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ABSTRACI' In previous papers Herrera developed a theory
of connectivity that is applicable to the problem of connecting
solutions defined in different regions, which occurs when
solving partial differential equations and many problems of
mechanics. In this paper we explain how complete connectivity
conditions can be used to replace boundary integral equations
in many situations. We show that completeness is satisfied not
only in steady-state problems such as potential, reduced wave
equation and static and quasi-static elasticity, but also in
time-dependent problems such as heat and wave equations and
dynamical elasticity. A method to obtain bases of connectivity
conditions, which are independent of the regions considered,
is also presented.

Application of the theory is simplified by the use of boundary
operators that are not usually formally symmetric; therefore,
a proof is supplied of the results required in this more general
form. As in preceding papers (2, 3), systematic use is made of
functional-valued operators defined on arbitrary linear spaces
without any additional structure (ie., not necessarily normed,
or with an inner product, or complete).

Preliminary results
For operators (2-6) B:D -D* defined on a linear space D and
with values in the space D* of all the linear functionals defined
on D, let .N c D be the null set of A; i.e.,

.N = lu E DIAu = 01 [1]

where A = B -B* and B* is the adjoint operator to B. Contrary
to previous work (2, 3) no formally symmetric operators will
be considered in this paper.

Definition 1. A linear subspace :J c D is said to be a con-
nectivity condition if

(i) .N c :I, [2]

(ii) (Au,v) = 0 Vu,v E :I [3]

The connectivity condition is said to be complete when,

(iii) For any wED, one has
(Aw,v) = 0 Vv E :I ~ w E :I [4]

Definition 2. Let B:D -D* be such that

A = B -B*. [5]

Given U E D, the element u E D is said to be a solution of the
external boundary value problem (ebvp) if Bu = BU and u E
:I. This problem is said to satisfy existence if it has at least one
solution for every U E D.

The main result to be used in what- follows is given next.
THEOREM 1. Let :I c D be a connectivity condition. If, for

some B fulfilling Eq. 5, the ebvp satisfies existence, then :I is
complete.

Proof: Assume U ED is such that (AU,v) = 0, Vv E:I, and
take u E :I as a solution of the ebvp corresponding to U. Define
w = U -u; clearly, Bw = O. Given any V ED, take v E :I as
a solution of the ebvp corresponding to V. Then

(Aw,V) = (Bw,V) -(BV,w) = -(Bv,w)

= (Aw,v) = (Au,v) -(AU,v) = o.

Thus, wE.N c:l and U = u + w E :I.
Definition 3. Let :I c D be a complete connectivity condi-

tion for an operator B:D -D*. A subset B c :I is said to be a

When numerical methods are applied to mechanical problems,
usually the general analytical solutions are known in subregions.
In order to profit from this knowledge, in many situations, e.g.,
in diffraction problems, boundary element methods are ap-
plied; most frequently, they are formulated by using boundary
integral equations (1). A general theory of connectivity has been
developed recently (2, 3) which offers an alternative to integral
equations and can be used with advantage in many problems.
This theory considers a class of functions called a connectivity
condition. If one uses a boundary integral equation to charac-
terize this set, one is led to standard formulations; however, the
theory of connectivity (2, 3) shows that such a set can also be
characterized by the fact that a certain bilinear functional is
symmetric when evaluated on its members. When a denumo-
erable basis of the connectivity condition is available, it is
enough to impose the denumerable set of conditions, corre-
sponding to the requirement that this bilinear functional, when
evaluated on the trial solution, vanishes for every member of
the basis. The problem is simplified further because in very
general situations it is possible to construct bases of connectivity
conditions that are independent of the regions considered.

To illustrate the method, we apply it to both steady-state and
time-dependent problems; more specifically, potential theory,
wave and heat equations, and elasticity are considered. Bases
of connectivity conditions for a region that is the exterior or,
alternatively, the interior of a bounded region in two- or
three-dimensional Euclidean space are constructed. They
possess the remarkable property of remaining the same re-
gardless of the specific region considered. This fact is very useful
in numerical and other applications; e.g., in potential theory,
when the region is bounded, these bases are harmonic polyno-
mials.

In previous work, the theory was formulated for formally
symmetric operators only (2, 3). Although this assumption is
essential for the variational principles to hold, many results
remain valid even if the operators are not formally symmetric.
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complete system for :J if, for every u E D, one has

(Au,w) =0 -VwE~~uE:I. [6]

~ is a basis of :I if, in addition, every finite set of functionals
IAwalwa E ~, a = 1, ..., NI is linearly independent.

