to integrate them step by step in time, it would be
necessary to evaluate these terms at each step. For this purpose
one could use the exact values of the functions f, g, and h.
However, if this were done, it would be necessary to carry out
the integration from zero to t' anew on each step because the
integrand depends on t' and this variable is being changed.
This is inconvenient for two reasons: first, the number of
computations required increases beyond reasonable limits and
second, it is necessary to keep at hand the whole past history of
the drawdown, the memory requirements of the computer thus
being very much enlarged.

These shortcomings were overcome by using exponential
series expansions for the memory and influence functions. The
efficiency of the expansion for the memory function g is im-
proved by using a generalization of an approximation pro-
posed by one of the authors [Herrera and Figueroa, 1969;
Herrera, 1970] and motivated by Hantush's [1960] approxima-
tion for large values of time. Its main characteristic consists of
approximating the residual of the series expansion by a delta
function which has the physical interpretation of being an
instantaneous yield of water from the aquitard into the aqui-
fer

f
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I. INTRODUCTION

The assumptions of horizontal flow in the aquifers and of
vertical flow in the aquitards characterize the mathematical
description of the behavior of leaky aquifer systems because
the validity of these assumptions is well established for most
cases of practical interest [Neuman and Witherspoon, 1969a, b].
Under these assumptions, leaky aquifers are governed by a
system of integrodifferential equations [Herrera and Rodarte,
1973]; each of these equations constitutes a partial differential
equation with memory because some terms depend on the past
history of the drawdown.

The shapes of the memory functions do not depend on the
properties of the particular aquifers or aquitards considered.
Because of this property and other convenient features the
conviction that the integrodifferential equations could be used
as a powerful method of analysis was expressed, and a series of
papers was devoted to it. In the first of them [Herrera and
Rodarte. 1973], after the integrodifferential equations were
derived, an analysis of approximate theories was carried out,
proving that they can be obtained by making suitable approxi-
mations of the memory functions. Jacob's [1946] approach
and Hantush's [1960] approximations for small and large val-
ues of time were included in the discussion. The nature of these
theories was clarified in this manner.

In the second paper of the series [Herrera. 1974] a system-
atic error analysis making use of the exact and approximate
memory functions was carried out. Previously [Herrera and
Figueroa, 1969], by incorporating the corresponding memory
functions in the integrodifferential equations the applicability
of theories developed for specific problems was extended to
apply to mere general geometries and boundary conditions.
New and more convenient theories were developed by propos-
ing alternative approximations for the memory functions
[Herrera, 1970]. In addition, it was shown that many problems
of practical interest can be handled in this manner [Neuman
and Witherspoon. 1970; Herrera and Figueroa. 1970; Herrera
and Rodarte. 1972].

Especially attractive has been the possibility of constructing
approximations of unlimited applicability suitable for numer-
ical treatment. From this point of view the integrodifferential
equations have the following convenient features: First, the~

In section 2 of this paper the integroaffferential equations
are presented. In section 3 the exponential approximations
with instantaneous yield are developed. They are then'sub-
stituted into the equations to obtain the approximate version
to be used in the method. In section 4 the numerical treatment

1 Also at lnstituto de lngenieria, Universidad Nacional de Mexico,
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(3)

Here r is the dimensionless height of the points of the aqui-
tard. The kernels of the integrodifferential equations are

f(t') = +2 fe-n",te/=(1rtlY/2 ( 1+2 fe-"'III
n-l n-l (4a)

Fig. 1 The aquifer system.
g(t') = f(t') -

m

= 2 L e-n,..tl
n-l (4b)

h(t') =
~

+.2 L (-l)ne-n~tl
n-l

(4c)

"'(.\'", t') = (4d)

Equations (I) or (2) can be interpreted as having memory
because the integral terms depend on the past history of Sl and
S2' The p'ast values of the drawdown of one aquifer influence
the behavior of both of them; the influence on the aquifer itself
is given by J or g, and the influence on the other by h. The first
two are called memory functions, while the latter is called the
influence function.

