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Theory of Flow in Unconfined Aquifers by Integrodifferential Equations
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It is shown that when the diffusion of the deviation of the drawdown from its average value can be
neglected, the unsteady flow in unconfined aquifers is governed by an integrodifferential equation. For
incompressible flow this equation reduces to Boulton's delayed yield equation with E = 3. When the flow is
compressible, the kernel can be approximated by Boulton's delayed factor in a range of times whose lower
limit approaches zero with the compressibility.

[1955] equation with E = 3. In general, for time sufficiently
large the series can be approximated by its first term; on the
other hand, whenever the flow is compressible, there is a range
of sufficiently small times on which this is not a suitable
approximation. However, this range is rapidly narrowed as the
compressibility diminishes. Thus Boulton's equation is in all
cases an approximation of the complete integrodifferential
equation whose range of applicability (in time) is bounded
below by a quantity that goes to zero with the compressibility.

Different segments of the time-drawdown curve are reported
in the literature [Walton, 1960; Boulton, 1963]. They are (I) the
Theis curve, which is obtained at very early times; (2) the
'leaky artesian aquifer curve,' obtained later; and (3) after a
longer time the time-drawdown curve merges with the Theis
nonequilibrium curve associated with the coefficient of storage
for water table conditions. Segments 2 and 3 are joined by a
segment whose shape can be accounted for by the delayed
response theory. Alternative approximations of the memory
function are developed which explain these segments of the
time-drawdown curve. It is generally thought that segment 2 is
obtained when the yield to the water table becomes effective;
however, it is shown here that the properties of the corre-
sponding leaky aquifer are independent of the aquifer yield
properties and therefore that such behavior cannot be ac-
counted for by the drainage induced by the free surface during
its descent. A precise physical interpretation of Boulton's de.
lay index is given, as well as of its generalization introduced
here.

Probably the main interest of the results presented in this
paper is theoretical, because it clearly establishes the relation
between linearized and Boulton's delay theories. However, it is
worth recalling that methods to apply numerically the in-
tegrodifferential equations ate available [Herrera et 01., 1976;
Herrera and Yates, 1977], which in the case of leaky aquifers
reduce significantly time and memory requirements.

I. INTRODUCTION

There are three main theories describing the unsteady flow
of unconfined aquifers: the nonlinear theory, which is based on
the Dupuit assumption and is governed by the Boussinesq
[1903] equation; the linear theory, whose solutions for in-
compressible and compressible flows were obtained by Boulton
[1954] and Neuman [1972], respectively; and the delayed yield
theory, whose solution for the case of constant delayed index
was given by Boulton [1963]. Solutions are also available for a
partially penetrating well.

I n all these theories, no attempt is made to incorporate the
inertial effect of the unsaturated zone. This is quite appropri-
ate because it has been definitely shown that such effect in
unconfined aquifer problems can be neglected. At present, it is
recognized that the delayed yield theory must be understood as
an approximation of the linear theory, and attempts have been
made to derive it systematically [Streltsova, 1972, 1973]. How-
ever, Streltsova introduced hypotheses whose physical impli-
cations are unknown. Recently, research has been carried out
[Gambolati, 1976] to settle the matter by comparing available
solutions for the linear theory [Boulton, 1954; Neuman, 1972]
with the equations governing delayed yield.

In this paper it is shown that the compressible flow of water
in unconfined aquifers is governed by an integrodifferential
equation. This equation is derived in a rigorous manner from
the linearized equations, and it is shown that when the flow is
incompressible, the integrodifferential equation reduces to
Boulton's [1955] equation. More precisely, the drawdown is
first expressed as the sum of its average plus its deviation from
this value, and then the linear equations [Neuman, 1972] are
formulated in terms of these variables. By analyzing the result-
ing equations it is shown that when conditions of flow are such
th!it the diffusion of the deviation can be neglected, the average
drawdown obeys an integrodifferential equation

The structure of this equation is similar to that of the
equations with memory governing the unsteady flow of leaky
aquifers [Herrera and Rodarte, 1973; Herrera, 1976]. In the
general case of compressible flow the memory function is given
by an infinite series of exponentials which reduces to a single
term in the incompressible case; this turns out to be Boulton's~

2. PRELIMINARY RESULTS

For the sake of definiteness, consider an unconfined aquifer
of infinite lateral extent that rests on an impermeable horizon-
tal layer (Figure I). The aquifer material is homogeneous but
anisotropic, and its principal permeabilities are oriented paral-
lel to the coordinate axes. A well completely penetrating the
aquifer discharges at a constant rate Q. and water is released
from storage by compaction of the porous medium, expansion
of the water, and gravity drainage at the water table.

