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A theory of connectivity recently developed by the author is applied to
construct a systematic formulation of boundary element methods. The
concept of complete connectivity condition is shown to supply an
alternative to boundary integral equations. The general problem of
connecting solutions defined in neighbouring regions Rand E is shown
to lead to complete connectivity conditions which permit the formulation
of three kinds of variational principles; they involve, respectively, RuE,
R and the common boundary between Rand E, only.

Introduction
In a very general and loose sense, the purpose of boundary
element methods is to construct solutions to specific
problems by choosing properly the boundary values of
general solutions which are known in subregions. Often the
general solutions are given by means of Green's functions'
and in such cases, boundary element formulations are
established starting from boundary integral equations.l

The general problem of connecting solutions defined in
neighbouring regions (Figure 1) has been formulated
recently by the author2-S in an abstract manner. For such
general problem variational principles have been obtained;
for diffraction problems posed in unbounded regions such
principles lead to functionals involving a bounded region
only.6.2 The problem of connecting is characterized by the
set of functions that satisfy homogeneous conditions on
E and by the set of functions that satisfy homogeneous
conditions on R. Each of these sets separately constitutes
what in this theory is called 'a connectivity condition' and
it is essential to establish necessary and sufficient con-
ditions for a function to be a member of such connectivity
conditions. One such necessary and sufficient condition
is supplied by a suitable boundary integral equation.
However, the theory of connectivity shows that in most
cases connectivity conditions are complete3-S; i.e. there
is a bilinear form with the property that a function satisfies
such boundary integral equation if and only if the bilinear
form commutes when evaluated at the function and every
element of the connectivity condition. Specially relevant
are denumerable bases of connectivity conditions; i.e.

denumerable subsets of connectivity conditions with the
property that a function belongs to the connectivity con-
dition, if and only if the bilineaJ form commutes when
evaluated at the function and every one of the elements
of the basis. In this paper the general theory is explained
briefly and it is then applied to Laplace, reduced wave,
wave and heat equations. General applications to static, -
quasi-static and dynamic elasticity are also given. A pro-
cedures for constructing bases that are independent of the
regions considered is illustrated by exhibiting such bases
for Laplace and reduced wave equations. The possibility
of constructing bases applicable to a general class of
regions is remarkable and yields important numerical and
analytical advantages. The results presented here are
related to what in other fields 7 is called 'null field
approach' but the theory of connectivity described here
allows greater flexibility and generality. Indeed, there are
many possible ways of constructing bases, including the
use of boundary integral equations as one such possibility.
On the other hand, to our knowledge this is the first time
that such methods have been extended to time dependent
problems.

In the last part of the paper the theory of connectivity
is used to develop the basis for a systematic formulation
of boundary element methods. It is shown that for linear
problems associated with formally symmetric operators
one is always led to consider two complete connectivity
conditions.!' (internally generated motions) and t'
(externally generated motions). Using them a systematic
formulation is given which includes general variational
principles of three types: principles for solutions on RuE
with prescribed jumps which include as particular cases
those reported by Prager8 and Nemat-Nasser9 for elasticity
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A linear subspace J CD is said to be a connectivity
condition for A if:

(i) NCJ (2)
(ii) (Au, v> = 0 Vu, vE.f (3)

The connectivity condition is said to be complete when:

(iii) For any w ED, one has:

(Aw, v> = 0 VvEJ=>wE J

The operator A is necessarily antisymmetric. Given such
A, there are many operators for which A = P -P* because
one can always add any symmetric operator S to obtain
P + S which also has that property. In applications we will
be specially interested in a class of operators that will be
called boundary operators and denoted by B, for which
A=B-B*.

Given a complete connectivity condition for JCD, a
subset B c.I' is said to be a complete system for J if, for
every u ED, one has:

(Au, w> = 0 V wEB =>- uEJ

B is a basis of J if, in addition, every finite set of func-
tionals {AwalwaEB, a = 1,... ,N} is linearly independent.

In this case equation (5) can be replaced by:

(Au,wa>=OVa=1,2,...,=>uEJ "

'><

R E

~

/

""'-~

-~- (4)
aiR a2E

,O2R

81E
b

L..L-

/33£

ER

(5)
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'aiR 32E

(6)

Figure 1 Regions considered in application. (al. time independent
problems; (bl, time dependent problems

principles involving the solution on R only, which are
similar to those reported by Mei and Chen6 for the linear-
ized theory of free surface flows; and a class of principles
which to our knowledge had not been reported previously
which only involve values on the common boundary of
the two regions (a3R = a3E in Figure 1).

