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ABSTRACT

The purpose of this paper is to present & method, based on the Theory
of Comnectivity recently developed, to solve numerically the problem of
scattering of seismic waves by bounded obstacles of arbitrary shape in an
infinite domain, such as a canyon in a half-space. This method reduces
the dimension of the problem by one but avoids the introduction of singular
integral equations. The results obtained are compared with some known ex-
act solutions for SH wave motion, producing very good agreement. Results .
for an irregular shaped obstacle are also given. It is observed that, in
some cases of a trench with vertical walls, local amplification factors can
significantly exceed 100%.

INTRODUCTION

In earthquake engineering and strong-motion seismology, the surface mo
tion at a given site due to incoming seismic waves is of interest. For
rough topography this problem may be approached as one of scattering and
diffraction of elastic waves by departures from flatness. Owing to its
mathematical complexity, it has not been completely solved. There area few
known exact solutions (26, 28). Also some approximate solutions have been
obtained by regular (9, 16) and singular perturbations (18, 19). 1In these
the wavelength is taken to be large compared with a characteristic linear
dimension of the topography, which is not the case in the presenit study.

Thus numerical methods are sought for intermediate values of the wave-
length. Finite difference (3, 4) and finite element methods (24) have been
used with some success. However, when applied to unbounded regions, they
use a bounded domain involving "artificial"™ boundaries that contaminate the
solution. The effect may be reduced by considering a larger domain, but
this may produce computer storage difficulties. On the other hand, the
problem of eliminating the errors introduced by artificial boundaries has
only been partially solved (23).

Alternatively, boundary integral equations have been employed for this
problem (27). The integral equation has a singularity which must be han~
dled with care. As other boundary methods, this procedure reduces the di-
mension of the space, but the solution is non-existent or non-unique at cer
tain frequencies (8). In another representation (21), this difficulty is
avoided but the equation is still singular.
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Other methods have been used: an accustic approximation valid for satu
rated soils (22); the discrete wave-number representation of Aki, Larner and
Bouchon (1, 5, 6, 7); a collocation method (20). This last one produces an
over-determined system of equations which is solved in terms of a general-
ized matrix inverse, but it also suffers from a lack of uniqueness at cer-
tain frequencies.

In this paper the solution of the problem of scattering of a plane har
monic SH wave incident upon a bounded reentrant rough topography in an
otherwise flat, traction-free surface, is sought. In the method of solu-
tion, the scattered field is represented as a linear combination of known
solutions of the wave equation. The coefficients are chosen to minimize
the mean-square error in the boundary condition. The development of this
approach has been guided by a theory of connectivity recently developed (10,
11}, which allows a systematic formulation of boundary methods (12) appli-
cable to many other problems and which leads naturally to the complete
system of functions used here for the half-space (13). However, the corre-
sponding system of functions for problems formulated in the whole space has
been used extensively in the null-field method of acoustics and electromag-
netism (2). Minimization of the mean-square error on the boundary is a
standard technique (15), whose implications have not been fully realized
until recently. In (17), it is shown that when the mean-square error is
minimized on the boundary, the résulting representation converges uni-
formly to the solution of the problem provided a complete set of functions
is chosen, as is the case in the present work.

The procedure here presented reduces the dimension by one without in-
troducing singular integral equations. The theory of connectivity (10, 11,
13) also simplifies the treatment of the problem of scattéring by bounded
inhomcgeneities such as an alluvial valley, as will be shown in another
paper.

STATEMENT OF THE PROBLEM

Consider a two-dimensional half-space, y>0 (as in Fig. 1), comsisting
of
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Figure 1. Illustrative topography.

two parts: an unbounded region E enclosing a bounded region R which contains



the origin of coordinates 0. Let the boundary of E be 9E and the common
boundary between R and E be S. The surface S is assumed smooth in the sense
of having continuously turning normal vector fi. The unbounded region E is
filled with a linear elastic, homogeneous, isotropic medium of density p
and rigidity u; shear wave velocity is Ba(p/u)llz. On the other hand, the
bounded region R, having a characteristic horizontal linear dimension 2a,
is empty. The surface 3E is traction-free. ‘

A state of antiplane shear deformation and harmonic motions in time is
considered, so that the only non-zero component of the displacement is
w = w(x,y)exp(iwt) in the z (out-of-plane) direction where w is the circular
frequency. Consider a plane harmonic SH wave wi of unit amplitude incident
upon R at an angle ¢ measured with respect to the x-axis (Fig. 1)

W e expl ik(~x cos ¢ + y sin ¢)] [1]

with k=0/B. For convenience the factor exp(iwt) is omitted here and hence-
forth.

In the absence of the scattering region R, i.e. if the surface is flat,
a reflected plane harmonic SH wave

wo= expl ~ik(x cos ¢ + y sin ¢)] T {2
arises, seo that a total field wOmwi4wI ig produced in y>0.