When ~ = IWa E :I, a = 1,2, ...1 is a denumerable basis of

:I, Eq. 6 can be replaced by
" = 0 -V-a = 1,2,. ..~ u E:I. [7]

(Au,WaJ

\. ~1 R "'- ~2E

Regions considered in time-independent problems.FIG. 1

ther:
(i) The couple u = (0,0) c :J

(ii) r u~dx= r v~dx-vu,vE:J. [10]
J~ un J()aE C>n

(iii) Given any (U,c>Ufc>n) E D, there is at least one
(u,c>ufc>n) E J such that u = U on C>sE.

Then, for every u = (u,c>ufc>n) E D, one has

r u~dx= r v~dxWE:J=*uE:J. [11]
J~ C>n J()aE C>n

Proof: Let B:V --+ V* be defined by

(Bu,v) = r u~dx. [12]
J()sE ()n

Then A = B -B* is given by

(Au,v) = r {u ~ -v ~ } dx. [13]
J()sE ()n ()n

Clearly, the null set N of A ~N = I(O,O)}. This fact, together
with assumptions (i) and (ii), imply in view of Eq. 13 that :J is
a connectivity condition for B. Due to assumption (iii), the ebvp
satisfies existence; hence, Eq. 11 follows from Theorem 1.

THEOREM 2. Let region E be bounded and :J c D be made
by the couples v = (v,()v /()n) E D, which are boundary values

for some v E DE satisfying
«()2v/()Xi()XU + k2v = 0 on E, [14a]

v = Oon ()lE; «()v/()n) = 0 on ()2E. [14b]

Assume that for every continuous function V defined on ()sE

the boundary value problem
v = Von ()sE = ()sR [15]

subjected to Eqs. 14 possesses at least one solution v E DE.

Example of complete connectivity conditions
When diffraction problems, boundary element methods, and
many other applications are considered, one looks for functions
that satisfy a set of conditions, such as partial differential
equations on a region R. These functions are further restricted
by the condition that they can be extended smoothly into s0-
lutions on a neighboring region E of some other partial differ-
ential equations; such condition imposes restrictions on the
values that are admissible on the common boundary ()sE be-
tween Rand E. Such restrictions are frequently characterized
by means of boundary integral equations (1).

An alternative, more flexible, procedure is supplied by the
theory of connectivity (2, 3). If a denumerable basis of the
connectivity condition is available, one can replace the
boundary integral equation by the denumerable set of condi-
tions 7. In this section the applicability of the method is illus-
trated by examples of complete connectivity conditions; these
include potential theory, reduced wave, heat and wave equa-
tions, and elasticity (statical, reduced equation, and dynamical).
The next section is devoted to obtaining denumerable bases of
connectivity conditions for potential theory and the reduced
wave equation; those bases have the remarkable property that
they are the same for a wide class of regions E.

In applications to time-independent problems, E will be a
region of the n-dimensional Euclidean space (Fig. 1) with
boundary ()E = ()lE U ()zE U ()sE, where ()"E (a = 1,2,3) are
mutually disjoint sets and i>sE = ()~ is the part of the boundary
of E that is shared with R. For applications to time-dependent
problems (Fig. 2), a region that satisfies the same conditions as
region E above will be called Ex, while the region E will be
taken as Ex X [O,T]. Therefore, the common part of E with R
will be ()sE = ()sEx X [O,T] as shown in Fig. 2.

For applications to potential theory, reduced wave, and heat
and wave equations, DE will be the linear space of functions
u (real or, alternatively, complex valued) that are C2 in E such
that u and ()u j ()n are continuous on ()sE. The space D will be
taken as the linear space of couples u = (u,ooj()n), where u
and ()u j ()n are continuous functions on ()sE.

In applications to elasticity, the elastic tensor Cjjpq, defined
on E, will be assumed to satisfy the usual symmetry conditions
and to be strongly elliptic (2, 3). Functions u = (Ut,Ufu. .., un)
E DE will be vector valued, c2 on E, and such that u as well

Ti(u) = TiJ(u)nJ on <>sE [8]

are continuous. Here, n is the unit normal vector to <>sE and

[9]Tij(U) = Cij"q (OU,,/OXq

Latin indices run from 1 to n, and sum over the range of re-
peated indices is understood. The space D will be made by all
the couples u = (u, T) such that u and T are continuous functions

on ()~.(a) Potential Theory and Reduced Wave Equation.
LEMMA 1. Let J c D be a linear subspace of D. Assume fur-

FIG. 2. Illustration of region E for time-dependent problems.
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for the heat equation or, alternatively,

L.V* (~-~) dx =0 [23b]

for the wave equation. Then, integration by parts on space and
time (see, e.g., ref. 5) yields Eq. 22.