The paper is based on a general formulation of prob-
lemslO.4 using functional valued operators developed by
the author. II. 12 This approach simplifies and permits

greater flexibility in the treatment of continuum mechanics
and its partial differential equations because it is applicable
in any linear space, not necessarily normed, or with an
inner product, or complete. As an example, heat and wave
equations or those of dynamic elasticity do not satisfy the
conventional notion of formal symmetry, however, they
can be associated with formally symmetric operators in
the sense introduced by the author3 and it is due to this
fact that the theory here presented is applicable to those
equations.

Examples of complete connectivity conditions

When diffraction problems, boundary element methods
and many other applications are considered, one looks for
functions which satisfy a set of conditions, such as partial
differential equations on a regi(i)n R. These functions are
further restricted by the condition that they can be
extended smoothly into solutions on a neighbouring region
E, of some other partial differential equations; such con-
dition imposes restrictions on the values which are admis-
sibles on the common boundary °3E betweenR andE.
Such restrictions are frequently characterized by means
of boundary integral equations.l

An alternative more flexible procedure is supplied by
the theory of connectivity developed recently by the
author.2,3,s In this section the applicability of the method
is illustrated by giving examples of complete connectivity
conditions; these include: potential theory, reduced wave,
heat and wave equations and elasticity (statical, reduced
equation and dynamical).

In applications to time independent problems, E will be
a region of the n-dimensional Euclidean space (Figure 1a)
with boundary oE = olE u °2E u o3E, where oQE(a = 1,2,1)
are mutually disjoint sets and °3E = °3R is that part of
the boundary of E which is shared with R. For applications
to time-dependent problems (Figure 1 b ), a region that
satisfies the same conditions as region E above will be
called Ex while the region E will be taken as ExX[O, T];
therefore, the common part of E with R will be:

°3E = o3ExX[O, T]

as shown in Figure 1 b. The unit normal vector n will be
taken pointing outwards from the regions considered and
outwards from R in the common part o3R of the boundary.

For applications to potential theory, reduced wave,
heat and wave equations, an auxiliary linear space DE will
be considered, and will be taken to be made of functions u
(real or, alternatively, complex valued), which are c2 in E

Preliminary results
For operatorslO,2,3,ll,12 P:D-+ D* defined on a linear space
D and with values in the space D* of all the linear func-
tionals defined onD, letNCD be the null set of A, i.e.:

N={uEDIAu = O} (I)

where A = P -p* and p* is th~ adjoint operator of P.
At this stage P will not be assumed to be formally sym-
metric.s

152 Appl. Math. Modelling, 1979, Vol 3, April
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such that u and au/an are continuous on °3E. In applica-
tions to elasticity, the elastic tensor Cjjpq, defined on E,
will be assumed to satisfy the usual symmetry conditions
and to be strongly elliptic.2,3 Functions:

u = (Ul, U2, ..., un) EDE

will be vector valued and C2 on E and such that u as well as:

Tj(U) = Tjfu)nj on 03E (7)

are continuous. Here, n is the unit normal vector to 03E
and:

aup
(8)Tij(U) = CijPq"aXq

Latin indices run from I to n and sum over the range of
repeated indices is understood.

F or illustration purposes the regions R and E shown in
Figure 1 were chosen bounded; however, the results pre-
sented in this paper are not restricted to bounded regions.s
When E is unbounded, it is only necessary that the func-
tions of DE satisfy suitable radiation conditions.

The linear space D is arbitrary, except for the fact that
certain boundary operators are well defmed. For potential
theory, reduced wave, heat and wave equations this
requires that with every element u ED there is defmed a
pair of functions u, au/an on a3R = a3E. When elasticity is
considered, it is required that associated with every u ED
there is defmed a pair of vector valued functions u, T(u)
on a3R = a3E.

P,nCcos(})ein</>

considered and a method to construct them has been given
by Herrera and Sabina.S This remarkable fact is very
useful in applications.

