
On the variational principles of
mechanics

Abstract

Recently, the author has developed a general formulation of variational
principles using functional-valued operators which simplifies the treat-
ment of problems of continuum mechanics and its partial differential
equations because it is applicable in any linear space, not necessarily
normed, or with an inner product, or complete. This method has been
applied to obtain dual extremum principles for initial-value problems and,
more generally, for non-negative asymmetric operators. More recently, it
has been used to obtain general variational principles applicable to
diffraction problems and to formulate a general theory of connectivity for
formally symmetric operators, which is basic in the formulation of the
finite element method. Here, a systematic presentation of this method
and these results is given.

1 Introduction

The numerical methods of mechanics and, more generally, of mathemati-
cal physics make extensive use of variational formulations. The modern
approach to such methods is based on functional analysis. However, in
many applications to mechanics, functional analysis is not used systemati-
cally, in spite of the fact that it permits the achievement of greater
generality, rigour and clarity; to a large extent this is due to the fact that
the applicability of functional analysis is frequently hindered by the
complicated structures which are assumed in many of its theories.

The complexity of structures limits, in at least two ways, the usefulness
of functional analysis:

(a) it makes it difficult (or impossible) to treat complicated situations;
(b) it diminishes the number of people able to apply it efficiently.
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This paper is devoted to a presentation of a general framework which
simplifies the formulation of variational principles of mechanics and,
more generally, of mathematical physics [1]. It is based on the systematic
use of functional-valued operators. Advantages of this approach [1-3] are
as follows:

1. Problems are formulated in the most general kind of linear spaces,
which are not necessarily normed, or with an inner product, or
complete. Most work in this field has been done either in inner
product spaces [4] or in Hilbert spaces [5,6] and it is generally thought
that this is desirable, if not essential, for the results to hold. In many
applications, the introduction of the Hilbert-space structure leads to
unwarranted complications which do not occur when functional-valued
operators are used.

2. The removal of superfluous hypotheses in the development of a theory
is always convenient, because it enlarges its applicability.

3. The symmetry condition for the potentialness of an operator can be
extended to linear spaces for which no inner product or norm have to
be defined [1]. This fact makes it possible to formulate a theory which
is rigorous and at the same time not complicated.

4. Error bounds for approximate solutions are among the most important
results that the theory yields [7]. They depend, however, on simple
properties which are independent of any Hilbert space structure, and,
therefore, can be obtained in the simple setting that the author has

developed [3].
5. The generality achieved is greater. This fact has been especially useful

in the development of variational principles for diffraction problems
and the theory of connectivity to be presented in this paper.

This method has been used to obtain variational [8] and truly ex-
tremum principles [1-3] for initial-value problems, t and, more generally,
for non-negative asymmetric operators [3]. A procedure which permits
extending variational principles, derived by the mirror method into truly
extremal principles, has also been constructed [3]. The notion of formally
symmetric operators, usually applicable to differential operators only, is
extended to functional-valued operators; for ~uch operators, general
variational principles have been developed for diffraction problems [9]
and for a theory of connectivity [10] basic to the formulation of the
finite-element method.

The description of the framework and of the main developments is
brief; therefore, many details have been left out. This has required that,
in some cases, the results are not presented in their greatest generality.
Thus, for example, diffraction and related problems with prescribed

t These results were obtained in 1974 [1,2]. Later, in a less general setting, Brezis and
Ekeland [6], obtained related results.
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jumps are not considered, although they have been treated in this more
general form in the corresponding references [10]. Similarly, problems
defined in affine subspaces are not considered here.

2 Preliminary notions and notations

All linear spaces to be considered will be defined on the field of real or

complex numbers ~. The outer sum of two such spaces D1 and D2 will be

represented by D1EBD2. On the other hand, if a linear space D is

spanned by two linearly independent subspaces D1 and D2' the space D
is isomorphic to D1 EBD2 and we will write D = D1 EBD2; the subspaces

D1' D2 are called a decomposition of D. In this case, given any uED,
there is a unique pair of elements (U1' U2) such that ~ E Di (i = 1, 2) and

U = U1 + U2; the elements of this pair are called projections of U on D1

and D2' respectively. The notation Dn will be used for the outer sum
D1 EB. ..EB Dn when Di = D (i = 1, ...,n).