(c) Elastostatics and Reduced Equations of Elasticity. In
the present subsection the function spaces D and DE will be
taken as explained previously for this kind of application.

LEMMA 3. Let :I c D be a linear subspace of D. Assume
that:

(i) The couple u = (0,0) E :I

(ii) r uiTi(v)dx = r viTi(u)dx ¥u,v E:I [24]
Ji)3E Ji)3E

(iii) Given any (U,T(U)) E D, there is at least one

(u,T(u)) E:I such that u = U.

Then, for every u = (u,T(u)) E D, one has

Then, for every couple U = (u,ou/on) E D, one has

r u~dx = r v~dx ¥v E:I ~ u E:I. [16]
J <>fJE on J <>sE on

Proof: :I is a linear subspace of D fulfilling assumptions
(i)-(iii) of Lemma 1. To obtain (i), observe that the zero
function satisfies Eqs. 14. The existence of solution of the
boundary value problem 15, implies (iii). To prove assumption
(ii), Green's formula of integration by parts is applied on E; this
is the only point that requires a special treatment in order to
extend these results to unbounded regions. This can be achieved
by the introduction of suitable radiation conditions (7, 8).
Frequently, such conditions are implied by assumptions on the
asymptotic behavior at infinity, but this is not always the case.
Therefore, in what follows it will be assumed that the radiation
conditions to be considered are such that Green's formulas can
be applied to any couple of functions satisfying them.

COROLLARY 1. Let E in Theorem 2, be unbounded. Then,
if functions are required to satisfy a radiation condition in the
definition of :I and the boundary value problem, Theorem 2
remains valid.

Proof: This corollary is clear because Eq. 10 still holds.
(b) Heat and Wave Equations. It has already been ex-

plained how the region E and the spaces DE and D are chosen
for this kind of application. In addition, for any couple of
functions a, {J defined in the interval [O,T], we adopt the
notation

Proof: The proof is very similar to that of Lemma 1 and can
be obtained by considering the operator B:D D* given by

(Bu,v) = r ujTj(v)dx. [26]
J()aE

Corresponding to Theorem 2, one has
THEOREM 4. Let region E be bounded and :J c D be made

by the couples v = (v,T(v)) E D, which are the boundary oolues
for some v E DE, such that

or, alternatively, by

(O2U/Ot2) -(O2u/OXjOXJ, 0 on E, [21a]

u = 0 on olE; (ou/on) = 0 on o2E [21b]

u(x,O) = (ou/ot) (x,O) = 0 on Ex [21c]

and the substitution 18 is carried out everywhere, then The-
orem 2 and Corollary 1 remain valid.

Proof: This theorem follows from Lemma 2. The arguments
are similar to those used to prove Theorem 2; however, a special
argument is required to prove that functions u,v E .7 satisfy
the equation

(i}(Tjfv»fi}xJ + k2vj = 0 on E, [27a]

v = 0 on i}lE; T(v) = 0 on i}2E. [27b]

Assume, further, that for every continuous function U de-
fined on i}3E, the boundary valu!' problem

v = U on i}3E [28]

subjected to Eqs. 27 possesses at least one solution v E DE.
Then, for each couple u = (u,T(u» E D, one has

r ujTJv)dx = r vjTJu)dx ¥V E.7 ~ u E.7. [29]

Jo3R JO3R

The same results hold when region E is unbounded if, in
the definition of .7 and of the boundary value problem,
functions are required to satisfy a radiation condition.

Proof: It is very similar to those of Theorem 3 and Corollary
1; the details will be left out.

(d) Elastodynamics. The region E and the spaces D and DE
will be taken as explained previously for this kind of application.
In addition, the notation given in Eq. 17 will be used.

