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ABSTRACT Functional valued operators are used to for-
mulate diffraction problems in a general abstract form. Varia-
tional principles for this formulation are developed. They are
then applied to derive results on the linearized theory of free
surface flows previously reported. Applications are also made
to potential theory and elasticity.

In recent years the numerical solution of scattering problems
has received considerable attention. To treat them it has fre-
quently been necessary to extend the numerical grids to ex-
cessively large regions because such problems are formulated
in unbounded regions. To avoid this difficulty several proce-
dures have been proposed. One of the most successful is the
integral equation method (1); another recent one is the hybrid
element method (2). The latter seems very promising because
it exhibits great flexibility. In some cases, variational principles,
involving a bounded region only, have been reported for
problems that are, however, formulated in an unbounded one
(2).

Definition 1: Let 1 C D be a linear subspace such that for

every U,v Eland wED:

(i) (Au,v) = 0 [3a]

(ii) A(u -w) = 0 ~ w E 1. [3b]

Then 1 is said to be a connectivity condition and motions u E
1 are said to be internally generated. When 1 is such that:

(iii) (Au,w) = 0 ifu E 1, ~w E 1 [3c]

then the connectivity condition is said to be complete. The set
(; C D is defined by:

(; = {u E D I Pu = 01. [4]

Motions u E (; are said to be externally generated.
Definition 2: Given U E D and f E D*, a problem of

diffraction consists in finding u E D, such that

Pu =f [Sa]

and

u = fJ + v [5b]

where v E I. Problems of diffraction in the restricted sense
correspond to the case f = O.

Questions of existence will not be discussed. In what follows
it will be assumed that the linear functional f belongs to the
range of p.

Variational formulations

The following theorems are suitable for applications of the
hybrid element method.

THEOREM 1. Given a connectivity condition lCD, define
the functional Q by:

Q(u) = ~ (Pu,u) -(f -AU,u) [6]

2

for every u E D, and the affine subspace

i=!uEDIU-uEI} [7]

Then, for any u E D, the following assertions

(i) u is a solution of the diffraction problem.

(ii) uEiandoQ(u)=O [8]

are equivalent. When I is complete, they are, in addition,
equivalent to
(iii) For every v E I:

[9](Q'(u),v) = o.

Proof: A direct computation shows that

(Q'(u),v) = (Pu-f,v) + (A(U-u),v) [10]

It is shown here that this remarkable property depends on
simple facts. Two general theorems which are widely applicable
to problems of practical interest are given.

To obtain these results we use a theory expressed in terms of
functional valued operators and developed in detail elsewhere
(3, 4). Application of such operators has been rather restricted
in spite of their being best suited for the formulation of varia-
tional principles. Indeed, the generality of the results presented
here illustrates the advantages of using such theory.

Variational principles for the linearized theory of free surface
flows, which were previously reported (2), and for elastic dif-
fraction are derived as examples of the general theorems ob-
tained in this paper.

Diffraction problems

Consider a linear functional valued operator (3, 4) P:D D*,
where D is a linear space in the field of real or complex numbers
(whose elements u,v, ..., will be called motions), and D* is the
linear space of all the linear functionals defined on D. Such an
operator (3, 4) always possesses an adjoint P*, and therefore its
antisymmetric part A = (P -P*)/2 is well defined. P -A is
self adjoint because it is the symmetric part of P. Our discussion
refers to the case when P and A are such that

(Pu,v) = 0 for every v+ Av = 0, =* Pu = O. [1]

The derivative and variation of real or complex valued func-
tionals 12 are used in the sense of additive Gateaux variations
(3,4). In general, 12':D D*, while the variation 012:1 I',
where 1 C D is an affine subspace generated by a linear sub-
space I C D. In addition, 012 has the property

(12'(u),v) = (o12(u),v) [2]

for every u Eland v E I.
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'When u E i and v E I, the term involving A vanishes by Eq.
3a, and therefore (i) is equivalent to (ii) by virtue of Eq. 2 and
the fact that oQ:i -1*. When u is a solution, u E i necessarily;
thus, (i) ~ (iii) always. Assume I is complete and Eq. 9 holds;
then by Eqs. 1 and 10, Pu -f = O. Also, U -u E I by Eqs. 10
and 3c.

