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Dual extremum principles are constructed for non-negative unsymmetric operator
equations. The theory is in terms of functional-valued linear operators defined on an
infinite-dimensional space which need not even be normed. Saddle operators and saddle
functionals are constructed as essential ingredients. An extension to affine sub-spaces
required for certain partial differential equations is included. New dual extremum
principles for versions of the heat equation and the wave equation are stated in illustration.

1. Introduction
MUCH PROGRESS has been made in recent years in the development of a theoretical
framework for the formulation of variational principles (Sewell, 1969; Noble &
Sewell, 1972; Sewell, 1973a,b; Herrera, 1974; Herrera & Bielak, 1976; Sewell &
Noble, 1976). A contribution due to Sewell (1973a) allows one to generate dual varia-
tional principles from a single functional and to unify the theory. Herrera (1974), and
Herrera & Bielak (1976), developed a formulation of variational principles using
functional-valued operators which simplifies the treatment of partial differential
equations because it is applicable in any linear space, not necessarily normed, nor
with an inner product, nor complete. The situation has been summarized by Herrera
& Bielak (1976).

A sufficient condition for an operator equation to admit a variational formulation
is that the operator be potential, and this will be so if and only if its derivative is a
symmetric bilinear functional. Variational and extremum principles are interrelated
because a necessary condition for the existence of a stationary extremum is the vanish-
ing of the variation. A sufficient condition for a variational principle to be extremum
is that the generating functional be either convex or concave. In general, a functional
is neither convex nor concave; however, if the linear space in which the functional is
defined can be decomposed into two subspaces, one in which the functional is convex
and another in which it is concave, the functional is saddle, so that Noble & Sewell's
results can be applied; then the variational principle becomes a pair of dual principles.
Such a decomposition can be expected to exist under very general conditions, at least
locally, because this is the case for surfaces in finite dimensional spaces.

For linear operators the theory becomes especially simple. A sufficient condition
for a linear equation to admit a variational formulation is that the operator be
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symmetric. If the operator is either positive or negative, then the associated functional
is either convex or concave, and consequently the variational principle is an extremum
one. In general a symmetric linear operator is neither positive nor negative, but
under very general conditions (e.g. when spectral theorems are applicable), the linear
space D in which the operator is defined can be decomposed into two subspaces, one
D+ in which the operator is non-negative and another D- in which it is non-positive;
then the associated functional is saddle and the variational principle generates dual
extremum principles of Sewell's type. Accordingly, it is possible to associate dual
extremum principles to arbitrary equations formulated in terms of linear symmetric
operators.

The main advantages of using functional-valued operators are (Herrera & Bielak,
1976):

(i) Problems are formulated in the most general kind of linear spaces, which are not
necessarily normed, nor with an inner product, nor complete. Most work in this
field has been done in either inner product spaces (Noble & Sewell, 1972; Sewell,
1969, 1973a,b; Sewell & Noble, 1976) or in Hilbert spaces (Arthurs, 1970; Robinson,
1971; Collins, 1976; Brezis & Ekeland, 1976) and it is generally thought that this is
desirable, if not essential, for the results to hold. In many applications the introduction
of the Hilbert space structure leads to unwarranted complications. This is not required
when functional-valued operators are used.

(ii) The introduction of superfluous hypotheses in the development of a theory is
always inconvenient, because frequently they needlessly restrict its applicability.

(iii) The symmetry condition for the potentialness of an operator can be extended to
linear spaces for which no inner product or norm have to be defined (Herrera, 1974).
This fact makes it possible to formulate a theory which is rigorous and at the same
time not complicated.

(iv) Error bounds for approximate solutions are among the most important results
that the theory yields. They depend, however, on simple properties which are inde-
pendent of any Hilbert space structure, and therefore can be obtained in the simple
setting developed by Herrera. General results for such bounds are given in Section 3
of this paper; they induce a metric in the space. By using these bounds it is possible to
define weak or generalized solutions; however, these will not be discussed here.
Certain crror bounds for non-linear problems have been described by Sewell & Noble
(1976).

The application of the theory of functional-valued operators to partial differential
equations requires one to express them in terms of such operators. This is achieved by
repeated use of integration by parts formulae. In this respect, the main advantage
over standard formulations is derived from the fact that such manipulations can be
carried out more systematically; for example, the operators involved always possess
an adjoint. A discussion of the treatment of boundary conditions has already been
given (Herrera, 1974; Herrera & Bielak, 1976); and in another way by Noble &
Sewell (1972 et seq.).

Due to its generality, the usefulness of the concept of saddle functional is great.
In applications the flexibility of this concept is enhanced by the fact that its definition
(Sewell, 1969, Section 2 (vii» depends essentially on the system of coordinates used.
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This is a fundamental difference with respect to the same concept when applied to
surfaces; the saddle property of a surface is independent of the system of coordinates
used.

In some applications it may be difficult to find a decomposition of the space with
respect to which the functional is saddle. For linear problems (Herrera, 1974), this
amounts to constructing a decomposition (D+, D_) of the space, such that the
operator is non-negative on D+ and non-positive on D_. However, the restrictions
imposed by these conditions are not too severe, because such a decomposition is
not unique, and in this paper a wide class of variational principles is given for which
it is easily obtained.

For initial value problems only stationary and not extremum principles had been
obtained, until recently. However Herrera (1974) obtained dual extremum principles
for initial value problems that were later applied to a large class of problems by
Herrera & Bielak (1976). Later Collins (1976) extended these results to a general
kind of dissipative system by considering simultaneously the adjoint equation.
In France, extremum principles for initial value problems corresponding to certain
parabolic equations have just been obtained (Brezis & Ekeland, 1976); they impose
more severe restrictions on the boundary conditions than those mentioned above.