LEMMA 6. In applications to elastodynamics, Lemma 3
remains valid if the substitution

r ujTJv)dx r uj*TJv)dx [30]
J o3E J o3E.

is made for every couple U, v E D.
Proof: The proof is similar to that of Lemma 1 and can be

obtained by considering the operator B:D -D* given by

(Bu,v) = r u,*T,(v)dx. [31]
Jo3E

Corresponding to Theorem 4, one has
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Table 1.

a,l"~z r

.2
C

,/a3z

po(r,l/J)
Pna(r,I/J)*

wo(r,l/J)

Wna(r,l/J)

r-1
2nr-n-1T..(nq,)
-inr

r-nT ..(nq,)

Laplace equation
-(rlnr)-l
2nrn-lT a(nt/»t

1
rnT a(nt/»".-a2E a E3

' ~-+~~,)./
FIG. 3. Regions and auxiliary curves for the construction of bases

for connectivity conditions.

po(r,c/»
Pna(r,c/»

is a complete system for the connectivity condition :J of The.
orem 2. This system can be further restricted. Indeed, let r c
Z be a subregion of Z (Fig. 3) and write C = ()r -()lZ U ()~)

Define

THEOREM 5. If Eqs. 27 are replaced by
("<>ZUi/"<>tZ) -("<>(rij(u))/"<>xV = 0 on E, [32a]

U = 0 on "<>lE; T(u) = 0 on "<>zE, [32b]

u = T(u) = 0 when t = 0, x E Ex [32c]

and substitution 30 is carried out everywhere, then Theorem

4 remains valid.Proof: The only point that requires a special treatment is the

proof that

1sE.1
whenever n,v E '
(see, e.g., ref. 9)

1.

ui*Ti(v)dx = f vi*Ti(u)dx [33]
J<>3Es

.7 .This is obtained by integration by parts of

~_.!?-
()t2 ()Xj

[34]T(j(U»

Vi*~

.'Bc = troy E .'Bzly E Cj. [38]

Under very general conditions given in the next theorem, .'Bc

is also complete.
THEOREM 6. Assume
(a) The boundary value problem

«)2u/()Xi()XJ + k2u = 0 on f, [39a]

u=O onCU()lf; «)u/()n)=O on ()2f, [39b]

where ()If = ()f n ()lZ and()2f = ()f n ()2Z, has a unique

solution.(b) Any function u that satisfies Eq. 39a on Z and vanishes
identically on an open subregion of Z necessarily vanishes

identically on Z.
Then .'Bc, given by Eq. 38, is a complete system for the con-

nectivity condition 1.
Proof: Given u = (u,o%o) E D, define

1: { ()w ()U
}W(y) = U~-wy- dx fEZ. [40]

i)aE 00 00

In view of condition (iii), W(y) satisfies Eq. 39a and the
boundary conditions 39b, except possibly on C. However, if u

is such that the condition
1: ()w 1: 00 u~dx = wy-dx ¥y E C, [41]

i)aE ()n i)aE ()n

then W(y) vanishes identically on C and W is the unique so-

Method for obtaining bases of connectivity conditions

The method will be illustrated in connection with applications
to potential theory and the reduced wave equation. Keeping
the notation introduced in previous sections, let Z be a neigh-
boring region to E such that osE = oE n oZ (Fig. 3). Let:l c
D be defined as in Theorem 2 and assume there is available in
Z U E, a Green's function G(x,y) such that '

(i) G(x,y) = G(y,x) V-x,y E Z U E.
(ii) For every u = (u,ou/an) E D

r { u~ (x,y) -G(X,y)~ } dx = 0 V-y E Z [35]

Ji)S£ an an

if and only if u E :I.
(iii) For every fixed xo E osE, the Green function G(Xo,x)

satisfies Eqs. 14a and b on Z, OIZ and o~, respectively.
Define, for every y E Z, the function

wy(X) = G(x,y) x E E. [36]

Then, assumption (ii) is tantamount to saying that the set

13z = troy = (Wy,Owy/an) E Diy E Z\ [37]

~

E

Pnq(r,/J,IjI)

~RQ (r ,O,tpl

t n = 0,1,2,

x Ta(nl/l) XTa~nl/»

wo(r,l/I) Jo(kr) HO(l)(kr)
~a(r,~) In(kr)T a(nl/l) Hn(l)(kr)T a(nl/l)-

*a=: I ,1l,2;
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diation condition, it is (11):

.00tG(x,XQ) = -L ~nJn(kro)Hn(l)(kr) cos n(cf> -cf>o)
4n=o

lution of the boundary value problem [39]. Thus, W vanishes
identically in r. Hence, W vanishes identically on Z. This
shows, by condition (ii), that Eq. 41 implies u E :J. Thus, :Bc
as given by Eq. 38 is complete.