1 Also at Instituto de Ingenieria, Universidad Nacional de Mexico,
Mexico 20, D. F., Mexico.
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In view of (5) ana (7) the evaluation of the free surface is given

by

Q

T
aso~at (r, t) = -ot'}. (12)

Thus far, no approximation on the linearized equations has
been made; (6)-(12) can be used instead of(1)-(5) when they
are supplemented by the initial conditions

s(r, 0) = sd(r, z, 0) = 0 0 < Z < b (13)

3. ApPROXIMATE EQUATIONS OF FLOW

The quantities sand Sd are the average and the deviation
from this value of the drawdown. The delayed yield theory
lBou/ton. 1954; Gambo/ati. 1976] can be valid only if the term
K. (OSd/OZ) (r, b, t) in (8) can be expressed in terms of the
average drawdown by a convolution expression of the form

i t -

OSd osK. -a;:(r, b, t) = -Sy 0 CB(r, t -T)~r, T) dT (14)

where CB is a function of time and r. By inspection of (9) it is
seen that two processes govern the behavior of the deviation Sd
of the drawdown from its average value: the diffusion in the
vertical direction and the diffusion in the horizontal directions.
A relation of the form (14) can hold only if the diffusion in the
horizontal directions is much weaker than that in the vertical
direction. The conditions for this to be the case require

!!:!-!l. + .!. ~ -I < < K (b!!:.!!!. -~
Ior r or .OZ2 OZ .-b

In general, there are situations when (15) is violated. How-
ever, there are many instances of practical interest (Gambolati,
1976] where a relation such as (14) (and consequently (15» is
satisfied approximately. Thus one can conclude that the con-
sequences of relation (15) are worth being investigated thor-

oughly.
When (15) is satisfied, (9) can be replaced by

~ (r, b, fat (r, t) --

1

FiR An unconfined aquifer.

The linearized equations governing such a system are [Neu-
man, 1972]

O<z<b (1)Kr (.!!:.:!- + ! .!.!..)+ K .E::.!-- = s .!.!..
ar r ar .aZ2 .at

s(r,z, 0) =0 (2)

as~r, 0, t) = 0 (3)

as asKza;(r, b, t) = SYai""(r, b, t) (4)

together with suitable boundary conditions on the well and 'at
infinity. These equations imply in addition the customary as-
sumption that the surface tension of water on the intersection
between the free surface and the seepage face is negligible
[Gambolati, 1976]. The equation for the elevation of the water
table is

(15)T

(5)
a~ as- (r t ) = -- (r b t )at' at' ,

which can be derived from (7) of Neuman's [1972] paper
Let us define the functions i(r, t) and Sd(r, z, t) by

as,,
-Sat (9')] /1 1

$(', t) = b 0

b K z !!:!-!!-
Bz2

(6)S(" 17, t) d17

and

(7)Sd = S -S

4. THE CASE OF INCOMPRESSIBLE FLOW:

BOULTON'S EQUATION

Because of its simplicity and because ..has received most
attention, the incompressible case (S = 0) will be treated first,
leaving for section 5 the more general situation when S ;i0.

If S = 0, (8) and (9') become

Integration with respect to z of (1) and use of (6) yield

8sa I+ K. -ai .-b=s!i
at

(aiS I osT aT+ far (8) ~ ( als 1 asT-+--
ar r ar

An equation for SIt is obtained by substitution of (7) into (I)
and use of (8): b ~ -.£:!!I = 0 (17)

Bz Bz .-b

~e deviation of the drawdown Sd satisfies in addition (10),
(II), and

(9)T(!!:!.'f..+.!.~ ) -K ~ I +bK!!:!.'f..=S~a" , a, , az ,.. ' az' at

(18)

(10)

Similarly, (3) and (4) imply

asci asci asSy "at(r, b, t) + K. a;(r, b, t) = -SY"at (r, t)

lbSd(r, z, t)dz = 0

The solution of (17) satisfying (II) and (18) is

(19)(11)~ (r 0, t) = 0
8z

~
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where A is independent of z and TABLE I Values of p,,2 as a Function of nand (12