The procedure used by Collins for dis~pative systems (essentially, the mirror
method) to generalize Herrera's principles offers interesting possibilities, because
this approach is not limited to dissipative systems. In this paper a general procedure
for deriving dual extremum principles by the mirror method is developed; it is
applicable to any linear problem formulated in terms of a non-negative (or alterna-
tively non-positive) functional-valued operator. To illustrate the method, it is applied
to the heat and the wave equations. To our knowledge, these are the first extremum
principles for the initial value problem associated with the wave equation, even
though further work will be required to apply them. The principles derived for the
heat equation are different from those available up to now and impose less restrictive
conditions on the test functions.

A brief description of the theory of functional-valued operators is given in Section 2
and saddle operators are introduced there. Variational and extremum principles for
arbitrary saddle operators are given in Section 3 and in the next Section these results
are used to develop a general theory of non-negative unsymmetric operators.
Section 5 is devoted to extending this theory to problems defined in affine subspaces.
Some applications of the theory to partial differential equations are given in Section 6.
Only the heat and wave equations are considered, but the application of the theory
to other equations can be made in a similar manner.

2. 

Saddle Operators

The notion of saddle functional (Sewell, 1969; Noble & Sewell, 1972) has been
used extensively in the formulation of dual extremum principles and Herrera (1974)
has used it to develop an approach adequate for the treatment of partial differential
equations (Herrera & Bielak, 1974, 1976). In this section a version of this method
which is suitable for linear problems will be described.

Let D be any linear space, not necessarily metric, nor normed, nor with an inner
product, nor complete. The value of any real linear functional/: D ~ R at an element

..
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V E D is a real number to be denoted by <h v). It is emphasized that this is not an
inner product, even though the same notation is often used for such (in particular by
Noble & Sewell, 1972). The linear space of all such functionals will be denoted by D*.

Consider a linear operator P: D -+ D * which is therefore a functional-valued linear

operator. Thus, for each u ED there is an element Pu E D*, and the value of this
functional at any v E D is (Pu, v). Given any such operator, the adjoint operator
P*: D -+ D*, defined by the condition that

(P*u, v) = (Pv, u) (2.1)

is satisfied vu E D and vv E D, always exists. The' operator P will be said to be sym-
metric, or self-adjoint, whenever p* = P. It is important to observe that the definition
of adjoint operator given here is simpler than some others frequently used; in
particular it does not require the definition of D** nor the condition D** = D, as
the examples in Section 6 show. This is an advantage of the use of functional-valued
operators (Herrera, 1974).

Two subspaces D1 c D and D2 c D are called a decomposition of D if D1 and
D2 are linearly independent and D = D1 + D2. In this case, given any U ED there is a
unique couple (Ul, U2) belonging to D1 and D2 respectively, such that U = Ul+U2;
the elements Ul and U2 are called projectipns ofu on D1 and D2. Projections of linear
functionals and functional-valued operators are defined similarly. Given fE D*
and P: D -+ D*, the projectionsfl E D* andf2 E D* are such that

<11' u) == <h Ul) <12' u) = <h U2) (2.2a)

for every u E D, while the projections P 1: D -+ D* and P 2: D -+ D* satisfy the
conditions

P1u = (PU)I, P2U = (PU)z. (2.2b)

From these definitions it follows that

; /=/1+/2 (2.3a),
P = P1+P2. (2.3b)

Definition 2.1. Let E c: D be a subspace of D. Then an operator P: D -+ D* is said
to be non-negative on E if

(Pu, u) ;::: 0 for every U e E; (2.4)
and positive on E if the equality sign in (2.4) holds 6nly when u = O. When E = D
the specification "on E" will be omitted.

If P is non-negative on E the non-negative square root of (Pu, u) will be denoted
by Ilu lip whenever u e E. The set

Np = {ueElllullp = O} (2.5)

may contain non-zero vectors. However, Np is always a linear subspace of E c: D.
LEMMA 2.2. Let P be non-negative on E. Then Np is a linear subspace 0/ E c: D.
Proof It is required to prove:
(i)ueNp=:>aueNp, 'v'aeR

(ii) u, v e Np =:> u+V e Np.

Property (i) is obvious because
(P(au), au) = a2(pu, u).
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Property (ii) follows from
!(P(u+v), u+v)+!(P(u-v), u-v) = (Pu, u)+ (Pv, v) (2.6)

which can be obtained expanding the left-hand member of this equation. Recalling
that each of the terms involved in this equation is non-negative, the property is clear.
Definition 2.3. Let P: D -+ D* be non-negative on E. Then u, v E D are said to be
P-equivalent if and only if u-v E Np. In this case one writes:

u ~p v. (2.7)
In view of Lemma 2.2, this is an equivalence relation.
Non-positive and negative operators are defined by reversing the sense of the

inequality (2.4). For this kind of operator there are definitions and results correspond-
ing to those already given for non-negative and positive operators. It is worth noticing
that the relation ~ p becomes equality when P is either positive or negative on E.
Definition 2.4. Let DI, D2 be a decomposition ofD and P: D -+ D* be a self-adjoint
operator. Then, P is said to be saddle with respect to DI, D2 if P is non-negative on
DI and non-positive on D2. It is strictly saddle if P is positive on DI and negative on

Dv
It must be observed that in this definition the sub-spaces cannot be interchanged.

However, this manner of introducing them simplifies many of the propositions to be
presented. For saddle operators the bilinear functional (PUI, VI) -(PU2, V2) is
symmetric and non-negative. The non-negative square root of (PUI, UI)- (PU2, U2)
will be denoted by Ilullp; when P is strictly saddle Ilulip is positive and therefore Ilulip
is a norm. In this case the bilinear functional (PUI, VI)-(PU2,V2) is an inner

product.
Definition 2.5. Let P: D -+ D* be saddle with respect to the decomposition DI, D2
of D. Then, u, v E D are said to be P-equivalent if and only if Ilu-vllp = 0; in this
case one writes

u ~pv.
For saddle operators the set

Np = {u ED Illullp = O}

is a subspace of D. Thus relation (2.8) is an equivalence relation.
The following lemma will be used in the construction of dual extremum principles.