The functions J. g, h, and", play an important role in leaky
aquifer mechanics; they are illustrated in Figures 2-4. Some of
their most relevant features are the following: (I) Jbehaves as
(1rt')-1/2 at t' = 0, and thus g is also singular there, (2)Jgoes to
I as t' goes to infinity, and corre~pondingly, g goes to zero, (3)
hand", together with their derivatives of all orders vanish at t'
= 0, and (4) h goes to I as t' tends to infinity, while", goes to I
-.<". These properties follow immediately from their defini-
tions (equations (4». The third property, however, requires
the application of the Cesaro summability criterion [Apostol.
1957] to (4c) and (4d) and their time derivatives of all orders.

The physical meaning of the functions/. g, and h is relevant.
Assume that a constant drawdown of unit magnitude is im-
posed in one of the aquifers starting at t' = O. Then fit') is the
rate of flow of water from the aquitard into that aquifer at time
t', while h(t') is the rate of flow of water from the other aquifer
into the aquitard. The steady state value for both of them is I,

is described. Section 5 is devoted to discussing the method and
comparing it with standard procedures. It is shown that im-
portant reductions in both processing and memory require-
ments are achieved by its use. An example with axial symme-
try, for which the factor of reduction is 30, is given, and it is
shown that this factor is significantly larger in the absence of
axial symmetry. It is concluded that the method effectively
reduces the dimensionality and permits the treatment of prob-
lems which otherwise would not be manageable.

2. THE INTEGRODIFFERENTIAL EQUATIONS

Under the assumptions of horizontal flow in the aquifers
and of vertical flow in the aquitards, the mathematical descrip-
tion of leaky aquifers is given by the H an tush [1960] equations,
and this in turn can be reformulated in terms of the in-
tegrodifferential equations of leaky aquifer mechanics [Her-
rera and Rodarte, 1973]. A dimensionless version of these
equations suitable for numerical treatment and applicable in
the case of two aquifers separated by an aquitard (Figure 1) is,
when the initial drawdowns vanish,

82s1 82s1 f 8s1 h 8s2 (1 )-+-- *-+ *- a
8f.2 (if'

X(!!:.:!! +
8f.2

!.- ~0172 -i 0 at' -aal at'

a2§! ) - f * E!..!. + h * !!!..!. = -.!.- ~
0172 at' at' aa2 at' (lb)

or, alternatively,

~ + ~ -s -.!!.!1. + h .!!!.!. = -1- !!.!1. (2a)a~2 07/2 1 g at' at' aal at'

X(!!.:!! + !!.:!! ) -s -.!!!.!. + h .!!.!.!. = l!!.!!.
( 2b)a~2 07/2 2 g at' at' aa2 at'

where~, 11, and t' are dimensionless variables (see the notation
list). The derivation of (1) and (2) from the equations given by
Herrera and Rodarte [1973] is accomplished by expressing the
space coordinates in terms of the dimensionless variables asso-
ciated with only one of the aquifers. This leads to the in-
troduction of the additional dimensionless parameter X =
T2/T1. Although (I) and (2) do not consider possible contribu-
tions from distributed wells, they can be easily modified to
include them.

Either (I) or (2) can be considered to constitute a ~omplete
system of equations because a well-posed problem for Sl and S2
can be formulated with the addition of suitable boundary
conditions. Consequently, the drawdown in the aquitard s'
does not occur in the basic system of integrodifferential equa-
tions of leaky aquifer mechanics. However, s' is given in terms
of the drawdowns of the main aquifers by

8;
iY.
\

)
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Fig. 2. The memory functions f and g
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fluence functions preserve total yield, since the accuracy of
approximate solutions has been observed to be highly sensitive
to the fulfilment of such a condition. Two sequences of func-
tions {gN; N = 0, I, 2, ...j and {hN; N = 0, 11 2, "'j

approximating g and h, respectively, will be constructed satis-

fying (5), i.e., such that

(7a)

In'" 

[I -hN(t')] dt' = 1 (7b)

but before this condition is achieved, the rate of flow from the
aquitard into the same aquifer exceeds its asymptotic value by
g(t'), while the rate of flow from the other aquifer into the
aquitard is smaller by the amount I -h(t'). If the unit magni-
tude drawdown is kept fixed indefinitely, then the total yield in
the corresponding infinite time interval is not finite; however,
both the total excess and the total deficiency are finite. These
are

