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ABSTRACT

The purpose of this paper is to present a methodt based on the Theory
of Connectivity recently developedt to solve numerically the problem of
scattering of seismic waves by bounded obstacles of arbitrary shape in an
infinite domain) such as a canyon in a ha.lf-space. This method reduces
the dimension of the problem by one but avoids the introduction of singular
integral equations. The results obtained are compared with some known ex-
act solutions for"SH wave motiont producing very good agreement. Results.
for an irregular shaped obstacle are also given. It is observed that) in
some cases of a trench with vertical wallet local amplification factors can
significantly exceed 100%.

INTRODUCTION

In earthquake engineering and strong-motion seismology, the surface mo
tion at a given site due to incoming seismic waves is of interest. For --

rough topography this problem may be approached as one of scattering and
diffraction of elastic waves by departures from flatness. Owing to its
IDItthematical complexity, it has not been completely solved. There area few
known exact solutions (26, 28). Also some approximate solutions have been
obtained by regular (9, 16) and singular perturbations (18, 19). In these
the wavelength is taken to be large compared with a characteristic line4r
dimension of the topography, which is not the case in the presetlt study.

Thus numerical methode are sought for intermediate values of the wave-length. 
Finite difference (3~ 4) and finite element methods (24) have been

used with some success. However~ when applied to unbounded regions~ they
use a.bounded domain involving "artificial" boundaries that contaminate thesolution. 

The effect may be reduced by considering a larger domaint but
this may produce computer storage difficulties. On the other handt the
problem of eliminating the errors introduced by artificial boundaries has
only been partially solved (23).

Alternatively, boundary integral equations have been employed for this
problem (27). The integral equation has a singularity which must be han-
dled with care. As other boundary methods, this procedure reduces the di-
mension of the space, but. the solution is non-existent or non-unique at ce..!.
tain frequencies (8). In another representation (21), this difficulty is

avoided but the equation is still singular.
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Other aethods have been used: an acoustic approxiaation valid for sat~
rated soils (22); the discrete wave-number ~epresentation of Aki, Larnera.nd
Bouchon (l, 5, 6,7)', a collocation method (20). This last one p~oduces an
over-determined system of equations which is solved in terms of a general-
ized aatrix inverse, but it also suffers from a lack of uniqueness at cer-
tain frequencies.

In this paper the solution of the problem of scattering of a plane ha~
monic SH wave incident upon a bounded reentrant rough topography in an
otherwise flat, traction-free surface, is sought. In the method of solu-
tion, the scattered fi.eld is represented as a linear combination of known
solutions of the wave equation. The coefficients are chosen to minimize
the mean-square error in the boundary condition. The development of this
approach has been guided by a theory of connectivity recently developed (10,
11),. which allows a systematic formulation of boundary methods (12) appli-
cable to many other problems and which leads naturally to the complete
system of functions used here for the half-space (13). However, the corre-
sponding syste~ of functions for problems formulated in the whole space has
been used extensively in the null-field metho~ of acoustics and electromag-
netism (2). Minimization of the mean-squsre error on the boundary is a
standard technique (is), whose implications have not been fully realized
until recently. In (17), it is shown that when the mean-square error is
minimized on the boundary, the resulting representation converges uni-
formly to the solution of the problem provided a complete set of functions
is chosen, as is the case in the present work.

The procedure here pres~nted reduces the dimension by one without in-
troducing singular integral equations. The theory of connectivity (10~ 11.
13) also simplifies the treatment of the problem of scatt~ing by bounded
inhomqgeneities such as an alluvial valley. as will be shown in ~notherpaper.

STATEMENT OF THE PROBLEM

Consider a two-dimensional half-space. y>O (as in Fig. 1). consistitkg
of

Figure 1. Illustrative topography.

two parts: an tmbOU11ded region E enclosing a bo\mded region. R which contains
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the origin of coordinates O. Let the boundary of E be oE and the common

boundary between Rand, E be S. The surface S is assumed smooth in the sense
of having continuously turning normal vector fl. The \mbounded region E is
filled with a linear elastict homogeneoust isotropic medium of density p
and rigidity 11; shear wave velocity is 8=(P/il)1/2. On the other handt the
boun,ded region R, having a characteristic horizontal linear dimension 2at
is empty. The surface aE is traction-free.

A state of antiplane shear deformation and harmonic motions in time is
considered~ so that the only non-zero component of the displacement is
w -w(x~y)exp(iwt) in the z (o~t-of-plane) direction where w is thecircularfrequency. 

Consider a plane harmonic 8H wave wi of unit amplitude incident
upon R at an angle ~ measured with respect to the x-axis (Fig. 1)

w1. = exp[ ik(-x cos <p + Y sin cp)] I 1JFor 

convenience the factor exp(iwt) is omitted here and hence-with k=wIB.
forth.

In the absence of the scattering region R, i.e. if the surface is flat,
a reflected plane harmonic SH wave

wr = exp[ -ik(x cos cp + Y sin <II}] .{ 2]arises, 

so that a total field wO-wi+wr is produced in y>O.