.?:!!!
8z

(1' = 0 UO = 10-0 u' = 10-1 0" = 1 u' = 10
=A (20)

3
=
=
=
=

2.46
22.18
61.62

120.78
199.65

0.81
3.31
7.56

13.69
21.69

2
3
4
5

2.96
4.05 X 10'

11.95XIO'
23.76 X 10'
39.53 X 10'

sdl'.b = Ab/3 (21)

The boundary condition (10) yields a differential equation for
A:

~oA01 +¥j A = -bot (22)

This equation together with the corresponding initial condi-
tion (13) implies

In view of (8) and (14) the average drawdown satisfies

~ a2.s' 1 as ) as i t as

-+ --= s -+ S <B(t -T} .:;;=:{T} dTar r ar at Y 0 at

3Kz ]-"s;b<t -T) dT
(32)

with CB given by (29). Equations, (10)-(12) together with (14)
imply that(23)

Comparison of this expression with (14) shows that

<B(t) = ae-at (24)
where

~(r, t) = b -ft<B(t -T)S(r, T) dT (33b)
0

The generalized Boulton's kernel <B possesses properties that
will be used in the sequel; they are

f= <B(T)dT = I -(34)
0

and

CB(t)~ g) 1/2 ---

Sy 1(t

when t is small. These relations are shown in the appendix.

6. ALTERNATIVE ApPROXIMATIONS OF THE MEMORY

FUNCTION ON DIFFERENT RANGES OF TIME

The integrodifferential equation developed in section 5 for

unconfined aquifers has a structure which is similar to that for

leaky aquifers [Herrera and Figueroa. 1969; Herrera. 1970,

1974; Herrera and Rodarte. 1973]. The main similarities be-

tween (32) and the equations corresponding to leaky aquifers

[Herrera and Rodarte. 1973] are (I) they can be properly

described as equations with memory, (2) the memory function
is singular at t = 0, (3) this singularity behaves as t-I/2, (4) the

memory possesses an exponential series expansion, and (5) the

integral with respect to time of the memory function is finite.

This last property is not always enjoyed by leaky aquifers.

Referring to Figure 2, property 5 holds only when the leaky

stratum is bounded 'by an impermeable formation [Herrera

and Figueroa. 1969]. On the other hand, (34) shows that every

unconfined aquifer has this property.

Recently, a systematic discussion of the different approxi-

mations suitable for this kind of equation has been presented

{Herrera. 1976]. In connection with (32) for unconfinedaqui-

fers the following approximations are relevant.

Very small times. At very small values of time the integral

term in (32) can be neglected. In that case, (32) becomes

!!2S. + .!. ~ ) = sE (36)
ar r at at

(35)

a = 3Kz/Syb (25)

This shows that in the incompressible case the governing
equation for the average drawdown is( -) t -

a2§ 1 as asT -+ --= as 1 -(T)e-a(I-T)dT (26)ar r ar y 0 at

This is Boulton's [1954] equation. Equations (10), (12), (13),
and (14) together with (24) yield the expression for the level of
the free surface as ,1t1T as

~(r, t) = b -a 0 0 a7<r. X)e-a(T-A) dX dT

which is easily transformed into

~(r, t) = b -a 1t ""S(r, T )e-a(I-T) dT (27)

0 I

5. INTEGRODIFFERENTIAL EQUATIONS FOR AN

ELASTIC UNCONFINED AQUIFER

To obtain the integrodifferential equations governing the
compressible (8 # 0) flow in unconfined aquifers, it is required
to solve (9'):

0- =(8/8.)')1/2 (30)

and Pn are the positive roots of

-Pn cot o-pn = 0- -I/o- (31)

Table I, which gives Pn2 (n = I, "',5) for different values of

0-2, can be derived from the tables given by A bramowitz and

8tegun [1965]. T

2.93
203.4
599.0

1188.1
1979.6

The associative and commutative properties of the con-
volution permit writing the expression for the free surface in
the form

subject to (10), (II), and (13). The solution of this system has
been obtained in the appendix by using standard Laplace
transform techniques. In this manner it has been shown that
(14) holds with (B given by
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[1954] empirical equation is concomitant with neglecting the
horizontal diffusion in the equation governing the time evolu-
tion of the deviation Sd of the drawdown from its mean value
(equation (9». When this is done, Boulton's (26) is obtained.
Setting as it is customary, a = EK./Syb, (25) shows that E = 3.