LEMMA 2.6. Let P: D -.D* be saddle with respect to the tlecomposition D1, D2. Define
the subs paces of D

Da = {u ED I PlU = O} (2.9a)

Db = {U ED I P2u = a}. (2.9b)

Then the operatorP is non-positive in Da and non-negative in Db' Even more, ifu E Da

(Pu, u) = -llull;. (2. lOa)

Ifu E Db

(2. lOb)(Pu, u) = Ilull;.

Proof Assume U ED", and let Ul and U2 be its projections. Then
(Pu, Ul) = 0

and therefore
(PU2, Ul) = (PU, Ul)- (PU1, Ul) = -(PU1, Ul).
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Hence
(PU,U) = (PU,Ut)+(PUt,U2)+(PU2,U2)

= (PU2, U2)- (PUt, Ut) = -Ilulip ~ O.

The proof of the other part of the lemma is similar.
In some applications it is relevant to consider operators which are saddle on a

subspace only. Let E c D be a subspace, and Et, E2 a decomposition of E; then P:
D -+- D* is said to be saddle on E with respect to the decomposition Et, E2, if P is
non-negative on Et and non-positive on E2.

Strictly saddle on E is defined correspondingly~

3. Variational and Extremum Principles
In this section a linear space tJ will be considered whose elements will be repre-

sented by u. Following Herrera (1974), the concept of derivative of a functional will
be used in the sense of additive Gateaux variation.
Definition 3.1. Let X: tJ -+ R be an arbitrary functional and U E tJ. Then X'(U) E D*
is said to be the derivative of X at U if

~ X(fl + ).t) 1;'=0 = (X'(fl), t) (3.1)

for every f! e D.
The partial derivatives can be defined in terms of the total derivative.

Definition 3.2. Let D1, DII be a decomposition of D. Assume the derivative of the
functional X:.fJ ~ R exists at u e fJ. Then the partial derivatives X,Ju) e D* and
X, II(U) e D* are defined as the projection of X'(u) e D*, i.e. in terms of (2.2)

X,I(U) = {X'(U)}I and X'IJU) = {X'(u)k. (3.2)

Associated with a linear functional-valued operator P: fJ ~ D* and for a given
J e fJ*, consider the equation

Fa =]. (3.3)
When F is self-adjoint it is possible to establish a variational principle. To this end,
define the functional X: D -+ R by

X(a) = t(Fa, a)- <], a). (3.4)

When X is given by (3.4), the derivative X'(a) always exists and is
X'(a) = Fa-]. (3.5)

In view of this equation, the following theorem is obvious.
THEOREM 3.3. Let F: D -+ D* be self adjoint. Then a ED satisfies (3.3) if and only if

X'(a) = o. (3.6)

However, this is not an extremum principle. When there is available a decomposition
DI' DII of D such that F is saddle with respect to DI' DII' it is !possible to formulate
variational principles that are dual and extremum. Following Noble & Sewell
(1972, 1976) one considers the equations obtained by setting the partial derivatives
of X with respect to DI and DII equal to zero. For the linear equation (3.3), this leads
to the system of equations

X, I(U) = P1U-]. = 0
X'II(U) = PIIu-k = o.

(3.7a)
(3.7b)
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These equations, which are obviously equivalent to (3.3), can also be derived from the
latter equation by taking projections on fjl and fju.
THEOREM 3.4. Let P: fj -+ fj* be saddle with respect to the decomposition fjl' fju of fj.
Define the affine subs paces

.@a = {uefj I u satisfies (3.7a)} (3.8a)

.@b= {uefj I usatisfies(3.7b)}. (3.8b)
Then:

(i) U E fj satisfies (3.3) if and only if U E ~a n ~". '
(ii) For every Ua E ~a and U" E~" .

2[X(u,,)-X(u..)] = Ilu,,-uallj ~ o. (3.9)

(iii) If the maximum of Xon ~a and the minimum on~" coincide and are attained at
0 a and 0" respectively, then

fJa ~p fJb. (3.10)
(iv) If a solution fJ E fj of (3.3) exists, then

2[X(Ub)-X(Ua)] = Ilub-fJll}+ Il.ua-fJllj ;;?; O. (3.11)
In this case the maximum of X on ~ a is attained at Ua if and only if Ua ~ p fJ, and the
minimum of X on ~ b is attained at Ub if and only if Ub ~ P fJ. In particular if fJ and f
are two solutions of (3.3), they are P-equivalent.

Proof. Property (i) is obvious.
It is instructive to prove part (iv) before part (ii), because its proof is simpler.

If fJ E fj satisfies (3.3), and Ub E ~b' then
2X(0) = <PfJ, fJ)-2<!, fJ) = -<PfJ, fJ)
2X(Ub) = <PUb' ub)-2<PfJ, lIb).