In the presence of R, the scattered wave w produced by R is sought,
such that the total field wt may be written as

wt = wo + w in E .[ 3]

Thus the scattered field satisfies the following boundary value prob-
lem aw awo

V2w + k2w -0 in E, ~. -~ on aE , [4)
an an

and w satisfies Sonnnerfeld's outward radiation condition at infinity, where
V2 = a2/dX2 + a2/ay2 is the Laplacian operator in two dime~sions and dlan
is the derivative in the direction of the outward unit non:al fi to aE. It
may be observed that the right-hand side of Eq. [4b] is. in general, non-
zero only on S, i.e. the common boundary between Rand E.

Once w is found. the total field wt can be determined. In strong-
motion seismology it is of interest to find the surface field i.e. wt on
dE, and in particular, on S and close to it'. A method for doing this is
described here.

METHOD OF SOLUTION

Consider the complete system of cylindrical wave functions derived in
a previous paper (13):

v -H(l) (kr) cos pe, p -0,1,2,... [5]

where ~l)(z) is ~a~kei,s function ~f the first kind of order p a~d (r,O)
are the polar coord1.nates of the po1.nt (x,y). Note that each Vp 18 a solu-
tion of Eq. [4a], fulfills dvp/'Jn = 0 on y -0, and satisfies a Sommerfeld

outgoing radiation condition.

~

"'~

Let the N-th approximat:ion to w be
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N N
wN(r,O) = E a v (rt6) t [6]

p=O p P

where the superindex N on the complex coefficients a~ has been introducedt
to make explicit their dependence on the order of the approximation. In
the work here reportedt these coefficients were determined by minimizing
the mean-square error on the boundary given as

dWO Ow 2-

~ Ian- + -a!1 ds. [ 7}

By a straightforward derivationt this procedure yields an (N+l)x(N+l)
system of linear alRebraic equations

B.! =.£ , [ 8]

where the elements of the matrix B and the vector care

dV 3v dV dwO
b = 1 -P- -9. de c = -I -P.. -ds .[ 9]pq s ~ 'an t p S an an

The bar indicates a complex conjugate. The matrix B=[bpq] is Hermitian and
positive definite; a numerically advantageous fact.

Since it is known that the set of functions {avp/3n} is complete with
respect to all functions that are square-integrable on s~ aWN/~n converges
uniformly in S to &w/an. A proof in a very similar case is given in (17).
Furthermore, WN(r~e) converges uniformly in E to the solution w of Eqs. [4].

Hen&e, for given N~ the system of Eq. I 8] is solved for the coeffi-
cients a~, and finally Eq. [6] will produce the scattered field at any de-
sired po~nt in E, or, in particular on dE.

It is wort9wbile observing that when S is a semicircle of radius a,
the functions H~l)(kr) ~nd their derivatives are constant on S, and the set
of basis functions {Vp} or {avp/dn} is orthogonal on S in the sense that
the matrix B is diagonal. The coefficients a~ are then independept of N,
and Eq. [6] represents simply N+l terms of the trigonometric Fourier series
for w at any fixed value of r.

Since the displacement w is a complex .function, it is necessary tocalculate, 
as functions of the normalized abscissa x/a, its modulus and its

phase .1/ -1Iwl ..[(Re w)2 + (1m w)2] 2. , ph(w). tan (1m wiRe TN). [10]

The latter is arbitrarily divided by a normalizing factor 27f, mainly to
facilitate comparison with other known solutions. In addition, the appro-
priate value of tan-1 is chosen to make ph(w) a continuous function, and a
constant is subtracted to make its value zero at x/a = O.

To deal with incident waves ,of different frequencies for fixed topo-
graphy) a normalized frequency (or wave number) is introduced n -wa/n~.

ka/n.

NUMERICAL CONSIDERATIONS

While evaluation of Eq. [1) would provide a criterion for the accuracyachieved. 
this has not so far been done. The simpler process of repeating

the method for different values of N has been ,used: it is concluded that
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sufficient accuracy has been obtained when two solutions differ on S by
less than the required error bound.

In addition to the value of Nt it is necessary to fix some integration
rule for the evaluation of Eqs. [91. !h view of the factor cos pe in vp'
there are integrands in Eq. [9al with up to N complete oscillations on S.
Numerical experiments have given very poor results when the integration rule
used fewer than 2N points, confirming a result from (29), reported in (17)..Further, 

by varying the distribution of points, unsatisfactory results have
been obtained with fewer than two integration points in each cycle of the
factor cos2(N6) in bNN. This suggests the use, of e as the most suitable
parameter in terms of which to write the equation of the curve S. A com-
pound trapezoidal rule, with equal intervals in 9, clearly showed conver-
gence to the correct values of aN as the number of points increased above
2N. HOwever, to obtain values ot a~ with 1% accuracy, as many as lONpoints
were needed, using the trapezoidal rule with equal intervals in 6. Never-
theless, the same precision is attainable with fewer points using integra-
tion rules of higher order, provided the curve S, r = r(6)t is sufficientlysmooth. 

In particulart with a compound 9 point Lobatto rule -coefficients
from{25)-approximately 3N points were sufficient. A further increase in
order did not appear productive, presumably because with increasing irre-
gularity of the distribution of integration points, more than 3N points are
required to maintain two in e"ach cycle for cos2(Ne). .