In the presence of R, the scattered wave w produced by R is sought,
such that the total field wt may be written as '

wt = wo +w in E . [3]

Thus the scattered field satisfies the following boundary value prob-
lem °

VZw+k®w=0 inE . 2w, _ O on JE , [ 4)
n on

and w satisfies Sommerfeld's outward radiation condition at infinity, where
v? = 3%/5x* + 3%/3y? is the Laplacian operator in two dimensions and 3/9n
is the derivative in the direction of the outward unit normal fi to 3E. It
may be observed that the right-hand side of Eq. [4b] is, in general, non~
zero only on S, i.e. the common boundary between R and E. :

Once w is found, the total field wt can be determined. 7in strong-
motion seismology it is of interest to find the surface field i.e. wt on

9E, and in particular, on S and close to it. A method for doing this is
described here.

METHOD OF SOLUTION

Consider the complete system of cylindrical wave functions derived in
a previous paper (13):

v = H(l)(kr) cos pd , p=0,1,2,... [5]
(1) P P

where Hp (2) is Hankel's function of the first kind of order p and (r,8)
are the polar coordinates of the point (x,y). Note that each v, is a solu~
tion of Eq. | 4a)}, fulfills ovp/3n = 0 on y = 0, and satisfies a Sommerfeld
outgoing radiation condition. -

Let the N-th approximation to w be
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WN(I’,B) = I ap Vp(r:e) ’ [6]
, p=0 N

where the superindex N on the complex coefficients ap has been introduced,
to make explicit their dependence on the order of the approximation. In
the work here reported, these coefficients were determined by minimizing
the mean-square error on the boundary given as
wo BWN ‘
é 3;-'+ S ds . [ 7}

By a straightforward derivation, this procedure yields an (N+1)x(N+1)
system of linear algebraic equations

Ba = ¢ , L8]
where the elements of the matrix B and the vector ¢ are
av_ v dv_ dwo

bog ” é 552-55& ds c, = -é 552-§;~ ds . {9}

The bar indicates a complex conjugate. The matrix Bﬂ[bpq] is Hermitian and
positive definite; a numerically advantageous fact.

Since it is known that the set of functions {3vp/dn} is complete with
respect to all functions that are square-integrable on S, dwy/9n converges
uniformly in S to 9w/dn. A proof in a very similar case is given in (17).
Furthermore, wy(r,0) converges uniformly in E to the solution w of Eqs. [4)

Henﬁe, for given N, the system of Eq. [8] is solved for the coeffi-
cients ay, and finally Eq. [ 6] will produce the scattered field at any de-
sired point in E, or, in particular on 9JE.

It is worthwhile observing that when S is a semicircle of radius a,
the functions Hz (kr) and their derivatives are constant on S, and the set
of basis functions {vy,} or {9v,/9n} is orthogonal on S in the sense that
the matrix B is diagonal. The coefficients all are then independent of N,
and Eq. [ 6] representssimply N+l terms of the trigonometric Fourier series
for w at any fixed value of r.

Since the displacement w is a complex .function, it is necessary to
calculate, as functions of the normalized abscissa x/a, its modulus and its
phase ) y -1
fw| = [(Re )2 + (Im w)?] '? |, ph(w) = tan (Im w/Re w). [10]

The latter 1s arbitrarily divided by a normalizing factor 27, mainly to
facilitate comparison with other known solutions. In addition, the appro-
priate value of tan~! is chosen to make ph(w) a continuous function, and a
constant is subtracted to make its value zero at x/a = 0.

To deal with incident waves of different frequencies for fixed topo-
graphy, a normalized frequency (or wave number) is introduced n = wa/nmg =
ka/Tw.

NUMERLCAL CONSIDERATIONS
While evaluation of Eq. [ 7] would provide 2 criterion for the accuracy

achieved, this has not so far been done. The simpler process of repeating
the method for different values of N has been used: it is concluded that



gufficient accuracy has been obtained when two solutions differ on S by
less than the required error bound.

In addition to the value of N, it is necessary to fix some 1ntegrat10n
rule for the evaluation of Egqs. [9]. In view of the factor cos pd in v
there are integrands in Eq. [9a] with up to N complete oscillations on
Numerical experiments have given very poor results when the integrationrule
used fewer than 2N points, confirming a result from (29), reported in (17).
Further, by varying the distribution of points, unsatisfactory results have
been obtained with fewer than two integration points in each cycle of the
factor cos?(NB) in byy. This suggests the use of € as the most suitable
parameter in terms of which to write the equation of the curve S. A com-
pound trapezoidal rule, with equal intervals in 8, clearly showed conver-
gence to the correct values of al as the number of points increased above
2N. However, to obtain values og ap with 1% accuracy, as many as 10N points
were needed, using the trapezoidal rule with equal intervals in 6. Never-
theless, the same precision is attainable with fewer points using integra-
tion rules of higher order, provided the curve S, r = r(6), is sufficiently
smooth. In particular, with a compound 9 point Lobatto rule - coefficients
from (25) ~ approximately 3N points were sufficient. A further increase in
order did not appear productive, presumably because with increasing irre-
gularity of the distribution of integration p01nts more than 3N points are
required to maintain two in each cycle for cos 2(n0).