The Memory Function

Well-known properties of the heat equation and the as-
sumption of vanishing initial drawdowns imply that the ini~ial
values of their time derivatives also vanish. On the other hand,
G(O) vanishes by virtue of its definition (equation (6a». There-
fore integration by parts yields

f tl" .!!..!l , t' a2s
(5a) 0 at' (t -T)g(T)dT = fo aF(t' -T)G(T)dT

[00 g(t') dt' = -.?- i: -L -1
0 'fr2 n=l n2 -3"

[I -h(t')] dt' = ~ i: (-lr+1 -1
'fr n-l n2 -6"

"" ~tl ff}(/' -T)GN(T) dT = GN(O)!J1 (I':
im (5b)

On the other hand, the functions

f ll f ll F(t') = 0 f(r) dr = t' + 0 g(r) dr = t' + G(t':
(00)

and

(9)

f tl H(t') = 0 h(r) dr (6b)

2 ' ,give, respectively, the total yield of the aquitard and the total n

volume of water that passes from one of the aquifers into the The sequence of approximations for G is obtained by truncat-
aquitard up to time t', ling this series expansion:

3, ApPROXIMATIONS OFTHEMEMORY I 2 N e-II""tl
AND INFLUENCE FUNCTIONS GN(t') = _3 ---;- L ~ N = 0, 1,2, ", (10)

1r II~I n

There are some difficulties which hinder the direct use of the A
integrodifferential equations in numerical problems, If (I) or s

alternatively (2) as they stand were to be solved numerically by GN( C2)) = 1 N = 0, I, 2, ," (1Ia)

any of the standard procedures to integrate them step by step b f th ' f 'I d ' f t t t I '
Id, , , , every mem er 0 IS ami y oes, In ac, preserve 0 a Yle ,

In time, It would be necessary to evaluate the convolution Th '
, e notation

terms at each step, To this end, one could use the exact values
of the functions J, g, and h, Howe:er, if ~his were done, it A = G (0) = ! -~ i: ~ = ~ 1: ~ (lIb)
would be necessary to carry out the integration from zero to t' N N 3 1r2 II-I n2 1r2 N+I n2

anew on each step, since the integrand depends on t', which is
being changed, This is inconvenient for two reasons: first, the will be adopted,

number of computations required would increase beyond rea- ""
sonable limits, and second, it would be necessary to keep at ):'" J" ..;"!"; ,
hand the entire past hist9ry of OSI/ 0 t', the memory require- -;'; ,';.. ,.co,';' c

ments of the computer thus being greatly increased,
In order to develop useful numerical methods based on

systems (I) or (2) it is therefore necessary to find ways of
overcoming these inconvenient features, A critical review from
this point of view of approximate theories has been presented (

separately [Herrera, 1976]. Here attention will be restricted to
a family of exponential approximations that removes the diffi-
culties just mentioned.

It is important that approximations of memory and in-

'"

,.o

t0.8
t '02

---~
t=O4

C=O6

'-08

1..,.. 

t'
0.501 02 03 04

Fig. 4. The function II> when .i" = 0.2, 0.4, 0.6, and 0.8.

+Jot'~(t'-T)GN'(T)dT i=I,2 (8)

Here GN' is the derivative with respect to time of GN, and the
term GN(O) has been retained because preservation of total
yield requires that this quantity be nonvanishing.

From (4a), (4b), (Sa), and (00) the exact expression for G is
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Error evolution E(t') for N = 0, 1, 3, 5, and 9.Fig. 5.

The suitability of this family of approximations is now
evident: The contribution to the yield of the function approxi-
mated by a delta is concentrated in a neighborhood of zero
which becomes smaller as N increases. Thus when N is en-
larged, the improvement of the approximation stems from two
sources: first, more terms are included in an exact manner, and
second, those which are not taken exactly are more able to be

approximated by a delta function.
The exact and approximate values of the yield from the

aquitard up to time t' are given by F(t') and FN(t'), respec-
tively. Consequently, the relative error for this quantity is

E(t') = [FN(t') -F(t')]/F(I') (18)

The evolution with time of this error is informative and is

illustrated in Figure 5.
In previous work [Herrera. 1974] the applicability of the

approximation corresponding to N = 0 (the Hantush approxi-

mation for large values of time) was discussed. There it was
shown that the relative error of the drawdown is less than 5%
in most parts of the pumped aquifer when I' > 3.3 X 10-1. This
fact can be used to establish a 'rule of thumb' for selecting the
value of N to be used in applications. When the 5% error is
used as a criterion for defining the range of applicability and it
is assumed that this is in turn determined by E(I'), Figure 5
shows that F N(I') can be used whenever E(t') < 10-1. It follows
from Figure 5 that N = 1,3,5, and 9 can be used whenever t' is

greater than 5 X 10-2, 8 X 10-3, 3 X 10-3, and I X 10-3,
respectively. Although the results on which this discussion is
based refer to the problem ofa single well [Herrera. 1974], the
situation can only improve in regional studies. In fact, for
many of these studies, N = 0 is already satisfactory [Herrera

and Rodarte. 1972]. .