Thus
2[X(Ub)-X«(J») = <P(Ub-(J), Ub-(J>

because P is symmetric. Now Ub-(J E Db (where Db is defined by an extension of
(2.9b», in view of the fact that (J as well as Ub satisfy (3.7b); thus, application of
Lemma 2.5 (equation (2.10b» leads to

2[X(Ub)-X«(J)) = Ilub-(Jllj ~ O. I (3.12a)

Similarly
2[X(O)-X(UJ] = Ilua-Onj ~ O. (3.12b)

Adding these inequalities yields (3.11).
To prove property (ii), let Ua E ~a and Ub E ~b: then

2X(ua) = <Pua-2J, Ua) = 2<Pua-J, Ua)- <PUG, Ua)
= 2<Pua-J, UaII)- <PUG, Ua) = <PUaII, Uall)- <PUaI, uaI)-2<], Uall)
= -lluallj-2<PUb, Uall) = -lluall~-2<PUbI' uall)-2<PUbll, Uall) (3.13a)

where use has been made of the norm given before Definition 2.5, and of equations
(3.7) and (3.8). Similarly

2X(Ub) = Ilfiblij-2<PuaI, UbI)-2<PUall, UbI)' (3.13b)

Relation (3.9) is obtained by subtracting (3.13a) from (3.13b).
Property (iii) is obviously implied by (ii).
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4. General Theory of Non-Negative Unsymmetric Operators
Let P: D -+ D * be a non-negative and not necessarily symmetric operator. Assume

f, g E D* are given functionals, and consider the system of equations
PU1 = f (4.1a)

P*uz = g (4.1b)

where U1, Uz E D. This system of equations may be written in terms of a symmetric
operator P: fJ -+ fJ* where fJ = D $ D is the outer sum of D with itself, i.e. it is
the space whose elements a = (U1, uz) E fJ are ordered pairs of elements U1, Uz E D.
To express equations (4.1) in the form

Pa = J (4.2)
let P: fJ -+ fJ * and J E fJ * be such that for every a, I) E fJ

<Pa, I) = <PU1, Vz)+ <P*Uz, V1) (4.3)

and
<], fJ) = <}; V2)+ (g, Vi). (4.4)

The operator P is clearly self-adjoint because
(PO, fJ) = (PUt, V2)+ (PVt, U2). (4.5)

Due to this fact it is possible to formulate variational principles for the system (4.1).
The procedure just described is a rigorous generalization of the mirror method
(Morse & Feshbach, 1953).

THEOREM 4.1. Let X: 15 --t- R be given for every 0 E 15 by

X(O) = X(Ut, U2) = (PUt, U2)- <}; U2)- (g, Ut). (4.6)

Then equations (4.1) are satisfied if and only if

X'(O) = o. (4.7)

Proof. It follows from Theorem 3.3, because
X(O) = !(PO, 0)- <], 0). (4.8)

The operator P does not have the property of being non-negative or non-positive
because

(fiu, u) = 2(PU1' U2). (4.9)

In general when a self-adjoint operator which is functional-valued and linear is given,
it is possible to find decompositions fJI and fJII of the space, such that the operator is
saddle with respect to them (Herrera & Bielak, 1976). Finding such decompositions
may be difficult in some instances; however, for the operator P here considered this
is achieved easily.
LEMMA 4.2. Let a, P, y, <5 be real numbers such that a<5 -py ~ 0, ap < 0, and y<5 > O.
Define

1)1 = {UE 1) I aUt+pU2 = O}1)11 

= {U E 1) I YUt +I5U2 = a}.
(4. lOa)
(4. lOb)

Then:
(i) The subs paces VI, VII constitute a decomposition of v. The projections al and all

of any a E V are
a, = ).(-PYUl-p<5u2,aYUl+a<5u2)
a" = ).(a<5ul+p<5U2, -aYUI-PYU2)

(4.lla)
(4.llb)
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1
(4.12)).,= .

1Xt> -fly

(ii) The operator P is saddle with respect to 1)1' 1)110 Even more, if P is strictly positive

then P is strictly saddle.
(iii) Let

(4. 13a)1'2 = 1115 > 0

.1
(4.13b)m2 =

l<h+li')'J'

)'1 = -Pia> 0,

1
m1 = > 0-!()'1 + 1/)'2) ,

\ltl\l~ = m1\1u111~+m2\1u2\1~. (4.14)
Thus, the relation u ~ p f) holds, if and only if the relations U1 ~ P V1 and U2 ~ P V2

are satisfied simultaneously.
(iv) Each of the equations (3.7a) and (3.7b) is equivalent to

aPu1-t5P*U2 = af- pg (4. 15a)
yPU1-t5P*U2 = yf-t5g (4. 15b)

respectively.
AOn,

FIG.

Proof The decomposition of fj is shown schematically in Fig. I. The definitions (4.10) of
fjl and fjll imply that these two sets are subspaces of fj. To prove that they constitute a
decomposition of fj, it is only necessary to show that UI and UII as given by (4.11)
have the following properties: (a) UI E fjl and UII E fjll; (b) U = UI+UII; (c) this is the
only couple of elements of fj that has properties (a) and (b). The proof of (a), (b) and

(c) is straightforward.
In view of (4.9) and (4.IOa), for every U E fjl one has

-aP(Pu, u) = a2(PU1' Ul)+p2(PU2, U2) ~ O.

Similarly, for every U E fjll
yc5(Pu, u) = -r(PU1' ul)-c52(PU2' U2) ~ O.

From this property (ii) follows easily.
Property (iii) is obtained by direct computations.



104 I. HERRERA AND M. J. SEWELL

The definition of projections implies that equation (3.7a) is satisfied if and only if
<Pa-J, t) = 0 (4.16)

for every t) E /)1. Using equations (4.3), (4.4) and (4.l0a), it is seen that (4.16) is
equivalent to

-CX(PU1-j, V1)+P(P*U2-g, V1) = 0 (4.17)
for every V1 e D. Hence (4.l5a). The proof of (4.l5b) is similar.

In view of this lemma, Theorem 3.4 can be applied to this case.
THEOREM 4.3. Let X: fj -+ R be given by (4.6),. cx£5-Py ~ 0, cxp < 0 and y£5 > O.
Define the affine subs paces:

~a = {ueDlusatisfies(4.l5a)}
~b = {u e fj 112 satisfies (4.l5b)}.

(4. 