Having evaluated Eqs. [9] , it remains to solve Eq. [8]. Since the
matrix B is Hermitian and positive definite, an LU factorization without
row interchanges should be possible,all the pivots being positive if round-
ing errors do not accumulate seriously. Further, it is possible to choose
a Cholesky type factorization, U = L*, the asterisk indicating the trans-
posed complex conjugate, or to factorize B in the fwrm LDL*, where L is
lower triangular with a unit diagonal, and D is rea. diagonal. This last
form has in fact been used. )

Probably the most igstly part of the computat. on is the calculation of
the Hankel functlons (kr). These have been evalc,ated using Bessel func
tion routines from the IBM Scientific Subroutine Package (14), slightly mod1
fied so as to provide values simultaneously for p =0, 1, ..., N.

It should be noted that the matrix B does not depend upon the angle of
incidence ¢. Thus a considerable economy of computation is achieved if
gseveral angles of incidence are analysed simultaneously for a given geome-
try and wave number k.

RESULTS

In order to assess the method, a computer program using it has been
applied to two cases with known exact solutions: semicylindrical (26) and
semielliptical (28) canyons. '

The solution for a semicylindrical canyon is given as a Fourier series
with coefficients involving Bessel functions (26). The series was reevalu-
ated numerically in the interval |x/a|<3 for n = 0.25 (0.25) 2.0 and angles
of incidence ¢ = 0° (30) 90°. Using the same number of terms for both me-
thods (i.e.N = 19, 26, 33, 36, 38, 41, 43, 45 respectively), the modulus

and phase of the désplacement coincided in all the figures printed - a
difference of less than 1076, Esgentially the same precision could be



achieved with fewer terms

For semielliptical canyons, the solution can be derived as a series
involving Mathieu functions and the results are given in (28) as graphs of
displacement amplitude and phase against normalized distance x/a from -3
to 3, with four angles of incidence 0°, 30°, 60°, 90°. Using the method
of this article, semielliptical canyons of aspect ratio b = 0.7 have been
analysed. (b = ratio of minor axis to major axis. For each value of b,
there is both a shallow and a deep canyon). In the shallow case, using N =
22, 32, 36, 40 for n = 0.5, 1.0, 1.5, 2.0 respectively, the differences
with (28) were in general less than 0.05 ~ 2.5% at |x/a| =0, 1, 2, 3,
which is as good as the precision with which it is possible to read the
graphs in (28). For n = 1.5, 2.0 no results were available for lx/a[ = 3,
For n = 2.0, the differences were rather higher, rising as high as 0.25 at
|xfa] = 2, ¢ = 90°. Similar results were obtained for the deep case.

Using the same values of N for n/b = 0.5, 1.0, 1.5, 2.0, differences were
in general less than 0.05, at !x/é] =0, 1, 2, 3. For n/b = 2.0 no results
were available for |x/a] = 3, but the differences rose as high as 0.3l at
[x/a] = 2, ¢ = 0°.

However, by repeating the same cases with smaller values of N, success
ful convergence towards the solution was clearly observed. Estimated
errors for the shallow canyon were less than 0.005 at ‘x/a! = 0, 1, and
0.0005 at |x/a] = 2,3 (where results were available). Results for the deep
canyon were even better. The discrepancies with (28) for the larger values
of n might be due to the slow convergence of that series solution for
ix/al'3 2 and those values of 1n. The authors report than more terms of the
series are needed when 1 and |x/a] increase, and the results given here
suggest that they did not take sufficiently many in the cases indicated.

It may be concluded that the method presented here is very good for
semielliptical canyons of aspect ratio b>0.7 and at least for frequencies
n<l.5 (n/b < 1.5 in deep cases) and probably also for somewhat larger
values of n. By way of example, graphs of canyon shape, displacement
amplitude and normalized displacement phase against normalized distance x/a
for b = 0.7 and ¢ = 0°, 30°, 60°, 90° are given in Figs. 2 and 3 for
shallow and deep semielliptical canyons respectively.

The validity of the method having been thus demonstrated, it has been
applied to a trench with vertical wa}ls x = + a and curved floor with equa
tion r = al cos?6+(d%cos?6-8in?0)2] /2, |tan 6] > d. 1In Figs. 4, 5 the
form of this trench is shown for d=tan 30°, together with graphs of ampli-~
tude and phase of the surface motion w obtained for n = 0.5, 1.0 (N=25 and
36) respectively. Qualitatively simiiar results to those for semicylindri
cal and semielliptical canyons were observed. But it is of interest to
note that, for waves propagating towards the right-hand side, the amplitude
of the scattered wave near the left~hand wall can considerably exceed that
of wo, the sum of the incident and reflected plane waves. Finally, inthis
example no limitation on the topography slope is imposed as in methods
involving the Rayleigh hypothesis (1, 5, 6, 7). Lack of accuracy of that
method for steep slopes was reported in (4, p. 277).
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