The value of an n-lineart functional a : Dn~~ at an element u =

(Ul' ...,u,,) E Dn will be represented by (a, U1, ...,u,,).:j: The notation

Dn* will be used for the linear space of all n-linear functionals. Alterna-

tively, D1* will be written as D*; Do* is defined as ~. Notice that

Dn*;,!: (Dn)*.

Functional-valued operators P:D~Dn* are considered in this work.
Special attention will be given to the case n = 1, i.e., to operators of the

form P: D~D*. When P is linear, its adjoint p*: D~D* is defined by
(P*u,v) = (Pv,u), which holds for every u,vED; thus, the adjoint of such

linear operators always exists.

For operators of the type P: D~Dn*, the notion of continuity can be

introduced without a topology in D. The operator P: D~Dn* is said to

be bidimensionally continuous at U E D if, for every v, W, 1;,(1), ..., I;,(n) E
D, the function f(n, A.) = (P(u + 7JV + A.W), 1;,(1),..., I;,(n» is continuous at

7J = A. = O.

The concept of a derivative of an operator will be used in the sense of

additive Gateaux variation [11]. More precisely, an element P'(U)E

D(n+l)* will be called the derivative of P at U ED, if, for every
/;(1) /;(n) Dv, ~ ,..., ~ E ,

g'(O) = (P'(U), V, 1;,(1), ...,I;,(n» (1)

whenever the function g(t) = (P(u + tV), 1;,(1), ...,I;,(n». Partial derivatives

P, I(U)' P, 2(U) E D(n+l)* will be considered when D = D1 EBD2. Using the

t Russian authors usually include continuity in the definition of linearity [12]. On the other
hand, for most American authors, this concept includes only additivity and homogeneity. In
this paper, we follow the latter terminology.
:j: This notation does not imply the existence of an inner product.
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unique representation (VI' V2), Vi E Di (i = 1, 2), of every V E D, they are
defined by

(P'i(U),v,~(I),...,~(n»=(pl(U),Vi,~(I),...,~(n» (i=1,2), (2)

which holds for every ~(l), ..., ~(n) E D.
An operator P: D-.+ D* is said to be potential if there exists a

functional 1/1: D-.+~ = Do* such that 1/1'(u) = P(u) for every U ED. It is
well known [12] that a sufficient condition for potentiality is that P'(u) be
symmetric for every U E D. This result remains valid for the class of
operators P : D-.+ D* considered here, if P'(u) is assumed to be bidimen-
sionally continuous at each u E D, as has been shown [1] in a manner
related to that suggested by Vainberg [12]. For a linear operator P, this
requirement reduces to the condition that P be symmetric. Such P will be
said to be non-negative if (Pu, u)~O for every U ED and positive if, in
addition, (Pu, u) = 0 only when u = O. Non-positive and negative
operators are defined similarly.

The general problem to be considered consists in finding solutions to an
equation

P(u)=f, (3)

where P is a functional-valued operator P: D-.+ D* and f E D*. The
solutions u will be restricted to be in a subset E c D. In applications
[2, 3], the elements belonging to E satisfy some additional boundary or
initial conditions and frequently constitute an affine subspace; i.e., there is
a subspace E c D and an element wED, E = W + E. The results to be
presented can be easily extended to the case E~ D [2,3]; however, for
simplicity, it will be assumed E = D, which corresponds to taking WEE =
D.

Following Noble and Sewell [4], given any two elements U_, u+ E D,
define

~X=X(u+)-X(u_), (4a)
~u = u+- u_o (4b)

If a decomposition D1, Dz of D is available, let '~iU E Di (i = 1, 2) be the
unique representation of ~u in terms of an element of Dl plus an element
of Dzo

When the functional X is differentiable, it is said to be convex if

~X -(X'(u_), ~u)~O (5)

or, equivalently,

~X -(X'(u+), ~u)~O (6)

for every U+, U- E D. It is strictly convex if the strict inequality holds
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whenever u+ ~ u_o In addition, X is concave or strictly concave if -Xis
convex or strictly convex, respectively.