Having evaluated Eqs. [9] , it remains to solve Eq. [8). Since the
matrix B is Hermitian and positive definite, an LU factorization without
row interchanges should be possible,all the pivots being positive if round-
ing errors do not accumulate seriously. Further, it is possible to choose
a Cholesky type factorization) U" L*, the asterisk indicating the trans-
posed complex conjugate, or to factorize B in the f~rm LDL*. where L is
lower triangular with a unit diagonal, and D is rea '. diagonal. This last
form has in fact been used.

Probably the most rPstly part of the computat.on is the calculation of
the Hankel functions ~ } (kr). These have been eval,'ated using Bessel funs.
tion routines from the IBM Scientific Subroutine Pack.~ge (14), slightly modi
fLed so as to provide values simultaneously for p =; 0, 1, ..., N.

It should be noted that the matrix B does not depend upon the angle ofincidence~. 
Thus a considerable economy of computation is achieved ifseveral 

angles of incidence are analysed simultaneously for a given geome-
try and wave ntDnber k.

RESULTS

In order to assess the methods a computer program using it has been
applied to tWo cases with known exact solutions: semicylindrical (26) and

semielliptical. (28) canyons.

The solution for a semicylindrical canyon is given as a Fourier series
with coefficients involving Bessel functions (26). The series was raevalu-
ated numerically in the interva11x/al..-:3 for TI -0.25 (0.25) 2.0 and anglas
of incidence ~. 00 (30) 90~, Using the same number of terms for both me-
thods (i.e. N ::= 19, 26, 33, 36, 38, 41. 43. 45 respectively>., the modulus

and phase of the di.splacement c.oincided in all the figures printed -a
difference of lesB than 10-6, Essentially the same precision could be
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achieved with fewer terms

For semielliptical canyons, the solution can be derived as a series
involving Mathieu functions and the results are given in (28) as graphs of
displacement amplitude and phase against normalized distance x/a from-3
to 3t with four angles of incidence Oat 30°, 60°, 90°. Using the method
of this article. semielliptical canyons of aspect ratio b = 0.7 have been
analysed. (b = ratio of minor axis to major axis. For each value of b,
there. is both a shallow and a deep canyon). In the shallow caset using N :=

22. 32t 36, 40 for n» 0.5.1.0,1.5.2.0 respectively, the differences
with (28) were in general less than 0.05 ~ 2.5% at Ix/al a °t 1, 2, 3,

which is as good as the precision with which it is possible to read the
graphs in (28). For n = 1.5,2.0 no results were available for Ix/a! = 3.
For n = 2.0, the differences were rather b.igher, rising as high as 0.25 at
Ix/a! :: 2, <I> = 90°. Similar results were obtained for the deep case.

Using the same values of N for ~/b .0.5, 1.Ot 1.5, 2.0, differences were
in general less than 0.05, at Ix/al = Ot 1, 2t 3. For nIb = 2.0 no results
were available for Ix/al = 3, but the differences rose as high as 0.31 at
Ix/al := 2, <1>. 06.

However. by repeating the same cases with smaller values of N. successful convergence towards the solution was clearly observed. Estimated -

errors for the shallow canyon were less than 0.005 at Ix/al -0, 1, and
0.0005 at Ix/al -2,3 (where results were. available). Results fpr the deep
canyon were even better. The discrepancies with (28) for the larger values
of T'I might be due to the slow convergence of that series solution for
I x/a I ..?: 2 and those values of 1). The authors report than more terms of the
series are needed when n and Ix/a! increase, and the results given here
suggest that they did not take sufficiently many in the cases indicated.

It may be concluded that the method presented here is very good for
semie1liptical canyons of aspect ratio b_~0.7 and at least for frequencies
~1.5 (nib ~ 1.5 in deep cases) and probably also for somewhat larger
values of n. By way of examplet graphs of canyon shape, displacement
amplitude and normalizeddispacement phase against normalized distance x/a
for b = 0.7 and ~ = 0°,30°,60°,900 are given in Figs. 2 and 3 for
shallow and deep semielliptical canyons respecti.ve1y.

The validity of the method having been thus demonstrated. it has been
applied to a trench w~th vertical walls x =! a and curved floor with equ~
tion r -a[cos26+(d2cos26-sin28)2]-1!z, !tan 61 > d. In Figs. 4, 5 the
form of this tre,nch is shown for d-tan 300. together with graphs of ampli~
tude and phase of the surface motion w obtained for n = 0.5,1.0 (N-25 and
36) respectively. Qualitatively similar results to those for semicylindrical and semielliptical canyons were observed. But it is of interest to -

note that. for waves propagating towards the right-hand side, theampli'tude
of the scattered wave near the left-hand wall can considerably exceed that
of wO, the sum of the incident and reflected plane wav~s. Finally, inthis
example no limitation on the topography slope is imposed as in methods
involving the Rayleigh hypothesis (1, 5, 6, 7). Lack of a~curacy of that
method for steep slopes was reported in (4, p. 217).
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