Proc. Symp. on Applications of Computer Methods
in Engineering, Los Angeles, Calif., Vel. 1,

377~-384, 1977. ‘
) R <§'§7’} . 377

EXTENSION OF THE CRANK-NICHOLSON PROCEDURE TO A
CLASS OF INTEGRODIFFERENTIAL EQUATIONS

.. Robert Ya:es(l) and Ismael Her:era(I & 1D
5 ' . R oy B
{
Abatrect

The Crenk-Nicholaen procedure is widely uged as a step
by step intopracion toshnlque for ordinary diffarential
‘equatiens. The application of this procedure to integro~
differential equations, however, is not straight forward.

This paper gives an extension of the Crank-Nicholson procedure
to a ¢lass of integrodifferential equations with & singular
kornel. As an example, the method is applied to the integro-
.differential equations of groundwater hydrology.

1. 1Introduction

' The Crank-Nicholson procedure is widely used 88 a step-
by step integration technjque for ardinary differential
equations. Howeyer, the application of this procedure to a
system of integrodifferential equations such as

dg t dE
2 g = Bule) + € g gle-1) FH(DATHD

i8 not stralight forward, because:

1) The derivative frequently cannot be expressed explicitly
in terms of the function itself.

2) The kernel or memory function is often singular.

© 3) The characteristic time of the solution is unrelated to

the characteristic time of the memory function. Therefore,
it is important to use approximations which do not involve
the latter, in order that the length of the time stsp At
be limited by theé characteristic time of the solution only.

4) It is difficult to handle the integral terms efficiently
without greatly increasing both processor snd memory
requirements.

This poaper gives & way of treating thia problem for a
class of integrodifferential equations whose kernel may be
singular. [
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The basic features of this method are:

a) The solution at time t+At is expressed in terms of the
solution at time t with an error of order o(At?) which is
independent of the characteristic time of the memory.

b) The memory function is treated in an exact manner in the
interval [t,t+At]. Thus, the singularity of the kernel is ‘
properly handled and at the same time the accuracy of the
method remains independent of the characteristic time of the
memory function. '

c) When the kernel of the equation can be represented by a
series of exponential functions:

o -o_t
§(t) = L ae
~ n'-l ~

the integral terms can be evaluated without recourse to past
values of the solution. Hence, memory and processor
requirements are greatly reduced,.

The integrodifferential equation approach to groundwater
flow [Herrera, 1976] gives rise to a system of partial integro
differential equations, As an example, using the finite
~element method, this system is transformed into one of the
type here discussed, where g i8 the scalar function

o

g(t) = 2 I ey Y242
n=1 n=1]

-
In previous work [Her.¢ra et al., 1976; Herrera and Yates,
1977] the resulting system of equations was approximated to
make it susceptible for numerical treatment. The method
developed in this paper represents an improvement in that the
equations can be handled without modification, achieving
greater accuracy and reducing both memory requirements and
processor time. These results have been confirmed by
comparative runs.

-n?n?t e-n*/t
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The first step in applying the standard Crank-Nicholson
procedure involves the evaluation of equation (1) at t+At/2
using the approximations

u(t+at)+u(t)
g(t+At/2) = = 5 =

+ o(At?) (2a)
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du u(t+dt)~u(t)

| T (e4be/2)i= T+ o(At?) (2b)
Substitution of these expressions in (1) yields
I'(t) 1 A
¢ Sz = B(u(t)+3T(1)) + C g(t+Atr/2)+D+a(8t?) (3)
wvhere
‘ F(t) = u(t+dt) - u(t) : (&)
and t+ t/2 t:du .
o(t+At/2) = g(r) (t+At/2 -1)dr (5)
t 3 o
Since : . o
t du Ac/2 du
o(t+At/2) = J g(t+ﬁt!2~T)E%(T)dT + S g(T)E%(t+At/2*T)dT
~ 0 = - o =
, (6)
and
du du du At du At ,
——(t+At/2 T) = ““(t+A°/2)+a; Ty (t*—EJ [dt( +”“)}T+O(At )(?)
it follows that
Ae/2 du . At /2 du
s g(T)E%(t+At/2‘T)dT - (S (1- )g(T)dr}-(t+At/2)
o o
. Ae/2 r du
s 77 8(1)dT] FE(e-Ae/2)+o(At?) (8)
° T
Writing
duo
s(t) = f g(t+&t/2 r)«n(r)dr (9a)
ti2 .
GlE) = f Qler/e)gleidy £8b)
t/2 .
R(t) = [ T g(t)dr - (9¢)
P o .=, .
equation (3) yields'by means of (2) and (4).
[g~g§(At) - §étlzl£(t) - [Bu(t)+CS(t)]At+CR(At)F(t At)
+ gAt + Q(Ata) (10)

This last equation constitutes a recursive scheme of third
order in At similar to the Crank~Nicholson procedure. [Ihe

s


http:d~(t-6t/2)+0(6.t2

3EQ

functions S(Lt) and §(At) are well-defined even if g(t) is

gingular at 1=0, provided this function is integfable.