Furthermore, X is saddle, convex on D1 and concave on D2, if

~X -(X'(u_), ~lU)-(X'(u+), ~2U)~O (7)

for every U+, U- E D. It is strictly saddle if the inequality is strict whenever
U+ ~ u_.

3 Variational principles

A variational principle is understood to be an assertion stating that the
derivative X'(u) of a functional X vanishes at a pointuED if and only if
U is a solution of (3). A sufficient condition for the construction of
variational principles is that the operator P be potential, because if
1jI: D -+~ is a potential of P, then the functional X(u)= ljI(u)-(f, u) will
have the required property.

Theorem 1 Assume P : D ~ D* to be potential. Then u E D is a solution
of (3) if and only if X'(u) = O. Here, X: D ~ ~ is defined as above.

The theory of dual extremal principles for non-linear functional-valued
operators has been developed in complete generality elsewhere [1]. Here,
a summary of this theory for the linear case is presented. Therefore, in
what follows, the linearity of the operator P : D ~ D* will be assumed.
In addition, the field ~ is taken as R1.

Given a decomposition DI c D, D2 C D of D, every element U E D can
be written as U = UI + U2, where UI, U2 are the projections of U on DI and
D2, respectively. Projections of linear functionals and of functional-
valued operators which are linear can be defined similarly. Given f E D*
and P : D ~ D*, the projections fIE D* and f2 E D* are such that

(fl,U)=(f,uJ; (f2,U)=(f,U2) (8)

for every U E D, while the projections PI: D ~ D* and P2: D ~ D*
satisfy the conditions

P1u = (Pu)l, P2u = (Pu)2. (9)

From these definitions, it follows that

f=fl+f2' (10)
P= PI +P2. (11)

When P is non-negative, the non-n~gative square root of (Pu, u) will be
denoted by lIulip whenever u E E. The set

Np = {u E D Iliulip = O} (12)
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may contain non-zero vectors. However, Np is always a linear subspace of
D [3].

Definition Let P : D -+ D* be non-negative. Then u, v ED are said to be
P-equivalent if and only if u -V E Np. In this case, one writes

u=pv. (13)

This is an equivalence relation because Np is a linear subspace. For
non-positive and negative operators there are definitions and results
corresponding to those already given for nQn-negative and positive
operators. It is worth noticing that the relation = p becomes equality
when P is either positive or negative.

Definition Let D1, D2 be a decomposition of D and P: D -+ D* be a
self-adjoint operator. Then, P is said to be saddle with respect to D1, D2 if
P is non-negative on Dl and non-positive on D2. It is strictly saddle if Pis
positive on Dl and negative on D2.

It must be observed that, in this definition, the subspaces can not be
interchanged. However, this manner of introducing them simplifies many
propositions of the theory. For saddle operators, the bilinear functional
(Put, Vt)-(Pu2, V2) is symmetric and possesses a Bon-negative quadratic
form. The non-negative square root of (Put, uJ-(Pu2, U2) will be de-
noted by Ilullp; when P is strictly saddle, Ilulip is positive and therefore
II u lip is a norm. In this case, the bilinear functional (Pu1, vJ-(Pu2, V2) is
an inner product.

Definition When P : D -+ D* is saddle, any pair U, v E D are said to be
P-equivalent (i.e., U=pv) if and only if Ilu-vllp=O.