Examples of such bases are given in Table 1. Two
alternative possibilities for the region E are considered,
one for which E is a bounded region (Figure 2b) and the
other one for which E is the exterior of a bounded region
(Figure 2a). Two- and three-dimensional problems are
included. In all these applications 31E and 32E are void;
hence 3E = 33E. When E is bounded bases for uplace

equation are harmonic polynomials. In a similar Imanner
bases for problems formulated in a half-space have been
obtaineds; they are the odd or even functions given in
Table 1 depending on whether a Dirichlet or a Neuman
zero condition is satisfied on the free boundary of the
half-space.

In Table 1 (r, 1/» and (r, 8, 1/» are polar and spherical
coordinates, respectively. In each case I/> is the polar angle.
When E is unbounded, the coordinate origin is assumed
to be in the interior of R. The Bessel and Hankel functions
of the first class 13,14 and order n are denoted by J n (X) and

H~l)(X), respectively, while Ytn(8,1/» are normalized
spherical harmonics defined by:

[21 + 1 (l-n)!,1/2
Yln(8,1/» = 41T (1 + ~5!

Here pF(x) is the associated Legendre function:

Yt:(8,1/»= (-1)nYl,-n(8,1/» (14)

andi,(x) and h}l)(x) are the spherical Bessel and Hankel
function of the first class13 and order 1.Potential theory and reduced wave equation

In applications to potential theory and the reduced
wave equation let.F CD be made by functions v ED for
which there is at least a function VE EDE, such that:

a2VE +k2VE = 0 onE (9a)-

OXjOXj

Heat and wave equations ":!
In applications to heat equation, let ,.FCD be made by

functions vED for which there is at least a function
VE EDE, such that:

02VE OVE
---=0 onE (15a)
OXjOXj otaVE

VE=O ona1E; -=0 ona2E
an (9b)

OVE

on
VE = 0 on alE; =0 on °2E 15b)

Ind:

OVE OV
VE = V, -= -; on o3R = o3E (10)

on on

If k* 0, equation (9a) is the reduced wave equation and
Laplace equation if k = O. When E is unbounded the func-

tions VE are required in addition to satisfy a radiation
condition.s

The set of functions oF is characterized by the fact that
uEoF, if and only if:r OV F

u a;;dx = J
au

v-dx,
01 an

o,R {\,,~

If{wa ED;a = 1,2,...} is a denumerable basis ofJ, then
(11) can be replaced by:

"aw 1"-a
:- dx= I

VVE.f (1

,..

ba
/

RE
_BE

)--
dU

w -dx Va=a an ' ,2, (12)

u-:-

Ron EJ
33R ).--BE

j
33R

Generally, when considering problems of connecting,
bases associated with different regions are also different.
However, in most cases it is possible to develop bases
which are to a large extent independent of the regions

' '"
Figure 2 Regions for which bases of Table 1 are applicable
(aI, E unbounded; (bl, E bounded
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In both cases, the set of functions .-' is characterized by
the fact that u E.f, if and only if:

(aV (aU
v*-dx, VvE.F

an

when {w~ E.I}(a = 1,2, ) is a denumerable basis for J

J u *a;;-dX= J

a,Ex i),Ex

This condition can be replaced by:
r ;-- -~dx= ,.

(16)

au

an
dx, Va = 1,2,U'F-=-- Wa*

J an ,
a3Ex a3Ex (17)

when {WaED;a = 1,2,...} is a denumerable basis of'.
In these equations the following notation has been adopted:

T
: ,. ov

T)- (t)dt
on

(18)

Elastodynamics
In this case equations (19) are supplemented with:

VE = aVE/at = 0, onEx, t=O

and equation (19a) replaced by:

a a2VEj
-(To{VE»--=O onEax; II at2

At the same time the substitution:

f UjTj(V)dx-f Uj * Tj(v)dx

a,E a,Ex

has to be carried out everywhere in equations (20) and
(21). Here, the notation given in equation (18) is used.

Problem of connecting
Elastostatics and reduced equations of elasticity

For this kind of application the elements v E.F C D
are taken so that there is at least a function VE EDE
satisfying:

a 2
(Ti;(VE)) + k VE'i = 0 onE (19a)ox.J

VE = 0 on olE; T(VE) = 0 on o2E

with the property that:

VE = v, T(VE) = T(v) on O3E (19c)

The class .F of functions so defined, is characterized bythe 
fact that u E.', if and only if;

,.