Equation (10) implies an implicit definition of gN. This
function must be such that

f I' as as
0 a7 (t' -r)gN(r) dr = GN(O) a7

f tl a
+ ~ (t' -,)GN'(,) d,

0 t
(12)

N
GN(O)O(t') + GN'(t') = ANO(t'} + 2 L e-n...'tl

n-l
(13)

The Influence Function

An approximation motivated by (4c) will be used for h:

N

hN(t') "'1 + L BNne~n""tI (19)
n-1

where o(t') is Dirac's delta function. The function

go(t') = 10(t') (14)

is the approximation that yields the Hantush [1960] solution
for large values of time and was useQ in approximate theories
previously developed by one of the authors [Herrera and Fig-
ueroa, 1969; Herrera, 1970]. It has now been embedded in a
sequ~nce of approximations which can be made as accurate as
is desired by taking N to be sufficiently large.

Alternatively, this family of approximations for the memory
function g can be derived by a less systematic but intuitively
more enlightening procedure. By truncating the series expan-
sion in (4b), we obtain

N
g(t') ,., gN(t') = 2 L e-n'1r'I'

n-l (15)

However, any such expression is unable to reproduce the
singular behavior of g(t') at t' = O. The error implied by (15) is

Here for every N, {BNt, BN., ..., BNN} are N coefficients to be
determined by imposing suitable c~ditions. The fulfilment of
the third property of section 2, which requires the vanishing of
hN at t' = 0, together with its derivatives of all orders, would be
very desirable because its violation leads to spurious responses
when one of the aquifers remains unpumped. However, it is
impossible to satisfy this condition exactly, since there are
infinitely many time derivatives and hN contains N undeter-
mined coefficients only. This is the main difficulty that has to
be overcome in order to construct a satisfactory approxima-
tion for the influence function h.

Any of the functions hN given by (19) take the asymptotic
value I at infinity. Two other conditions which are also impor-
tant are that the total yield be pres~rved and that h be zero at t'
= O. The first of these leads to

~

g(t') -gN(t') = 2 L e-n',..t' (16)
N+l

This is a singular function which becomes sharper as N in-
creases; thus the larger N is, the more suitable it is to be
approximated by a delta function. Setting

(20)'"
L e-n21r2t' '" ANo(t') (17)

N+l

leads to (13), where AN is chosen as it is in (lib) in order to
satisfy the condition of total yield preservation (7a). Therefore
any approximation of this fami.iy preserves total yield, but its
time evolution is modified by incorporating the contribution
associated with the terms eliminated in truncating the series
expansion at the initial time.

The requirement of the vanishing at t' = 0 of the first N -2
time derivatives of hN is enough to complete a set of N condi-
tions necessary to determine the coefficients BNn.

The functions used to carry out the actual computations
were obtained by means of a simpler procedure. The functions
PN were defined by
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Finally, the fact that the system can be treated as uncoupled
is a consequence of the shape of function h (Figure 3), which
vanishes together with all its derivatives at t' = O. Therefore
when a step by step method of solution is applied, terms such
as

N-l
PN(t') = L (-) )n{e-n'w2t/

n-O
-exp [-(n + 1 )27r2t')}

N = \,2, (21)

No definition was given for Po. The function hN (N = 2,3,

was defined by
)

hN(t') = apN-l(t') + (JPN(t') (22)

with a + {J = I. Then all these functions vanish at t' = 0 and
take the asymptotic value 1 at infinity. The coefficients a and {J
were determined by imposing condition (20).