According to Gambolati [1976], 'a convincing physical
meaning for a' is lacking. The results obtained here supply
such a meaning for a. It is as follows. Assume an unconfined
aquifer, initially unperturbed, is subjected to an ideal experi-
ment in which a uniform head drop is produced on each of its
points and then the average drawdown is kept fixed by extract-
ing water if required, with the only restriction that such extrac-
tion must be uniform (i.e., independent of the z-coordinate).
Applying (27), it is obtained:

all / / / ~// / // / / / / / ~~:j/ / ~

1
b'

1'/ ~ ff /' / / / / / / / / / /; 'i/ / / :- '

Fig. 2, The leaky aquifer system.

~(t) = b - + e-at (40)Thus at very small times an unconfined aquifer behaves as a
confined aquifer with transmissivity T and storage coefficientS.

Small times. At slightly larger times the integral term in
(32) cannot be ignored. However, there is a range of time for
which approximation (35) for the kernel can be used. In such a
range the governing (32) is

..!!:!- + .!. !!i.) = S ~
ar r ar

TI -
at

It is concluded that when an incompressible unconfined aqui-
fer is subjected to an instantaneous unit head drop, the free
surface is not lowered immediately; instead, its descent is
delayed by the exponential factor e-at where a is Boulton's
delayed index as given by (25).

It is worth recalling that the diffusion in the horizontal
directions vanishes in this ideal experiment, because its solu-
tion is necessarily independent of the horizontal coordinates.
Thus our theory is exact in this case.

The previous discussion also shows that in order for a to
have a definite physical meaning it must be .independent of r
and t. The same, of course, cannot be said of parameters
introduced to match different solutions and lacking a physical
significance by themselves. Gambolati [1976], by imposing the
condition that the delayed yield equation provide an average
drawdown equal to that predicted by the linearized theory,
obtained values for a which exhibit a significant dependence
on r. Such a result is a consequence of the fact that there are
regions where the term 'i;:J2s" that Was neglected in the deriva-
tion of (9') becomes important. In such regions, however, the
value of formulating an equation of the form (14) as well as
defining the parameter a is not clear.

Streltsova [1972] obtained the value E = 3 using interesting
ad hoc hypotheses. Taking the derivative with respect to time
of (27), it is seen that

oF./ot = a(F. s -h) (41)

This is her (3), expressing her assumption that the 'specific rate
of vertical transfer of flow may be considered to vary linearly
with the difference of the average head b -s and the free
surface head ~.' In view of (41), our conclusion is that in the
incompressible.. case this condition not only is an approxima-
tion but also is satisfied exactly. However, for the compressible
case she is correct when stating that this is a first approxima-
tion only.

It may be instructive to apply (27) to obtain the free surface
head from the average drawdown in the case of a well pumping
at a constant rate. Streltsova's [1972] (10) implies

s=~J

7. DISCUSSION

In this section the theories of transient free surface flow will
be discussed in the light of the results obtained in this paper.
Three aspects will be considered: incompressible flow, com-
pressible flow, and the conditions under which incompressible
flow is a suitable approximation to compressible flow.

Incompressible Case
The results obtained in sections 3 and 4 show that the

assumption of a delayed yield mechanism leading to Boulton's dx (42)~ )X2 + I
-

:;-;+I e x p

This corresponds to approximating the memory function by a
Dirac's delta function [Herrera and Rodarte. 1973]. The gov-
erning equation is

The unconfined aquifer behaves in this range of time as a
confined aquifer with transmissivity T and storage coefficient
S + Sy,



295

(46)

(47)

+ q2" e-p.'"
2

.Pnl 
Pn2 -1 (48)B(t',o

and

-exp l=B(t', u)dt' = I
0

(49)
(43)

This is Streltsova's (17). In the appendix it is shown that

lim B(t', 0') = B(t', 0) = 3e-81' (50)
11-0

As a matter of fact, this limit is approached very rapidly, as
can be seen in Table I and in Figure 3. When 0'2 ;i 0 (i.e., S, ;i
0), the three distinct segments mentioned previously of the
time-drawdown curves are always present, and their extent in
terms of the dimensionless time t' depends on the value of 0'
only. The fact that the limit in (50) is approached rapidly
implies that in many cases of practical interest the first two
segments are rather short and during most of the transition
from confined to unconfined behavior the first term in the
series expansion (48) predominates and can be used as an
approximation instead of the whole series.