(19b)

UjTj(v)dx = VjTj(u}dx, V vE., (20)
w

a.E a.EThis 

condition can be replaced by:

The concept of formal symmetry was introduced previ-
ously3 for functional valued operatorsP:D~D*. Such an
operator is said to be formally symmetric when:

(Pu,v) = 0 V vEN~Pu=O (25)

The problem of connecting for formally symmetric opera-
tors is defmed and discussed in this section. It deals with
constructing solutions in a region such asR uE of Figure 1,
by connecting those corresponding to individual subregions
such as R and E. The theory has been, however, formulated
in an abstract manner and can be applied in more general
situations, as long as its postulates are satisfied.

LetP:D~D* be a formallY'Symmetric operator and
D, DE a decomposition of /), so that every it ED can be
written in a unique manner as it = u + UE, with u ED and

uE EDE. It will be assumed that this decomposition is
such that:

(Pu, v) = (Pu, v) + (PUE, VE) (26)UjTiCwa)dx = waiTAu)dx, Va =f
33E (21)

f
o,E

Table 1 Bases for Laplace and reduced wave equations

for every fl, vED. This permits defmingP :D-*D* and
PE :D-*D* by:

(Pfl, v> = (Pu, v>; (PEfl, v> = (PUE, VB>

Bounded E Unbounded E

wo(r,t/»

Wna(r.t/»*

1

rnTa(nCPlt

-Inr

r-nT a In 1/»

They satisfy:

P=P+PE (28)

In view of equation (27) they can be thought ofasP:D-+D*

andPE:DE-+D!.
Assume S CD has the following properties:

(a) S is a complete connectivity condition forP
(b) For every uED, 3UEEDE~ u + UEES
(c) For every UEEDE, 3uED~ u+uEES

*a=1.2;n=1,2,...
sin 1t Ta(x) =-x ita =
cas 2

:j:n=O,1,2,...;-n~q~n

Then S will be said to be a smoothness relation or condition
Elements uED and UE EDE are said to be smooth exten-
sions of each other when U + UE ES. In what follows it will
be assumed that S is a smoothness relation.

Given any u = (u, UE)ED, the following notation will

be adopted:

u~v~u-vES (29a)

[uJ=u'-u, lul=!(u'+u) (29b)
[U]E = UE -UE, lu IE = !(UE + UE) (29c)

154 Appl. Math. Modelling, 1979, Vol 3, April
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and such that the following jump conditions:

UE -UR = WR -WE on a3R = a3E

aUE aUR awE awR
kE--kR -=kE, --kR-an an J an an on a3R

are satisfied. Here kE and kR are two constants; k will be
the function which is identical to kE on E and to kR onR.

To deal with this problem it is con~enient to take the
linear spaces D and DE as sets of functions which are c2 on
R and E respectively. In addition the functions of D to-
gether with their flfst-order derivatives, possess extensions
which are continuous on aIR, a2R and a3R, separately;
similar conditions are satisfied by members of DE that can
be obtained replacing Rand E. The operator P of equation
(27) is detmed by:

ov

an
(Pit, v) = kR {ol

R

au
}v-dx

an
dx-vv2u dx + u

J
aIR

f
°2R

The definition of PH is obtained replacing R by E every.
where in this equation.

In this case,

(38)
The set c!I' of smooth functions can be shown to constitute
a smoothness relation.

With these definitions, the associated problem of con-
necting is the same as the one defined by equations (34)
and (35). R-solutions and boundary solutions are restrictions
of solutions of the problem of connecting to region Rand
to the boundary a3R = a3E, respectively. The three general

variational principles given previously are applicable to these
problems. Equations (32) yield the following functionals.

For the problem of connecting:

where u'ED and uk EDE are smooth extensions of
uE ED E and u ED, respectively. Three connectivity con-
ditions will be defmed:

..11= {UEEDE I 3VE~UEtPEVE=0} (30a)

~= {uEDI 3v~ut Pv = O} (30b)

..11"= j + tf (30c)

They are connectivity conditions for AE,A and A, respec-
tively. Here,AE =PE -Pt:, while A =P -P*.