Again the set (12) is a linear subspace and =p is an equivalence relation.
Let

D1={UEDIP1u=O}, (14a)

DII={UEDIP2u=O}. (14b)
Then, if P : D ~ D* is saddle with respect to tHe decomposition D1, D2,
the operator P is non-positive on Dl and non-negative on DII. Further-
more [3],

(Pu,u)=-lIulI~ when UED1, (15a)

(Pu,u)=lIulip when uEDII (15 b)

The dual extremum principles are closely related to Eqns (15). In view
of Theorem 1, for symmetric operators, Eqn (3) is equivalent to

X'1(U)=P1U-!1=O, (16a)

X'2(U)=P2U-!2=O. (16b)
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Theorem 2 Let P: D ~ D* be saddle with respect to the decomposition
D1, D2 of D. Define the afJine subspaces

~a={uEDI(16a)holds}, (17a)

~b ={u ED I (16b) holds}; (17b)

then, for every Ua E ~a and Ub E ~b'

2[X(Ub) -X(Ua)] = Ilub -uall~~ o. (18)

When a solution Uo ED of (3) exists,

1I~-uaIl2=1I~-uoIl2+IIUo-uaIl2. (19)

Proof The proof of (18), when a solution Uo ED exists, follows im-
mediately from Eqns (15), because '

~-Ua=(Ub-UO)+(uo-ua), (20)

Ub -UoE Du and Uo- Ua E Dr. When the existence of Uo is not assumed,
the proof is slightly more complicated and is given in [3].

4 The mirror method

Let P: D ~ D* be a non-negative, but not necessarily symmetric,
operator. The mirror method consists in embedding the equation Pu = f
into the system

Pu=f and P*u'=g, (21)

where u, u' ED and f, g E D*. This system of equations may be written in
terms of a symmetric operator P:D~D*, where D=DE9D is the
outer sum of D with itself; thus, the elements u = (u, u') E D are ordered
pairs of members u, u'ED. To expre~s (21) in theAfox:rn PU=j with P
symmetric, it is enough to define P : D ~ D* and f E D* by

(Pu, v)=(Pu, v') + (Pv, u') (22)

and

<!,v)=(f,v')+(g,v).

Due to this fact, it is possible to formulate variational principles for the
system (21). In this case, the functional X: D -.'J. ~ of Theorem 1 is

X(il)=X(u, u')=(Pu, u')-(f, u')-(g, u). (24)

In general, this functional is not saddle. However, when P is non-
negative, it is easy to construct decompositions VI, V2 of V for which
P : V -.'J. V* is saddle. Indeed, let a, (3, 'Y, 8 be real numbers such that
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a5 -/3y ~ 0, a/3 < 0 and y5 > O. Then, P is saddle with respect to V1, V2
if

(25a)

(25b)

D1 ={uED I au+fju'=O},
D2 ={U E D I 'YU +8u' = O}

and Theorem 2 is applicable.

5 Variational formulations of diffraction problems

Consider a linear operator P: D -'1' D*. Given such operator, let

}{ 

= {u E D I Au = O}

be 

the null subspace of the antisymmetric part A = (P -P*)j2 of P, which
is well defined because the adjoint p* always exists. The operator P is
said to be formally symmetric if

(Pu,v)=O VVEj{~Pu=O. (27)

It is worth noticing that any functional-valued operator P: D ~ D*
satisfies the proposition that is obtained by replacing j{ with D in (27).
Attention will be restricted in this section to formally symmetric

operators.

A linear subspace .1 c D is said to be a connectivity conditionDefinition

if

(29)
(30)

(a) ,N'c.1,

(b) (Au, v)=O, 'v'u, v E.1.

The connectivity condition is said to be complete if, in addition,

(c) for any wED,
(Aw,v)=O, VvE.1 ~ wE.1. (31)

The set ~ c D is defined by

~ ={u ED I Pu =O}. (32)

The relation

{Au,v)=O, VU,VE~ (33)

is clear, because 2(Au, v)=(Pu, v)-(Pv, u). In what follows of this sec-
tion, it will be assumed that there is in D a connectivity condition .1;
however, the completeness of .1 will not be taken for granted.

The problem of diffraction associated with P will now be presented.



Definition Given U ED and V E D*, a motion U ED is said to be a
solution of the problem of diffraction if

Pu=f and V-U=VE.1, (34)

where f = PU.

There are several alternative variational formulations of this diffraction
problem [9, 10]. Here, only the two which are especially relevant for
numerical applications are quoted.