There are two facts that deserve to be mentioned because of
their relevance in applications. The smallness of the first two
intervals in dimensionless time does not guarantee their small-
ness in physical time when the factor bSy/Kz is large. At any
time the relative importance of the two terms in the right-hand
member of(47) can be estimated by the value of the parameter

i c( ' ) 0'2 St = (I' ~- ,. = ~ (I' --,. (51)

J. B(T,O')dT SyJ. B(T,O')dT
0 0

In view of (49), c(t') --+ 0'2; however, for small times, c may be
much larger than 0'2. By inspection of Table I it can be seen
that in many cases it is appropriate to approximate B(t') by its
first term in the series expansion (48), even at very small values
of time t', but it would be misleading to neglect the compres-
sibility (i.e., the term 0'2 ai/ at') in (47), because c(t') may be
large at those times.

Compressible Case

In the compressible case the generalized Boulton's kernel
does not consist of a single exponential term; instead, it is an
infinite series of exponentials given by (29). Equations (36),
(37), and (39), respectively, show that for very small times an
unconfined aquifer behaves as a confined one with trans-
missibility T and storage coefficient S; at slightly longer times
as a leaky aquifer with permeability and specific storage of the
leaky layer equal to K. and S., respectively; and at long times
as a confined aquifer with transmissivity T and storage coeffi-
cient equal to S + SY'

This corresponds to observations made by Walton and
Boulton on pumping tests in unconfined formations and re-
called previously by Gambolati [1976]. Walton [1960] observed
that 'three distinct segments of the time-drawdown curve may
be recognized under water table conditions,' while Boulton
[1963] states that 'the very early time drawdown curve follows
the Theis curve for an artesian aquifer. However, as the yield
to the water table becomes effective, the time-drawdown curve
becomes a leaky artesian aquifer curve, the drawdown attain-
ing temporary equilibrium (or near equilibrium). After a
longer time. ..the time drawdown curve merges with the
Theis non-equilibrium curve associated with the coefficient of
storage for water-table conditions.' It must be noticed, how-
ever, that the permeability and specific storage of the corre-
sponding leaky aquifer are K. and S., respectively; thus 'the
behavior of the aquifer is not yet sensitive to the yield of the
water table' at this stage. It is at longer times that the yield of
the water table starts to be relevant; indeed, at longer times the
generalized Boulton's kernel can be approximated by (see
appendix)

~

)1/2

1I"t

K.
b

{ (K t)1/2 } r K tJ.erfc(q2 -I) ~ exp L(I -q2)2~ (44)

Equations (32) and (44) together imply that the behavior of
the aquifer is unaffected by the value of Sy unless time is long
enough for the second term in the right-hand member of the
latter equation to be significant, a fact that may be relevant
when interpreting pumping tests.

Approximation of Compressible Flow
by an Incompressible One

Introducing the dimensionless variables,

rra = t<KO)l/2 (45)

8. CONCLUSIONS

The conclusions of this paper can be summarized as follows:
I. The equation governing the linearized theory of uncon-

fined aquifers can be decomposed into equations involving the
average drawdown and the deviation of this quantity from its
average value.

2. When the horizontal diffusion of the deviation can be
neglected, the average drawdown is governed by an in-
tegrodifferential equation whose structure is similar to that
governing leaky aquifers [Herrera and Rodarte. 1973].

3. For the case of incompressible flow this equation re-
duces to Boulton's [1954] equation with E = 3.

4. The physical interpretation of Boulton's delay factor
e-at is as follows: when an incompressible unconfined aquifer
is subjected to an instantaneous unit head drop that is kept
fixed, the free surface is not lowered immediately; its descent

(I -
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B(I~O".,

-0- 0-2. 0

-.-0-2 = 10-2

2 -1
-.-a- .10

-0- a-2 =1

-0- a-2 =10

""""-"~--.~-
I 1 I I I3ii6"8 4""2 1

Fig. 3. Generalized (dimensionless) Boulton's kernel B(t', 17) for several values of 17

where t' is given by (46), whilebeing given by I -e-al. More generally, if the flow is compres-
sible, it is given by f 01 CB(r)dr. This supplies a physical inter-
pretation for the generalized Boulton's kernel CB.