18a)(4. 
18b)

Then:
(i) U = (UI, U2) E fJ is a solution of equations (4.1) if and only if U E!!Ja n !!Jb'

(ii) For every Ua = (Ual, Ua2) E!!Ja and every Ub = (UbI' Ub2) E!!Jb

2[X(Ub)-X(UJJ = mlllual-Ublll;+m21Iua2-Ub211; ~ O. (4.19)

(iii) If the maximum of X on !!J a and the minimum on !!J b coincide and are attained at

ua and Ub respectively

(4.20a)U"1 ~ P Ubi

and simultaneously

(4.20b)Ua2 ~ P Ub2'
(iv) If a solution -0 = (U1, U2) E fj of (4. 1) exists, then

2[X(Ub)-X(Ua)] = ml {Ilubl- U111;+ Ilual- U111;}+

m2{llub2-U211;+ IIUa2- U211;} (4.21)
for every Ua e f1;a and Ub e f1;bO

Proof. Using Lemma 4.2, the proof of this theorem is a straightforward application of
Theorem 3.4.

5. Extension to Problems Defined in an Affine Subspace

In many applications to partial differential equations, the operator involved may
be saddle or non-negative when attention is restricted to functions satisfying certain
boundary conditions. In such problems the admissible functions usually constitute
an affine subspace and the theory would be unduly restricted if such cases were not
included.

A set I c: 1) is said to be an affine subspace if there is a subspace £ c: 1) and an
element WE 1) such that I = w+£. Clearly, £ = I when WE £, so that a linear
subspace is always an affine subspace.

Given a functional X: 1) -+ R, for each U E I the variation of X at U is a linear
functional 8X(u) E £*, such that

(8X(u), D) = (X'(u), v) (5.1)
for every D E £. When a decomposition £1' £11 of £ is available, at every U E I the
partial variations 8iX(u) E £* (i = I, II) are defined in a manner similar to partial
derivatives (Herrera & Bielak, 1974).
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Variational principles which hold when the set of admissible functions is fj itself,
but which remain valid when the set of admissible functions is restricted to be an
affine subspace t1 c fj, are known in many instances. The validity of such a procedure
frequently depends on the following property of the affine subspace (Herrera &

Bielak, 1976).
Definition 5.1. Let P: fj -.fj* and]e fj* be given. An affine subspace t1 = *+P. is
said to be determinative for problem (4.2) if it possesses the following property:
whenever it e t1, the fact that

<Pit-], D) = 0 for every D E P. (5.2)

implies (4.2).
LEMMA 5.2. Let P: fj -+ fj* be self-adjoint, X(it) be given by (3.4) and I c: fj be an
affine subs pace determinative for problem (3.3). Then it E I satisfies (3.3) if and only if

c5X(it) = o. (5.3)

If in addition £1' £11 is a decomposition of £, then (5.3) can be replaced by:
c5IX(it) = 0 (5.4a)
c5I1X(it) = O. (5.4b)

Proof Equation (5.3) means
(Pu- J, ,,> = (X'(u), ,,> = 0 (5.5)

whenever" e £. By the definition of determinative affine subspace the first part of the
lemma follows. The other part is obvious.

The following result can now be easily derived from Theorem 3.4.
THEOREM 5.3. Assume I = ~+£ is an affine subs pace, determinative for problem (3.3).
Assume in addition that P: fj -+ fj* is saddle on £ with respect to the decomposition
£1' £11' The properties (i) to (iv) of Theorem 3.4 remain valid when the sets ~a and
~b (equations (3.8» are replaced respectively by:

la = {u e II U satisfies (5.4a)} (5.6a)

Ib= {uellusatisfies(5.4b)}. (5.6b)
Proof Under the assumptions of the theorem and writing u = ~ + ,,' problem (3.3) is
equivalent to --

Po = J-p~ (5.7)
'i

where 0 E E, while P: E ~ E* and J E E* are the restrictions of P and J to E. The
theorem follows now by application of Theorem 3.4 to equation (5.7), after observing
that

t<pl), 1)- (l-p~, I) = X(ii) + <], ~)-t<P~, ~). (5.8)

That is, the functional X(ii) differs from the functional associated with the problem
(5.7) formulated on E by a constant term only.
THEOREM 5.4. Assume P: D -+ D* is non-negative on the subs pace E c: D. Let
<8' 1 = W1 + E and <8' 2 = W2 + E, with W1, W2 E D, be two affine subs paces of D such that
they are determinative for problems (4.la) and (4.lb) respectively. Define the affine
subs pace I c: fj by 1= <8'1 (f) <8'2 = ~+E, where ~ = W1 (f) W2 = (W1, W2), and
E = E $ E. Let

tf a = {U E tf I u satisfies (5.4a)}

tfb = {UEtf I U satisfies (5.4b)}.
(5.9a)
(5.9b)
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Then Theorem 4.3 remains true if the sets ~ a and ~ b are replaced by sets 11 a and 11 b
respectively.
Proof This follows from Theorem 5.3, observing that the affine subspace 11 is determina-
tive for problem 4.2, while P is saddle on E = E E9 E with respect to the decomposition
E., Ell of E. Here

(5. lOa)and
E1 = {{) = (VI' v2)eE I IXVI+PV2 = O}

Ell = {{) = (VI' V2) eEl yvl+c5v2 = a}. (5. lOb)
6. Applications

In the applications to be considered, G will be a region in n-dimensional euclidean
space, with closure G and boundary 8 = 81 U 82, where 81 and 82 are disjoint. The
linear space D of functions will be assumed to be such that the differential operators
and integrals are well defined (possibly in a generalized sense). Such would be the
case if the functions are C2 on G x [0, T]; this is however, unnecessarily restrictive.

A. The Heat Equation

For every u, v E D, the operator P: D -+ D* will be defined by:IT {f fjv (fjU fj2U ) f fju fjv(Pu,v) = dx+ -~dx+
0 G fjt fjt fjXi fjXi s. fjt fjn

f fju fjv d }d f [ fjU fjv
] d (6 1)--x t+ --xS2 fjn fjt G fjXi fjXi 1=0' .