~

4. ApPROXIMATIONS OF THE

INTEGRODIFFERENTIAL EQUATIONS

Only approximations of the same order for f, g, and h will be
considered. Replacing g arid h by gN and hN as given in (13)
and (19) in (2) leads to

(23a)

x

in (23a) can be estimated by using the value of as./at' at I',
which has already been determined (see section 5).

5. THE NUMERICAL METHOD

In this section a method for applying the finite element
technique to a two-aquifer system is developed. The results are
easily generalized to an arbitrary n layered system [Herrera.
1970]. Starting from (23), the Galerkin method is applied in
the spatial coordinates, and the Crank-Nicholson procedure is
then used to solve step by step the resultant system of ordinary
integrodifferential equations in the time variable.

Let D be a finite domain in the ~ -17 plane (Figure 6) with
boundary aD. The boundary conditions may be S-y = 0 in part
of aD and asi/ an = 0 in another part; also some wells may be
located in the interior of D. A finite element mesh is assumed
tocoverD,andthebasisfunctionsl/lt(~,17),i= I, "',N',are
defined there. The approximate solutions to (23) are given by

N'
S-y(~.17, I') = L p-yt(t')I/IJ~, 17) (25a)

i-I
os!

~ai' (23b)
(25b)

N'
S'(~,17,.i",t')= bPt(.i",t')ft(~,17)

+ ~ B I-n~'t' f I' ~
( ) n'w'Td =£oJ Nne ", T e T

n-O 0 tit

where BNo = 1 and

P,N = aal/(1 + ANaal) i = I, 2 (24)

For numerical purposes, (23) presents many advantages
over (I) or (2). In this respect the use of exponentials to
approximate the functions g and h is essential. Indeed, the use
of these functions removes the difficulties encountered in try-
ing to solve (I) and (2) and was discussed at the beginning of
section 3. Those difficulties were, first, the need to carry out
anew at each step the integration from zero to t' of the con-
volution terms and, second, the necessity of keeping at hand
the past history of the drawdowns Sl and S2. The first of these
increases the number of computations, while the second one
enlarges the memory required.

The system (23) possesses a feature which permits these
difficulties to be removed. It is that all the integrands are
independent of t'. The usefulness of the system is enhanced by
two additional characteristics: When N is increased, the system
approaches the exact equations as nearly as is desired, and
when a step-by-step numerical solution procedure is applied,
the system can be treated as being uncoupled. The first feature,
concerning the integrands, follows by inspection of(23). When
a step-by-step numerical procedure is used to solve the equa-
tions, because of this property, the value of the integrals can be
brought up to date by simply adding the contribution of the
time interval (t', t' + ~t'). Thus the past histories of the
drawdowns are not needed.

Equations (23) can be made as accurate as is desired by
taking N to be sufficiently large because this corresponds to
using a more precise approximation for the functions f and g.
Our experience indicates that N can be taken to be less than or
equal to 2 in many applications and only for studies of a very
special character is N ~ 5 required.

Here and in what follows, Greek indices identify the aquifers
and take the values I and 2. If the mass and stiffness matrices
M and K are defined as

MIJ=JDfj(~'IJ)1/;J(~'IJ)d~dlJ (26a)

(26b)KiJ = J D 'V1fi(~' 11)' 'V1fA~, 11) d~ dl1

then the result of multiplying (23) by 1f J for eachj =

and integrating over D gives

N

P\'(T )enOlr2r dT

(270)

P 2' (T )e"2IrOr dT

(27b)P,'(r)en_2r dr = !- M P2'
R..,

'1
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where P'Y(t') 0: <P'Y,(t'), "', P'YN,(t'»), P'Y' stands for the time

derivative of these matrices, and
P-y'(r)h(t' -r) dr (33)

From the fact that h(t') and all its time derivatives vanish at t'
= 0, it follows that

1t'+lIt, Iy(t( +I:lt') = 0 Py'(r)h(t' + I:lt' -r)dr

f tl = 0 P'Y'(T)h(t' + ~t' -T) dT

f[f 

+ (At' /2)] = Hf(t') + f(t' + At')] :+- O(At'2)

11;tl + 0 P-y'(t' + At' -r)h(r) dr

f tl = 0 P-y'(r)h(t' + At' -r)dr + O(At'2)

-This equation shows that when the Crank-Nicholson procedure
is applied to (27), one can write

N f t,+I;t,. L BNn exp [-n2'fr2(t' + At')] P.,'(r)en""T dr

n-O 0

~

are used. Evaluatirt~(27a) and (27b) at t' + At'/2 and usingthe 
above approximations give a second-order determination

of Poy(t' + ~t') in terms of Poy(t'). The only points which
require a special treatment are the evaluation of the integral
terms and the coupled nature of the two equations.