5. The three distinct segments of the time-drawdown curve
which have been observed under water table conditions, corre-
sponding to a confined aquifer with storage coefficient S, to a
leaky aquifer, and to a confined aquifer with storage coeffi-
cient S + Sy, correspond to different approximations of the
memory function CB(t). The leaky aquifer behavior corre-
sponds to a leaky layer with permeability and storage coeffi-
cient which are independent of the specific yield, indicating
that in this time interval, drainage is not yet significant. In the
incompressible case the leaky aquifer behavior does not occur.

6. There is a large range of the parameter 112 = S/Sy,for
which the memory functions can be approximated by the
Boulton delay factor, which is the first term in the exponential
series expansion of the memory function. However, the range
on which the aquifer can be treated as incompressible is more
restricted because it. depends on the values of the coefficient c,
as defined by (51), which may be large even if 112 is small.

7. I n the presence of compressibility, there is always a time
interval on which Boulton's generalized kernel cannot be ap-
proximated by its first term; however, it decreases rapidly as
the compressibility (i.e., 112) goes to zero.

Za = z/b

Define

asg(t') = at'f(t') = ~
8za

(A6)

Thus

Therefore

(AI)0 < Za <

(A2)Za = 1

(A3)Za = 0!!.!.!! = 0
iJz"

subject to the initial condition

Sd(Z", 0) = 0

i = -U A tanh UPl/2[ 1 + (0'2 -I) ~~ l-l (A 12)

g pl/2 Upl/2 J

Taking the inverse Laplace transform of (A 12), it is seen that

as I 1t, as
-! =- B(T,U)-;-(t'-T)dT (AI3)
aza %.-1 0 at

where B is given by (48) and Pn are the positive roots of (31).
When (A 13) is expressed in terms of the variables z and t, (14)is obtained with (B given by (29). .

From (A 12) we have

A(p) = U2[up1/2 + (U2 -I) tanh UpI/2]-1 tanh upl/2 (AI4)(A4)0 < Za < I
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Thus

l ~B(/)dl = lim JJ(p) = I (AI5)
0 p-o

An approximation for small I' can be obtained by considering
p to be large in (AI4). When p is large, tanh Upl/2 can be

approximated by I. Thus

t' = (K.lbSy)t dimensionless pumping time.
T = bKr transmissibility, L2T-I.

x Cartesian horizontal coordinate, L.
y Cartesian horizontal coordinate, L.
z vertical coordinate measured from the bottom of

the aquifer.
a Boulton's delay index, T-I.

a. = KrIS., L2T-I.
ay = KzISy, LT-I.

E = aSyblKz.

"F. elevation of the free surface, L.
u = (SISy)I/2.

' )2
(1 --;; t' (AI7)exp

For very small times this expression reduces to

B( t') ~ -:--:=
(A18)(11"1')'/'

The generalized Boulton's kernel is

Jim PI2 = 3
a-O
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NOTATION

CB(t, (1) Boulton's generalized kernel, T-I.
B(t', (1) dimensionless version of Boulton's generalized ker-

nel.
b initial saturated thickness of the aquifer, L.

hi, b2 thickness of the aquifers in Figure 2, L.
b' thickness of the aquiclude in Figure 2, L.

erfc complementary error function.
1 Laplace transform off.

Jo Bessel function of the first kind.
Kr horizontal permeability, LT-I.
Kz vertical permeability, LT-I.

Ko = Kz/ Kr dimensionless permeability.

p parameter of the Laplace transform.
Q pumping rate, L3T-I.
r radial distance from pumping well, L.

rz = (r/b)(Ko)I/2 dimensionless radial distance from pumping

well.
s drawdown, L.

S = S.b storage coefficient.

S. specific (elastic) storage, L -I.
S y specific yield.

t pumping time, T. (Received February 22, 1977;
accepted August 23, 1977.)

Taking into account (A 19), relations (34), (35), and (44) easily
follow from (AI6), (AI8), and (AI7), respectively.

Finally, write (31) with n = I in the form

I1P, cos I1P, -sin I1P, + 112 sin I1P, = 0 (A20)

Expand in powers of I1P" divide by 113p" and take the limit
when 11 -+ 0 to obtain I p,2 -I = 0, which implies