(36)

Theorem 3 Define the functional

X(u, u') =i(Pu, u)+(A[u], u)+(A V, u')-(f, u) (

for every couple u, u' ED. Here,

[u]=u'-u, u=i(u'+u).

Then, when .1 is complete or, alternatively, when u' -V E .1,

(X'(u, u'), (v,v'»=O V(v,v'), vED and v'E.1 (

if and only if u is a solution of the diffraction problem and u' -u E J{.

Proof This theorem contains a slight modification of results proved in
[9, 10].

6 Characterization of complete connectivity conditions

The main result to be presented in this section is that when the diffraction
problem associated with a connectivity condition .1 c D, is well posed,
then .1 is complete.

For every symmetric operator S : D -+ D*, the operator B = S + A/2
satisfies

A=B-B*.

It will be assumed that operators B : D -+ D* (to be considered in what
follows) satisfy (38). When such B is available, two problems are defined.

Definition Given U E D, the motion U E D is said to be a solution of the
external boundary-value problem (e.b.v.p.) if Bu=BU and UE.1. The
internal boundary-value problem (i.b.v.p.) is defined by replacing.1 with ~.

Any of the three problems already introduced are said to satisfy
existence if they possess at least one solution for every admissible data;
uniqueness when the only solution of the problem with vanishing data is
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the zero solution; almost uniqueness when any solution of the latter
problem belongs to the null set J{. For some purposes, it is too restrictive
to require uniqueness; owing to this fact, a problem will be said to be
well posed if it satisfies existence and almost uniqueness.

It can be proved easily [10], that the problem of diffraction is well posed
if and only if every U ED can be written as u = Ul + U2 with Ul E.1, U2 E ~
and this representation is almost unique. In addition, if for some B
satisfying (38) the e.b.v.p. satisfies existence, then.1 is a complete connec-
tivity condition [10]. Finally, if the diffraction problem is well posed, then
3B : D ~ D*, which satisfies (38), and the e.b.v.p. satisfies existence. This
latter assertion can be proved defining Bu = Aul, because such B fulfils
the required conditions. The above results imply the main property
advanced in the introduction of this section.

Theorem 4 Let,g; c D be a connectivity condition. If the diffraction
problem associated with .1 is well posed, then .1 is a complete connectivity
condition.

7 Theory of connectivity

In this section, the relation between the problem of diffraction and the
problem of connecting is discussed. This latter is basic to the formulation
of the finite-element method. It is shown that these two problems are
closely connected; furthermore, it is shown that the problem of connect-
ing associated with formally symmetric operators leads to complete
connectivity conditions whenever it is well posed.

The problem of connecting consists in constructing solutions in a region
such as RUE of Fig. 1, by connecting those corresponding to individual
subregions such as Rand E. The theory to be presented is an abstract

Fig. 

1. Regions considered in the application to potential theory and

elasticity.
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one and can be applied in more general situations as long as the
postulates are satisfied.

Let P: D ~ D* be a formally symmetric operator and D, DE a
decomposition of D, so that every a E D can be written in a unique
manner as a = U + UE, with U E D and UE E DE, It will be assumed that this
decomposition is such that

(pa, v) = (Pu, v) + (PuE, VB) (39)

for every a, v E D. This permits the definition of P: D ~ D* and
PI;; : D ~ D* by the equations

(pa, v) = (Pu, v), (PEa, v) = (PuE, VB)' (40)

They satisfy

P=P+PE. (41)

At the same time, due to (40), they can be thought of as P : D ~ D* and
PE :DE~D~.

Definition Assume [:Ic b has the following properties:

(a) [:I is a complete connectivity condition for P;
(b) for every u E D, 3UE E DE+u + UE E [:I;
(c) for every UE E DE, 3u E D+u + UE E [:I.

Then [:I will be said to be a smoothness relation or condition.

Elements U E D and UE E DE are said to be smooth extensions of each
other when U + UE E [t. In this section, it is assumed that a smoothness
relation [t is given.