Defining

N
= L BNn exp [-n27r2(t' + At')]

n-O

( t' ..n Poy'(T)en2".TdT + O(At'2)

(29)Py'(Tjen21r2T dTD'Yn(t') = e-na"'i'

gives
Evaluation of (27) at t' + At' /2 using these results leads to

{M[(.B'N )-' + (N + !)At'] + (At' /2)K}r ,(t')

D"n(t' 

+ .it' /2) = exp [-n2Jr2(t' + At' /2)]

2

Pr'(r)en2,,2T 

dr + O(At'2)
N

-2 L. exp( -n27r2At' /2) D,n(t'
n-l

= exp (-n21r2~t' /2) D-yn(t') + exp [-n21r2(t' + ~t'/2)]

2 -(K + M)Pl(t' ~ ~t' + O(~t'3)

f l'+/1I' P-y/(T)en",.2rdT + O(~t'2)

I'

I

+ (N +'i)~t'] + (A~t'/2)K}r2(t'{M[(/;'2N )-

= { C2 + M[ ~ BNn exp (-n27r2Ilt' /2) D1n(t')

~ 

Py'(t + ~t' /2) + O(~t'2)= exp C -n27r2~t' /2) D'YnCt') +

(30)+ if 'Y(t') + O(~t'2)exp (-n27("2At' /2) D'Y,,(t'~

-(~K + M)P2(t')} Ilt' + O(Ilt'3)where

r "(i') = P"(t' + At') -P"(t': (31) In a more compact form these last equations can be rewritten
as

Similarly, ~ -
A,r,(t') = CtAt' + H,P, + M[R2(t) -St(t)]

A2r2(t') = C2~t' + D2P2 + M[R,(t) -S2(t)]

(36a)

(36b)

where

D-yn(i' + At') = exp (-n21r2At') D-yn(t')

+ exp (-n21r2At'/2) r-y(t') + O(At'2) (32)

The use of this approximation in (27) would still result in a
pair of coupled equations for P-y(t' + At'). However, an un-
coupled system can be obtained by considering the t7rms

N { I'
-~ BNne-n""I'. n P-y'(r)e"""T dr

occurring in (27), which stem from the approximation for h
introduced in section 3. If the exact expression for h had been
used, these sums would be

Al = M[(/31N)-1 + (N + l)~t'] + (~t' /2)K
~ 1.,

A2 = M[(/3r )-1 + (N + l)~t'] + (~t' /2)XK

R1 = -(K + M)~t' R2 = -(XK + M)~t'
N

R'Y(t') = L BNnexp(-n27r2~t'/2)D'Yn(t')~t'
n-O

N
S'Y(t') = 2 L exp (-n27r2~t' /2) D'Yn(t')~t'

n-l

Here it is assumed that all the wells are located at nodes and
that Qi'Y is the rate of extraction from aquifer 'Y of the well
located at (~i' 1/i).

This last coupled system of ordinary integrodifferential
equations for PI and P2 can be solved using a step by step
Crank-Nicholson technique in which the approximations,

f'( 

I' ~ T) = i~/' + ~~'/~ -j(~') + O(.l/'2)
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Equations (36) together with (31) and (32) provide a step by
step numerical procedure of order ~t'2 for PI and P2 which
gives the drawdowns SI and S2 by means of (250).

The drawdown in the aquitard can be easily computed by
means of (3). When the approximation

N

-t- L'
n-1

(11(,(". t) ~ (IIN(,(". t') = (37)

.::-- 

sin 11".{"
,

.-n~tl

is used, we obtain

N' {s'(~, 1/,,{", I') = L "'J(~' 1/) PIJ(t')(1 -,{") + P2J(t'),{"
J-I

When (37) is compared with (25b). it is seen that

Pt(t. ,(") = Plt(t')(l -,(") + P2t(t'),("

(39)
N

+ L [(-l)nDln/(t') -D2n/(t')] sin n7rr
n-l

tional method, where a three-dimensional aquitard is assumed,
become intractable if fine meshing is used. On the other hand,
when the method presented in this paper is used, the problem
is two dimensional and can still be handled. Thus the ability to
calculate the drawdowns without recourse to the aquitard
region and simultaneously uncoupling the system of equations
effectively reduces the dimensionality and permits the treat-
ment of problems which otherwise would not be manageable.