Using integration by parts, a convenient expression for the adjoint operator is obtained:

* IT{f fjv (fjU fj2U ) f fju fjv(P u, v) = --+- dx- --dx-
0 G fjt fjt fjXi fjXi SI fjt fjn

r fju fjv d }d f [ fjU fjv
] d (6 2)--x t+ --x.S2 fjn fjt G fjXj fjXj t=T. .

Therefore:

dx.

ITf au)2 1 f {[au au I au auJ .2 (Pu, u) = I _a dx dt+ 2- a~~ a .+ -a . a-c: f dx = /luflp. (6.3)
0 G t G X, x,. =0 x, x, t=T

Assume/G,h1 and/s2 are continuous functions defined on G x [0, T], 81 X [0, T] and
82 x [0, T] respectively, and let/o be c1 on G. Define/e D*, for every v eD, by:IT{f av f av f av }(I, v) = 0 GIG at dx+ s. Is1 an dx+ S2 Is2 at dx dt+

r [~~ J. dx. (6.4)
JG axi axi t=O

Let 9G' 9S1, 9S2 and 9T be another set of functions satisfying the same hypotheses
and define 9 e D* by:IT {f av f av f av }(g, v) = 0 G gG at dx- s. 9S1 & dx- S2 US2 at dx dt+

r [ iJgT av'

J G fu~ axi

=T
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Application of the so-called "fundamental lemma of the calculus of variations"
shows that for functions Ut E D, the equation

PUt = f (6.6)
is equivalent to the system:

a2Ut

aX,aXj
aUt

on Gx [0, T]= fa

at onStx[O,T]

aUt-= fS2
an

aUt afo -: -on G at t = o.
ax; ax,

Similarly, for functions U2 E D, the equation
P*U2 = g

-= fS1

on 82 X [0, T] (6.7c)

(6.7d)

---

on G x [0, T] (6.9a)= gG

is equivalent to the problem

aU2 a2U2-+-
at ax! ax;

aU2 on 81 X [0, T] (6.9b)--:c-- = gSl
at

OU2

an

aU2

= gS2 on 82 x [0, T]

-
agT -a ~ _a on G at t = T. (6.9d)

x. x., ,
A more standard form of these problems for the heat equation is obtained by

replacing equations (6.7d) and (6.9d) by
Ul =/0 on G at t = 0 (6.10)

and
U2 = gT on Gat t = T (6.11)

respectively. When these equations hold, the corresponding problems will be called
initial and terminal value problems respectively. Observe! that a solution of problem
(6.7) or (6.9) may differ from those of the latter by at most a constant.

The space fj and the operator P: fj -+ fj * is defined as in Section 4. The functional

X given by equation (4.6) is:IT{I [aU2(aUt a2Ul ) aUt]X(Ut,U2) = ~ ~ ,-IG -gG- dx+
0 G at at aXj aXj at

f [(aUt )aU2 aUl]--151 ---g51 -dx+
51 at an an

f [(au 1 )aU2 aU 1 ]--152 --g52 -dx dt+
52 an at at

f {[(~-~ )~. _I~~ ] -dx (612)G aXj aXj aXj, =0 13xj aXj t=TS' .

~-
at
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Thus:
THEOREM 6.:

only if
The functions Ul' U2 E D are solutions of problems (6.7) and (6.9) if and

1
UaJX, t) = -(v-aUla). (6.13b)

P

Let the set of functions A c D be such that v E A implies Ual E D and in addition:

a2 IT IT
a- a v(x, t) dt = v(T)+v(O)-2a/o+2PUT+ (pUG-a/G) dt; x E G (6. 14a)

Xi Xi 0 0

~~

ov
at = (X/S1 + .89S1 on 81 x [0, T] (6. 14b)

ov
a;; = (X/S2 + .89S2 on 82 x [0, T]. (6.14c)

Assume the functional Oa: A -+ R is given by:

Qa(V)=~
{f T f (~

)2dXdt+! f [~~ J dx+!.f ~~dX }-
.8 0 G at 2 G ox; ax; I=T 2 G ax; ax;

1IT {f OV f ov f ov }:Ii 0 GIG at dx+ S1 IS1 an dx+ S2 IS2 at dx dt+

f [~ ~J ax. (6.15)

G ax; ax; 1=0

The definitions of Ub1, Ub2, BcD and °b: B -+ R, are obtained replacing (X by ')I
and .8 by {) in the above definitions.

Let v E A and wEB. Write Ua1, Ua2 for the functions associated with v by equations
(6.13) and Ub1, Ub2 for the functions associated with w by the modified version of those
equations. Then:

(i) Ua1 = Ub1 and simultaneously Ua2 = Ub2, if and only if Ua1, Ua2 are solutions
respectively of the initial and terminal value problems for the heat equation.

(ii)
2[.Qb(W)-.Qa(v)] = mlllual-ubll1;+m21Iua2-ub211; ~ 0 (6.16)

where 1111; is given by (6.3).
Assume the maximum of.Qa and the minimum of.Qb coincide and are attained at v

and w respectively. Then

Ual == Ubi and Ua2 == Ub2. (6.17)

Thus, they are solutions of the initial and terminal value problems for the heat equation.
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If solutions U1, U2 e D of the initial and terminal value problems respectively exist,
then

2[Qb(W)-Qa(V)] = m1{lIub1-U111~+lIu.1-U111~}+

m2{llub2- U211~+ IIU.2- U211~} ~ O. (6.18)

Proof. To apply Theorem 4.3, observe that in view of equations (6.1), (6.2), (6.4) and
(6.5), equation (4. I Sa) is equivalent to:

aU1 aU2 a2U1 i-'
I --/1 at r---:-: on Gx[O, T]

1-a u1. = (XIG-.o{)G
-11 ox! ox!