Given UED, UEEDE and WED, an element
u = (u, UE)ED is said to be a solution of the problem

of connecting (with prescribed jumps), if:

Pu =PU,PEUE =PEUE, u~ W (31)

An element u ED is said to be an R -solution of the problem
of connecting if there exists a solution Uo = (uo, UEO) of
the problem of connecting such that U = uo. Finally, u ED
is said to be a boundary solution if there is a solution
Uo = (uo, UEO) of the problem of connecting such that

u~uo and UE~UEO.
Defme for every u ED , the functionals:

XCiI) = (p(u -2(1), u} + (A([u] -2 [W]), lul} (32a)

XR(u) = (P(u -2U), u} + UU', u'}

+(A([u]-2[W]),lul) (32b)

XB(u)=(A[u+O-2W], fill}+UIUI, [u]} (32c)

It can be shown3 that each one of the functionals (32) is
well defined in the sense that its value is independent of the
particular smooth extension chosen. Then the following
three general variational principles hold for corresponding
problems of connecting.

(a) u ED is a solution of the problem of connecting if and
only if X'(u) = O. Here,X' is the derivative of X.

(b) u ED is an R -solution of the problem of connecting if
and only if oXR (u) = 0 for some u = (u, UE), where the
variation oXR is taken on the subspace D +J CD. ,
(c) Let flED be such that u~ W, then u is a boundary
solution of the problem of connecting if and only if
oXB(u) = 0 where the variation is taken on the subspace
..II + tfcD.

For numerical applications the explicit form of the
latter variation is relevant. When u -W, from (c) it follows
that a necessary and sufficient condition for u to be a
boundary solution of the problem of connecting is that:.

2(Alu I, v'} = -(AE([W]E + 2UE), VE}, V vEE.I

(33a)
2Ulul, v} = (A(2U + [W]), v}, V vEtf (33b)

Here v' ED is any continuous extension of VE. Equations
(33) can also be deduced from the fact that UE -U E E.f
while U -UE tf. If WEa E J , Wa E Q!/', Q = 1,2, ...are

denumer~ble bases of the connectivity conditions .I and 4' ,
respectively, then equations (33) can be replaced by the
denumerable set of equations obtained substituting VE by
WEa in equation (33a), and v and wa in equation (33b).

X(u) =

An illustrative example
Given functions U, W, continuous onR and onE

separately (Figure la), consider the problem of finding a
function u on R and E, such that:

V 2u = 2UVonR and onE (34a)

Appl. Math. Modelling, 1979, Vol 3, April 155
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-f {WEa[k ~
a3R

~ } dX
on

For theR-solution: ] -kE[W]
au

2U) -dx
an

(u Va = 1,2,... (43a)

and:

a3Rf { aUE aUE
}+kE UE --UE -dx

an an OWa

an

au
{Wa an

-u dx=2kR

~)]
i}3R

{lul[k(~-2
+

dx,+f
a3R

Va= 1,2, ...(43b)

This is a denumerable set of conditions which is suitable for
boundary element formulations. For two- and three-
dimensional problems, the bases given in Table 1 can be
used.

(40)

For the boundary solution, when u satisfies the jump con-
ditions (35) from the start:

~

{ [ a(u+U-2W lul k

3]R

an

Here 

as in what follows I I and ( ] stand for average andjumps 
across o3R; thus, for example:

lul=(UE+u)/2; (U]=UE-U ono3R (42)

Assume {WEQ} and {WQ} are bases for the connectivity con-
ditions.lf and tS' , respectively, then equations (33) imply
that the average values I U I and I k ou/on I of any boundary
solution U of the problem of connecting are characterized

by:
auI aWEa }--kElul- dx

an an
2

J
33R

=2kE
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Notes

the diagrams are reduced to t of their drawn size. The
maximum depth at drawn size is 500 mm. Since the
drawings will be reduced, lines must be proportionally
thicker and symbols for points proportionally larger
than required in the printed version. Two copies of all
drawings should be supplied in addition to the originals
and the appropriate lettering should be printed in ink
on these copies.

Authors are asked to use a selection of the following
symbols on graphs, since these are readily available to
the printer; +, x, 0, 0,1:::0, '\7, .,8, A, 'Y. Glossy
photographs should be supplied unmounted and should
be labelled on the back in soft pencil with the author's
names and a figure number. Two copies of photographs
for the referees should also be supplied. A scale should
always be marked on photographs or included in the
figure caption. .

Applied Mathematical M ode/ling welcomes contributions
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