For small values of time the drawdowns increase rapidly;
when finite elements are used in the aquitard, a greater refine-
ment is necessary to obtain accurate results. However, such
refinements lead to larger matrices; at the same time it is
difficult to determine the degree of refinement needed. In the
method presented here, such improved accuracy is obtained
more easily by simply increasing the number N of terms used
in the series expansions for g and h. This number in turn can be
estimated by applying the rule of thumb given in section 3.

Finally, it is also possible to estimate the memory and
processing time required in terms of the number N' of elements
used, the order N of the approximations for g and h, and the
bandwidth k of the mass and stiffness matrices. As kN' words
of memory are needed for each of the matrices At, lit, and M,
and N' words are needed for the vectors ft, Pt, and Dnt, the
total space required can be given as

S = N"(5k + 2N + 10) (40)

The time T needed to complete an iteration from t' to t' + ~t'
can be estimated in terms of the number of elementary oper-
ations (multiplications and additions) to be done. As a matrix
multiplication takes 2kN' operations an~ a Gauss elimination
for the determination of f I(t') requires 4kN' operations, in
view of (36), T can be given appro~imately as

T=2N'.(IOk+8N+8) (41)

These results are in close agreement with values obtained from
computer runs in which the time for an elementary operation
was set to include indexing, fetching, and storing.
f For most problems of practical interest the order N of the

approximation used for the memory and influence function
can be taken to be less than 5, and there are many cases for
which N = 1 or 2 is completely adequate. Thus N is usually
small in relation to the bandwidth parameter k.

...
r:

w~

NOTATION

AN = 1 -(2/7r2)Ln-N+l~(n2)-1 = (2/7r2)Ln-lN(n2)-1.
BNn undetermined coefficients in the expression for

hN(t' ).
bl thickness of the ith aquifer, L.
b thickness of the aquitard, L.

D-yn(t') auxiliary vector given by (29).
£(t') relative error in the estimation of F, equal to [FrJ(t)

-F(t)]/ F(t).
F(t) = Jot'F(T) dT.
f(t) memory function, equal to I + 2Ln-l~e-n tl.

fN(t') = I + ANo(t) + 2Ln-lNe-n tl.
G(t) = Jot'g(T)dT.
g(t') = f(t) -I = 2Ln-l~e-n t'.

gN(t) = f~t) -I = ANo(t) + 2Ln-lNe-n_It'.
H(t') = Jot'h(T) dT.
h(t) influence function, equal to I +

2Ln-l~(-I)ne tl.
I-y(t') auxiliary vector given by (33).

K stiffness matrix.
M mass matrix.
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vector of the coefficients, equal toPr

P-yt(t') coefficient in the finite element representation of soy.
Pt(t', 5") coefficients in the finite element representation of

,St .
Qt-y rate of extraction from the aquifer 'Y = 1, 2 of a well

located at node i.
S.t specific storage of the ith aquifer, L -1.
S.' specific storage of the aquitard, L -1.

St storage of the ith aquifer.
S' storage of the aquitard.
s' drawdown in the aquitard, L.
St drawdown in the ith aquifer, L.
Soy drawdown in the 'Yth aquifer, L.
Tt transmissibility of the ith aquifer, L2/T.

T' transmissibility of the aquitard, L2/T.
t time, T.

t' dimensionless time, equal to a't/b'2.
x, y, z coordinates, L.

a' = T/S', L2/T.

aat =S'/St.
fJtN = aai/(1 + ANaat), where i = 1, 2 and N = 0, I,

2, 5(r) Dirac's delta function.

1/It(~,1/) basisfunctions,wherei= I, "',N'.
r -y(r) auxiliary vector given by (31).

A = T2/Tl'
1/t = y(K' /Ktbtb'Y/2.
5" = z/b'.
~t = x(K' /Ktbtb')1/2.

",(5", r) = 1 -5" -2Ln~1~(e-n.".t'/n2) sin n7l'5".

.
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