OU1 +.0 ~ = (XIs1 + .ogS1
-at

(6.19a),X 7ft
--a~i

on 51 X [0, T]

(6. 

19b)CX .ot

OUt P~CX ~ + on

OUt

= afS2 + PgS2 on 82 x [0, T] (6. 19c)
on

010
ox!

OUT

on G at t = 0 (6. 19d)--
ax,

~c- on G at t = T.~ ~ (6. 1ge)
uXj uXj

Let v E A; then a straightforward computation shows that U.,i' U.,2 E D as given by
(6.13) satisfy equations (6.19a-d). On the other hand, equation (6.1ge) is also satisfied
by U.,2, by virtue of (6.14a).

In a similar fashion, it is shown that given wEB, Ubi and Ub2 satisfy equations
(4. 15b). Assertion (i) follows from Theorem 4.3 and the fact that the U functions
satisfy equations (6.10) and (6.11).

When equation (4.15a) is satisfied the functional X, given by (4.6), becomes

(X 1
X(Ui' U2) = :p<PUi, ui)-:p<f, (XUi +PU2).

Similarly, when equation (4.15b) is satisfied
I

X(Ui, uJ = ~<PUi' ui)-~<f, t5Ui+YU2)'-

=

(6.20a)

(6.20b)

In view of these facts and property (i), Theorem 4.3 yields the rest of the theorem.
Dual variational principles for diffusion equations were first obtained by Herrera

(1974; Herrera & Bielak, 1976). Later Collins (1976) extended Herrera's results to a
more general class of dissipative systems. Independently Brezis & Ekeland (1976)
have obtained such principles for a class of parabolic equations. For the heat equation,
Theorem 6.2 represents a definite improvement over previous results because these
require solving Laplace's equation at every time t. Brezis & Ekeland's (1976) principles
are in addition restricted to the case where S2 is void and u vanishes identically on S.

Dual variational principles for the heat equation that have been derived in the
past (Herrera, 1974; Herrera & Bielak, 1976; Collins, 1976; Brezis & Ekeland, 1976)
can also be obtained using the general theory presented here. For this purpose, the
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operatorP: D -+ D* may be defined by:
f T {f { au a2u ) i av i au }(Pu, v) = _a _a- a dx+ u _a dx- va-dx dt+

G G t Xi Xi 51 n 52 n

f G VU 1,=0 dx (6.21)

which is positive on the linear subspace of functions with vanishing normal derivatives
on 82, The extension of the theory to problems formulated in affine subspaces,
developed in Section 5, can then be applied to this operator to obtain those results.
However, the details will not be carried out here.

B. The Wave Equation
For every u, v E D, the operator P: D -+ D* will be defined by:

f T {S oV(02U 02U ) f ou ov i ou ov }(Pu, v) = -~-- dx+ '-- dx+ --dx dt+
0 G ot ot OXj OXj 81 ot on 82 on ot

i [~~ +~~ J dxJG ot ot OXjOX; 1=0 .

<P*u, v) = -

Integration by parts shows that
"T {f av (a2u a2u ) f au ov f au av

}dx+ --dx+ --dx dt+

0 G at af ax! ax! 51 at an 52 an at

f [au av au av'-

G atat+~~
dx.

The operator P is non-negative because

2 1 f {[(au)2 au au ] I(au' 2 au au ] } . (Pu, u) = Ilulip = _2 _a +
a-- a + _a + a-- a ax. (6.24)

G t Xi Xi t=O t. X, X, t=T

In addition to the functions I and g introduced in subsection A, let It and gt be
continuous functions defined on G. Define/e D* for every v e D by:

T f av f av f av }fG-a dx+ f51-
a dx+ f52-a dx dt+

G t 51 n 52 t

f [ i"av afoav ] d --- J.-+-- x I
G tat aXi aXi t=O

<1, v) =

(6.25)

and 9 e D* by

ov f ov }g51 & dx+ 52 g52 at dx dt+

i [ OV OgT OVg-+--
G tot OXjOXj =T

Then, applying the fundamental lemma of the calculus of variations, it is seen that the
equation

T
{ i gG~dx+

f0 J G ut 51
(g,v) = -

dx.

PU1 = f
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(6.28a)

(6.28c)

(6.28d)

(6.28e)

Similarly, the equation
P*U2 = 9

is equivalent to the problem:

a2U2 02U2

ox! OX;

OU2

ot

OU2

on

OU2

ot

OU2

on Gx [0, T] (6.30a)---
at2

= 9S1 on 81 x [0, T] (6.30b)

= gS2 on 82 x [0, T] (6.30c)

on G and t = T (6.30d)= gt

OUTa a on G and t = T.
x. x., ,

As in the case of the heat equation, the initial and terminal value problems are defined
replacing (6.28e) and (6.30e) by equations (6.10) and (6.11) respectively; the observa-
tion made there about the relation between their solutions also applies here.

The space fj and the operator P: fj -+ fj* will now be ~fined as in Section 4. The
functional X given by equation (4.6) isIT {f [aU2(O2UI 02UI ) OU1]X(UI, U2) = 0 G at a;:z--~- IG +gG at dx+

f ~(OUI )OU2 OUI]--IS1 --+gSI- dx+
S1 ot on

r [(~ ~
J S2 on

f [(OU1 ,-'
G .ot -.J, at

f I OUI+~~ )G ox; ox, t=T

(6.30e)=

dX} dt+

an

)aU2 i
-IS2 at +gS2 .at

aul_alo )~
Jax, ax, 1=0

)OU2 ( --
.-+--.ft -OX,

dx-~dx.( 

gt -;ii
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Theorem 4.1 yields a variational principle for the problem of the wave equation
considered here.
THEOREM 6.3. The functions Ul, Uz e D are solutions of problems (6.27) and (6.29)
simultaneously if and only if X'(U) == X'(Ul' uz) = o.