In many applications the requirement of a motion being
internally generated is expressed as boundary conditions and
it is advantageous to formulate variational principles for which
both u and its variation are not required to satisfy such condi-
tions.

THEOREM 2. Define the functional X, for every couple
u,UE E D, by

1 -X(U,UE) = -(PU,U) -(Au,[u]) + (AU,UE) -(I,u)
2

[IIJ
where

The functional f E D* will be

(f,1/;) = -r 1/;Vdx [19]
Ja2R

where V is a function on a2R; Then the equation for Ij> corre-
sponding to Eq. 5a is equivalent to the system

[12][U] = UE -U; U = ~ (UE + U).

Let
\72<f> = O;a<f>XIXl + <f>X2 = 0 on al R;a<f>/ an

= V on a2R. [20]

This is the set considered by Mei and Chen (2) when applying
the hybrid element method to linearized free-surface flows. To
include this kind of problem in our frame-work, let the mem-
bers of the set I C D of internally generated motions be the
functions <t> of D such that <t> and iJ<t>/fu1, for some choice of the
constants A;; and A:, are identical with the functions

f. A;; e-:IKnXI coshkn (X2 + h);
n=O

:D = {(U,UE) lu ED and U -UE E JI. [13]

Then, the variation oX over :D, satisfies

OX(U,UE) =0 [14]

if and only if u is a solution of the diffraction problem and

A[u] =0.
Proof: Recall that

(AUE,VE) -(Au,v) = (A[u],v) + (Au,[v]). [15]

00

L~;:- eiKnXI coshkn (X2 + h) [21]
n=O

Thus,
(OX(U,UE),(V,VE) = (Pu-f,v) + (A(U-UE),VE)

+ 2 (A[u],v) = (Pu -f,v) + 2 (A[u],v) [16] and their xl-derivatives, on Xl = x- and Xl = X+, respectively.
Here, ko = 0, kl = the positive real root of equation:

This vanishes for every v E D and VE E I if and only if Eq. Sa
and A(UE -u) = 0 hold. In view of Eq. 3b, this implies that U
-U E I because U -UE E I.

ak = tanhkh [22]

Applications
Consider the region R illustrated in Fig. 1. Let the members
<p,1/;, ...of the linear space D be the complex-valued functions
possessing second-order continuous partial derivatives in R.
Define P:D -D* by
(P<p,1/;) = r 1/;~dx -r 1/;(a~' " .

JR aXjaXj JalR

while k2,k3, ...= the positive imaginary roots.
With these definitions, subspace I C D satisfies conditions

(i) and (ii) of Definition 1. Property (ii) [3b] is clear because
Eq. 18 implies that Acf> = 0 if and only if cf> and acf>/aXI vanish
identically when Xl = x- or Xl = x+. Property (i) can be de-
rived from the orthogonality property given by Mei and Chen
(2) for the functions occurring in Eq. 21. In this problem, as in
many other applications of the hybrid element method, the
connectivity condition is complete. This can be deduced from
the completeness of the system of functions coshknx2 in the
interval [-h,O], which in turn is implied by the fact that they
are solutions of a Sturm-Louiville problem.

Theorems 1 and 2 are thus applicable to the corresponding
diffraction problem. Let <f?I be the incident wave potential;
then U can be taken as any function of D such that it and its first
xl-derivative are equal to <f?I and a <f? 1/ aXI, respectively, on Xl
= x- and Xl = X+. Theorem 2 is more general than two varia-
tional principles given by Mei and Chen (2); each of these is
obtained by setting <f?I = a<f?I/ aXj = 0 and V = 0, respectively,
in Theorem 2.