3. Application to ground-water hydrolosgy

There are gsome difficulties that hinder the direct use
of the extension of the Crank-Nicholson procedure to integro-
differential equations. If equation (10) , as it stands were
to be solved numerically step by step in time, it would be
necessary to evaluate the convolution term (9a) at each step.
To this end, one could use the exact values of the function
B- However, if this were done, it would be necessary to
carry out the integration from zero to t anew on each step,
since the integrand depends on t, which is being changed.
Thig is inconvenient for two reasons: first, the number of
computations required would increase beyond reasonable’
limits, and second, it would be necessary to keep at hand the
entire past history of du/dt. Thus, the memory requirements
of the computer would be greatly increased.

A case for which these difficulties can be removed is
when the memory function E can be approximated by a series of
exponentials. The ideas behind the procedure are not compli-
cated and will not be discussed in their greatest generality;
instead, they will be illustrated by means of an example
taken from Ground Water llydrology.

The transient behavior of a single leaky aquifer with
axial symmetry is governed by the integrodifferential equa-
tion [Herrera and Rodarte, 1973; Herrera, 1974; Herrera et al,,
1976; Herrera and Yates, 1977]:

2lg 1l 3s ds 1 9s

ar ar at a Jt
subject to suitable boundary and initial conditions. The
variables used in (l1l1) are dimensionless, the star stands for
convolution, and g is .

r and t>0 (11)

© 2.2 . % 2
g(t) 2 22 e Tt o () M 24 £ ey (12)

n=1 n™]

A discussion of the physical meaning of equation (11), is
given in the above mentioned papers.

Equation (11) can be transformed into & system of

integrodifferential equations in the single variable t by
application of the finite element method | Herrera et al., 1976; Herrera

and Yates, 1977]. As usual, the infinite interval [0,») will be
approximated by the finite interval {0,R], where R is taken
sufficiently large. A finite element mesh is assumed to
cover [0,R] and the basis function Y,(r), i=1,...,N', are
defined there. The approximate solu%ion of (11), is
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a(r,t) = I p ()P (r) (13)
i i
n=1
where P(t)=(p, ,...,pN.) satisfies the systett of integro-
differential equatxons in the single variable t:
1 ap ' t aP
EMEF(t)" —(K+H)P(t) - MI g(T) (t T)dT + c (14)
where R ;
uij - i rwi(r)wj(r)dr (15a)
R ) N
! : - ' ' : '
:Kij i r@i(r{Qj(t)dr (15b)
. . ‘

Equation (14) is derived by applying the Garlekin procedure
to equation (11) |[see Herrera and Yates, 1977}.

Application of the extension of the Crank-Nicholson
formula (10) to (;ﬁ) leads to

T

[§§+G(At)ﬁ-+ (k+m) At /2]T(e) = ~[ (K+M)P(e)+MS (£)] At

- R(At)M T(t-8t) + C At + o(At?) (156)

where G(t) and R(t) are scalar functions related to the
scalar function g(t), by equations (9b,c). Setting

A= [l + Ae G(at)lM + Ly ae (17a)
~ a 2 2 ~ 2 =~
g - —(K+M)At (17b)

equation (16) can be rewritten as

ﬁg(t) - Ef(t) - gg(t)At »’R(At)gg(t-ét)+gAt+o(Ac3) (18)

4. Approximation of the kernel function

To compute

t At
S(t) = S g(t+§— - T)P'(1)dr (19)
o
which occurs in (18), the'approgimation
!
‘ N cn?nle A
g(t) » 8N(t) « 2 L e + ay 8(t-4¢t) (20)
. n=1

will be used. Here 1 "
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' a, = 2 z L ELTTTTTT (21)
N n=N+1 nen

This approximation is motivated by one that has been success~-
fully used in ground-water hydrology [ Rantush, 1%960; Herrera
and Rodarte, 1973}, and has been more thoroughly discussed in
previous work [Herrera et al., 1976; Herrera and Yates,1977]).

The constant ay is rhosen so that

o o

/ g(t)de = [ gN(t)dt. (22)
Ac /2 At /2 ¢

Includingflhe delta function hes the effect of incorporating
at t-At/2 the integral of the terms negkected in the infinite
Serles -

With this approximation, equation {(19) becomes

S(t) = 2 2 Il ZnZpe/2

n=1

D_(t)+a P ' (t-4¢/2) (23)

where 2
- n“n
Dn(t) = @ 1

2.2

t
S P (De
-

The values of D {(t) can be updated without recourse to past
values, becausge"

t+ht
Pt(T)e

-nzﬂz(t+At)I n?n27

22
-n*n7At at  (25)

En(t+At) - @ Dn(t)+e

t

The last integral can be evaluated using the linear inter-
polation

F(e)

“ge— Tro(at?) ; 0<t<Ae (26)

g(t+At-T) = P(t+Atr)-

In this manner, it is obtained

1
t+bt 2.2 nn?e

n“n‘r e e? 2y At
{ P'(1)e dT = Soapy [()le ~11+o(At?) (27)
Consequently

2.2 I'(e) 2.2

- ~n At ~ _,=n At [

Pn(t+6t) D (e)+ ;T;ygz(l e Yto(ae®) (28)

which is the desired formula. In view of this result equation
(23) can be written as '