Assume cx, P, y, <5 are real numbers satisfying the hypotheses of Lemma 4.2, and
define D1 and DII by (4.10). Let

cx' = <5jL\; P' = -PjL\ (6.32a)

and
')I' = -')I/L1; {)' = aJL\. (6. 32b)

where
Ll = aD -Pr. (6.32c)

Given any Wi' W2 E D, define

Ut = (X'Wt + p'Wz (6. 33a)
Uz = y'Wt +fJ'wz. (6.33b)

Then these equations define a one to one mapping of fj into itself whose inverse is
Wt = (XUt + puz (6.34a)
Wz = YUt +fJuz. (6.34b)

LEMMA 6.4. Let Wi' Wz e D, and let Ut, Uz be given by (6.33). Assume Wt and Wz are
such that

~ =1t,
at

~ = qt,

Ul = fo on G at t = 0, (6.35a)

7ft onGatt=T.

Then Ul and U2 satisfy equation (4.15a) if and only if:

(j2Wl (j2Wl
at2--

(6.3Sb)U2 = gT

= IX!G+PUG

= a!Sl+.BgSl (6.36a)

OXj OXj

OWl

at

OWl

on
= afS2 + PgS2

(6.36b)

all on the corresponding domains.
Proof By direct computation, using the definitions of P, f and g, it is seen that the
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assertion is true for functions satisfying equations (6.28d,e) and (6.30d,e). The lemma
follows from the fact that this set of equations is satisfied whenever equations (6.35)
hold.
THEOREM 6.5. Let Q: fj -+ R be defined for every \V = (WI' wz) E fj by

Q(\V) = Q(Wl' wz) = X(Ul, uz) (6.37)

where Ul, Uz E D are given by (6.33). Assume \V" = (W"I' W"z) E 15 and \Vb = (Wbl, WbZ)

E 15 satisfy (6.35). In addition, it will be assumed that \V" satisfies (6.36a), while \Vb
satisfies (6.36b). Then:

(i) Ul and Uz satisfy the initial and terminal value problems respectively, if and only if
WI and Wz satisfy equations (6.36).

(ii) 2{Q(\Vb)-Q(\V,,)} = ml fG [(~~~~~~)Z +~J O(U"I-UbJ

mz f G [ (~=!!.!!z~) z + ~ o(u"z -UbZ)

Q(\V,,) = Q(\Vb)

ax; =T

dx ;?; o.
8Xjat

(iii)
if and only if

fJUal OUbl aUal aU"l

ax!
on G at t = T (6.40a)= -:;- , -;;-- =

ot
and simultaneously

OUa2 8Ua2 OUb2OUb2
, (6.40b)

at at ax; ax;

(iv) If solutions U1, U2 e D of the initial and terminal value problems respectively,
exist, then

on G at t = 0

-=- 

-=

2{Q(Wb)-Q(Wa)} = ml
f [(a(Ual-UJ )2 + (~!c!!il )2+

G at at

a(Ual- U J a(Ual- U J a(U61- UJ 0(U61- if J'
.+

dx+

=TOX; OX; OX; OX;

m2 f G [(~~~~~)2 + (¥)2 +

O(Ua2 -U 2) O(Ua2 -Uil O(U~2 -.:. U il d(U~2 -U 2)
L ax.

=0OX; OX; OX; OX;

Proof. This theorem is a straightforward application of Theorem 4.3.
Many extremum principles can be derived as corollaries of Theorem 6.5. In many

applications interest is centred in the initial value problem. In this case one can
profit from the arbitrariness of g. We do not intend to be exhaustive in this respect.
However, the following theorem is given as an example.
THEOREM 6.6. Define thefunctionaln: D -+ Rfor every p E D, by:

f [(Op)2 op op ] {IT (f op f OP n(p) = ~ +~-;:- dx-2 IG ~dx+ IS1 ~ dx+

G ut uX; uXj t=T 0 G ut Sl un

f OP .) f [ op 010 op. }IS2 ~-dx dt+ J, ~+~ ~ dx.
S2 ut G ut uX; uXj =0
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Define D" c D by the condition P E D" if and only if

a2p a2p -_a 2--a a = 0 on Gx[O, T],
t Xi XI

apat = 0 on 81 X [0, T],

~ = 0 on 82 x [0, T]. (6.43c)Assume 

a solution PM E D of the initial value problem for the wave equation exists. Then:
(i) for eachp E D,,'

{6.43a)

(6.43b)

n(p) ~ n(PM), (6.44)
(ii) in addition the equality sign holds at some P E D" if and only if

op OPM op OPM-;- (x, t) = ~ (x, t) ;- (x, T) = ~ (x, T). (6.45)
vt vt vXj vXj

Proof. Choose the functions 9 so that the right hand members in (6.36a) vanish,
while gt = gT = O. For functions ~ E fj satisfying equations (6.35) and (6.36a):

(X 1.Q(~) = <PU1' U2)-<g, u1)-<f, U2) = p<PU1' uu-p<f, W1) (6.46)

because in this case equation (4.15a) is satisfied.
At the same time (6.35b) implies

dx-

~ .

1U1 = -W1 at t = T.
cx

Using the initial conditions (6.35a) gives

Q(w) = ~ f r +~!!h +r,
(~)2 +~ ~

J2P G t OX; ox; ~ ot ox/ox; t=T,

:!:{f [};~+~~ J dx+P G t ot ox; ox; t=O

I:(IG IG~dX+ IS1 Is1 ~ 9x+ IS2 Is2 ~dX) at} (6.48)

where cxp stands for W1' Multiply by 2P/cx and eliminate an irrelevant constant to
obtain the functional n(p) given by (6.42).
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