For applications to elasticity and potential theory, consider
functions u = (UI, ..., urn) defined in a region R of the n-
dimensional Euclidean space (Fig. 2), with boundary aIR U
a~ ua~, where aIR (i = 1,2,3) are pair-wise disjoint sets, and
let n be its outward unit normal vector. Take D as the set of such

iJlf»+ -dx.
axr aX2

f alf> -'/I-;-dx [17]
82R un

where a is a real constant. Here and in what follows sum over
the range of repeated indices is understood. The operator P so
defined is not self-adjoint because by integration by parts it can
be seen that its antisymmetric part satisfies

f o ( alf> a'/l ) Ix+ 2(AIf>,'/I) = '/I--If>- dX2

-h axl aXl x-

( alf> a'/l )Ix+ -a '/I--If>- .[18]

aXl aXl x-

The operators P and A have property 1 because the support of
Av is contained in aR.



Applied Physical and Mathematical Sciences: Herrera Proc. Natl. Acad. Sci. USA 74 (1977) 2597

functions that are C2 on R. Define P:D -..D* by

(Pu,v) = r va.La(u)dx + r uaT a(v)dx
JR JalR

property that they can be extended continuously across a~ into
motions of a set 'W whose members are defined on E and satisfy
certain regularity conditions (e.g., a radiation condition).

The continuity requirement is frequently expressed by the
condition that u and T be continuous across the common part
a~ of the boundary.

For a set I defined in this manner to satisfy condition (ii) of
Definition 1, it is enough that A be such that Au = 0 ~ Ua ==
T a(u) == 0, on a~. This latter condition is fulfilled in most sit-
uations of interest by operator A as defined by Eqs. 26 and 24.
Thus, for example, in applications to potential theory or the
reduced wave equation, TI(u) is auf an, and the above condi-
tion is fulfilled. In applications to elasticity, it is enough that
CjJpq be strongly elliptic (5).

Condition (i) of Definition 1 is

(Au,v) = r (uaT a(V) -vaT a(u)}dx = 0 [29]

Ja3R

for every u, v E I. When E is bounded, there is a wide class of
problems that satisfy Eq. 29. Indeed, let o1E, azE, and asE be
a mutually disjoint decomposition of the boundary of E such
that asE = a~. Take 'W as the set of motions U defined on E
such that L(U) = 0, U = 0, and T(U) = 0 on E, alE, and azE,
respectively. Under these conditions, for members U, V E 'W,
the reciprocity relation

r (VaT a(V)- VaT a(U)}dx = r (VaT a(V)
Ja3R JalR+a2R

-VaT a(U)}dx = 0 [30]

vaT a(u)dx [23]

implies Eq. 29.
When E is unbounded, motions of 'Ware required, in addi-

tion, to satisfy a radiation condition. It can be shown that under
very general ~ypotheses ra~tion COI)dit~o?s of th~ ~ype in-
troduced previously (6, 7) lea'd to connectivity conditions sat-
isfying Eq. 30.

The costs of publication of this article were defrayed in part by the
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[27]
for every v E D. Thus, frequently (5), Eq. Sa is equivalent
to

.£(u) = b;u = d and T(u) = (1 [28]

in their respective domains. When m = 1, n = 3, and C1jlq =
Ojq, Eq. 28 is Laplace's equation if p = 0 and the reduced wave
equation if p = 1. If m = n = 3, Eq. 28 is the equilibrium
equation of elasticity, if p = 0 and the reduced equation of
elastodynamics if p = 1.

Diffraction problems are usually formulated in a region R
and a region E next to it. Frequently E is assumed to be un-
bounded, but our theory is equally applicable when E is
bounded, as illustrated in Fig 2. The connectivity condition I
C D can be defined as the subset of motions of D, with the
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-12R
where .L and T are differential operators:

-~
-Caj{3q a nj. [24]

Xq

Latin indices run from 1 to n, while Greek ones from 1 to m.
Coefficients p and Caj{3q are smooth functions such that

Caj{3q = C{3qaj. [25]

By integration by parts, it is seen that

(A u,v) = r {vaT a(U) -uaT a(V ))dx. [26]
Ja3R

Operators P and A satisfy condition 1 because the support of
A is contained in the boundary.

Given functions b,d,u on R, aIR, and a~, respectively, de-
fine f E D* by II