N - 2 F(t-At)
- -n*n*Ate/2 ~ 3
s(t) anle Qn(t)+aN B e + o(At?) (29)

Finally, equation (18) becomes

RIS AT el S
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' (G LIRS 4 ¥ ‘ v
Ar(t) “ BP(:) M{z z -n?n? Ac/ZD (t)At+Ia +R(At)]r(t ht)}
n=l .
+ Ccot +'o<Ar.’) (30)

Equations (28) and (30) provide a recursive procedure of
third order in &t (i.e. giving the solution to second order)
which can be applied directly, because the value of S(t) has
been eliminated by means of (29) and D can be updated using
(28).

5. Discussion

, When treating numerically a system of integrodifferential
equations of the type here discussed (equation 1}, it is
necessary to approximate the kernel g(t) in some way; other-
wise it would be necessary to computé the integral terms in
" the interval (0,t) anew on each step. This would greatly
increase processor and memory requirements. When the kernel
can be approximated by a finite exponential series this
difficulty is overcome. However, if g(t) is singular at t=0,
the exponential series is a poor approximation there. The
extension of the Crank~Nicholson procedure presented here
allows an exact treatment of the kernel in a neighborhood of
the singularity.

It should be observed that when the kernel is singular,
it is not possible to apply integration by parts in order to
express the integral occurring in equation (1)}, in terms of
the function u. This is because g'(t) is not integrable in a
neighbourhood of zero. Our method permits the derivative to
be expressed directly in terms of the function itself.

Frequently, the characteristic time of the solutioen
corresponding to a4 given problem can be much larger than the
characteristic time of the kernel function. One advantage
resulting from the exact treatment of the kernel function g,
is that the size of the time steps At, is limited onliy by the
length of the characteristic time o0f the solution.

The number N of terms required in the series expansion
(20), to achieve a given accuracy, depends on the time step
At, which in turn is determined by the characteristic time
" of the solution. A method was previously develcped [Herrera
and Yates, 1977) which is based in approximating the integro-
differential equations themsclves. For such a method a rule
was given relating N with At. In comparative runs it has
been found that the present method permits reducing N
considerably; this implies an important reduction of memory
requirements and processor time.

| t ! N
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‘ GENERALIZATIOV OF FINITE,K ELEMENT ALTERNATING-DIRECTION
TECHNIQUES TO NON RBCTANGULAR REGION9

4

Linda,g,‘ﬂayesgl)

Summary

A convergent finite element alternating-direction procedure is pre-
gented for solving the heat equation on non-rectangular regions in ™.
This procedure is unconditionally stable in time and has the following ad-
vantages:

(1) The matrix which must be inverted is independent of time, so it
.y : need only be decomposed one time,
[.(2) The matrix which must be 1nverted can be factored into the pro-
duct of two matrices, each of which corresponds to the solution
. of one-dimensional problems,

A key concept in this procedure i3 that we can approximate the Jacobian of
& certaln transformation, locally on patches of elements, by a function
which can be factored into a function of x times a function of y.
1. /Introduction
For simplicity, we 1limit thies discussion to the heat equation

(b u (€, 0) - Ve(kWi(E,t)) = £(§,0), (§,¢) €ﬂgx(0,'1‘],

with boundary conditions

u(g, t)
u(i!o) = uo(:;‘)o . Z
Extensions of these results to 'R3 and to more general nonlinear parabolic

and hyperbolic problems are briefly mentioned at the conclusion of this
paper, For a more complete discussion the reader is referred to Hayes [4].

0, (E, t) eéng(O,T]

(5] The Galerkin formulation of equation (1) is given by Oden and Reddy
51,

+

2 (Ut:,\@')Q + (kVU,W)Q = (f,_V)Q , Ve Sh(Qg)’
24 j:4 8
where (f,g)Q = [ fgdt, and Sh(ns) 18 a finite dimensional subspace of
1 8 .ng
Q .
Hy ( B)
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The relatively larpe values of the standard deviation is onIy partialle s
to the crror of the measurements (57), Instead, the experimental r(snlts
prove that, apart [rom the solutions obtained with the assumption CK = 0
(equation 14 : discharge condition) other roll~waves can exist in the
channel, which individually do not cenvey the correct discharge Q, providd
that the mean discharge over scveral different waves equals the (constant)
discharge Q, supplied to the channel. This result did not follow from the
theory by Brock [ﬂ!}utthe large "measurcment errors” ke mentioned (up to
100 Z) can be explained by the above thcory. .

L~

6. Conclusions

The integration of the non~linear momentum~equation yielda, for given
values of Re and ¥, an infinity of possible roll-wave solutions for each
value of the maximum wave-depth. One of these solutions has an infinite
wave-length., The exact solution can be approximated by the cnoidal wave
theory. These results are in good agreement with the experiments.
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