COROLLARY 2. Let the system of functions Pa(Y), a =
1,2, ..., be a basis for the continuous functions on C. For every
a, define

w,,(X) = Sc G(x,y)p,,(y)dy [42]

and W" = (w",()w,,/()n) E :I. Then,

:B = (w", a = 1,2, ...j [43]

is a complete system for the connectivity condition :I.
Proof: It follows immediately from the fact that

ScW(y)p,,(y)dY= i3E{u~-w,,~}dx, [44]

where W(y) is given by Eq. 40. This expression vanishes for
every a = 1,2. ..if and only if W(y) vanishes identically on C.
In this case u E :I by virtue of Theorem 6.

Under very general conditions the procedure of Corollary
2, yields a basis of :I, as will be seen in the applications given
in the next section.

Bases of connectivity conditions

Generally, when considering problems of connecting, the
complete system associated with different regions will also be
different. However, in most cases it is possible to develop
complete systems that are to a large extent independent of the
regions considered, as will be seen in the examples presented
in this section. This remarkable fact can be very useful in nu-
merical and other applications.

To illustrate the method, Corollary 2 has been applied to
Laplace's and the reduced wave equations in two and three
dimensions. Two alternative possibilities for the region E are
considered, one for which E is a bounded region (Fig. 4 left)
and the other one for which E is the exterior of a bounded re-
gion (Fig. 4 right). The curve C is taken as a circle (or a spherJ
in three-dimensional applications) with center in the origin. The
results are given in Tables 1 and 2. In all these applications ()lE
= ()~ are void; hence, ()E = ()sE.

A symmetric Green's function for Laplace's equation in two
dimensions is (10):

for r > To. When r < TO, the variables rand ro have to be in-

terchanged. Here ~o = 2 and ~n = 1, n = 1,2, For the three-dimensional Laplace's equation, the symmetric

Green function used was (10):

00 1 1 r'
G(x,Xij) = '~n~' ~,I1IY;n(8o,cf>0)Y'n(8,cf» [47]

for r > To. Here, again, the variables with a zero subindex must

be interchanged with those without subindex when r < roo

A symmetric Green's function for the three-dimensional

reduced wave equation which satisfies Sommerfeld's outgoing

radiation condition is (10):

00 ,
G(x,Xij) = ik L L i/(kro)h,(I)(kr)Y;n(8o,cf>0)Y'n (8, cf» [48]

/=0 n=-/

for r > ro and a corresponding expression for the case r < roo

In Eqs. 46-48, In(x) and Hn (1)(x) are the Bessel and Hankel

functions of the first class (10-11), of order n; Y/n(8,cf» are

normalized spherical harmonics defined by

[ 21 + 1 (1- n)' ] 1/2 Y/n(8,cf» = 4;-V-+-;jI pr(cos 8)ein~. [49]

Here pr(x) is the associated Legendre function, and

Y;n(8,cf» = (-1)nY/,-n(8,cf», [SO]

and i/(x) and h/(I)(x) are the spherical Bessel and Hankel

functions of the first class (10), of order I. (r,cf» and (r,8,cf» are

polar and spherical coordinates, respectively, In each casecf> is

the polar angle. :",

When E U Z is a half-space who~ boundary is the plane cf>

= 0, 11", bases can be constructed in a similar fashion. Note,

however, that they can be easily deduced from the tables. For

instance, if a Dirichlet (Neumann) condition is satisfied on cf>

= 0,11", the Green fuBction for this problem is twice the odd

(even) part of the free space. Green functions and the integra-

tion around C, which now is a semicircle (hemisphere for the

three-dimensional case), is half the other one. Thus, the corre-

sponding bases are the odd (even) functions given in the table.

Notice, however, that the region E must be entirely contained

in the half-space.
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for r > roo Symmetry condition for the Green function implies
that rand ro have to be interchanged when r < roo If E is a
bounded region, the circle C must enclose E (Fig. 4 left). When
E is the exterior of a bounded region with the origin of the
coordinate system in its interior, the circle C must be contained
in the complement of E (Fig. 4 right). To derive the results
given in Table 1 for Laplace's equations, it is only necessary to
choose the basis Pn(r,I/», n = 0,1,2, ..., for the continuous
functions defined on the circle C of radius r in Corollary 2 (see
Table 2). The bases Wn(r,I/», n = 1,2, ..., so derived, are given
in the corresponding line in Table 1.

The other results in Tables 1 and 2 were obtained by treating
similarly suitable Green's functions. For the two-dimensional
reduced wave equation satisfying Sommerfeld's outgoing ra-