Definition Let U E D and UE E DE be given. Then U E D is said to be a
solution of the problem of connecting, t when

Pu = PUB (42)

and Ii = U+UE E9'fo; some UE EDE+

PEUE = PEUEo (43)

Fonnulations of more general problems of connecting which include
prescribed jumps have been given [10], as well as associated variational
principles.

t Probably, it would be better to call this problem of connecting in the restricted sense,
because preference is given to the subspace D, while, in a more general treatment, D and
DE playa symmetric role.
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To reduce the problem of connecting to a problem of diffraction, it is
enough to define the set .1 c D by

.1 ={uED 13ft = U+UEEStPEUE =O}. (44)

This is because the set .1 given by Eqn (44) is necessarily a connectivity
condition for P : D ~ D*, which is, in addition, complete when the diffrac-
tion problem is well posed, as has been shown in [10].

8 Applications

Dual variational principles for the heat and wave equations have been
given in [1-3] and can be easily extended to elastodynamics and other
fields. Here, only applications of the general diffraction problem and of
the problem of connecting will be considered.

For applications to elasticity and potential theory, consider functions
U = (Ul'...' Urn) defined in the region RUE of the n-dimensional Eucli-
dean space (Fig. 1), with boundary dlRUd2RUdlEUd2E; the common
boundary between Rand E is d3R = d3E. The unit normal vector n is
taken pointing outwards, from RUE on its boundary, and from E on
d3R = d3E. The subspaces D and DE can be taken as the set of functions
which are C2 on R and on E, respectively. The space b is made by
couples of such functions. Define P : b ~ b* by

vaf£a (0) dx + LRUE) uaTa(v) dx

12(RUE)
(45)vaTa(u) dx,

where 01 (R U E) = 01 R U 01 E, a2(R U E) = a2R U a2E, while .:£ and T are

the differential operators:

a ( au )~ C"j/lq ~ + pu",

q

..p.. (0) =

aUjiC -nj-Ta(u) = ajj3q aXq (46b)

With these definitions, Eqns (39) are obviously satisfied. Here, as in what
follows, Latin indices run from 1 to n, while Greek ones run from 1 to m.
The coefficients p and Caj/3q are smooth functions on Rand E separately,
such that

Caj/3q = C/3qaj- (47)
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By integration by parts, it is seen that

(Au, 13) = 1 {iia[Ta(u)]-[Ua]Ta(v) dx
"3R

+1 {Ta(u)[va]-ua[Ta(v)]dx, (48)
"3R

where the square bracket stands for the jumps on a3R of the function,
while the bar over a symbol, e.g., ii, indicates its corresponding average.
In view of this equation, a sufficient condition for u = U + UE ED to be in
the null set if of A is that

Ua = UEa =0 and Ta(u) = Ta(UE) = 0 on a3R. (49)

From this fact, it can be seen that (27) is satisfied, and, therefore, P is

formally symmetric.
It will be assumed in what follows that the coefficients Caj/3Q are such

that u = U + UE Eif if and only if (49) are satisfied. When m = 1, n = 3 and
C1jlQ = 5jQ' .Pi is Laplace's operator if p =0 and the reduced wave
operator if p = 1. If m = n = 3, .Pi is the operator of static elasticity if
p = 0 and the reduced operator of elastodynamics if p = 1. In applications
to potential theory, Eqn (49) is always satisfied, while the strong ellipticity
of Cijpq grants the same condition in applications to elasticity [9, 10].

Let the set 9' c D be defined by the condition that u = U + UE E 9' if and,
only if

[Ua]=[Ta(u)]=O on a3R. (50)

Then, Jr c '::I. In addition, by inspection of (48), it is seen that (Au, 13)
vanishes whenever u, 13 E 9'; thus, 9' is a connectivity condition. Filially, it
can be seen that this connectivity condition is always complete in applica-
tions to potential theory and the reduced wave equation, while, again, the
same property is enjoyed in applications to elasticity when Cijpq is
strongly elliptic. This shows that 9' is a smoothness condition, because
properties (b) and (c) are obvious, at least if a3R is assumed to be
sufficiently smooth.
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