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ABSTRACT

A theory of connectivity recently developed by the author, is described briefly, and a unified

formulation of boundary methods is presented. Boundary integral equations and series expan-
sions in terms of a basic set of functions are among approaches included in this unified for-mulation. 

The theory of connectivity therefore appears to be a useful tool for discussing
questions of completeness of the basic set of functions and convergence of the approximating
procedures; in addition, it supplies a systematic formulation of variational principles for
this kind of problem.

1.

INTRODUCTION

In recent years boundary methods are being used extensively in applied mathematics [1], be-
cause they reduce the dimensionality of problems and also because, when they are used in con-
junction with finite elements, they permit reducing the size of the regions treated numerically.

At present the method most extensively used is the boundary integral equation derived from
Maxwell-Betti's formula [2].

Another approach is the singularity method [3]. In this procedure singular solutions are re-

placed by integral representations. The method can be subdivided into two. depending on whether
boundary values and the sought solution are defined on the same curve or in different curves.
Integral equations of the latter type are gaining favor among engineers [4,5].

A related but different approach discussed by Kantorovich and Krylov [6] depends on the use of
a basic denumerable set of solutions to approximate the sought functions.

To apply boundary methods efficiently, it is important to settle questions of completeness of
the basic set of solutions and questions of convergence of the approximating procedure. Such
matters may have important practical implications; in radio science [7], for example, problems
of convergence have complicated and unnecessarily restricted the applicability of these
methods [8].

The present author has recently developed a theory of connectivity [2, 9-12] which can be used
to settle these matters in specific applications. Some features of this theory are: (i) it
supplies a unified formulation of boundary methods; (ii) it answers questions of completeness;
(iii) it establishes conditions for convergence; and(iv) it provides a systematic formulation
of variational principles for such problems. In this paper part of the theory is described
briefly and illustrations of the kind of resu+ts it yields are given. Some of this material
has already been published, but a more detailed and complete exposition is being prepared.

The presentation is divided into three parts:
connecting, and general variational principles

the general diffraction problem, the problem of

The problem of connecting constitutes a particular example, although a very general one, of the
problem of diffraction; the main concern is to connect solutions defined in two different but
neighboring regions such as Rand E in Fig. 1.

Among the variational principles, three kinds can be distinguished: (i) principles involving
the region RUE applicable to problems with discontinuous fields such as those recently sur-
veyed by Nemat-Nasser I13]; (ii) principles involving one of the regions only (R, for example);
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and (iii) principles involving the common boundary
a3R = a3E between the two regions.a,E

a2R

2. GENERAL DIFFRACTION PROBLEM

The theory has been developed using extensively functional
valued operators P: D + D*, where D is an arbitrary linear

~a R t space with no additional algebraic structure assumed to be
1 a~E defined, and D* its algebraic dual; i.e. the linear space

made of the linear functional defined on D. The use ofFig. 
1. Regions Rand E. these operators in the treatment of partial differential

equations, permit achieving generality and simplicity;
their application to partial differential equations, which

is not standard, has been discussed previously by the author [14, 15, 16]. Linear operators
of this type always possess an adjoint P*: D + D* of the same kind [14],and it is therefore
possible to define A = P -P*, which is the antisymmetric part of P, except for a 1/2 factor.
As an example, D could be Soblev space HS(R) (s> 2), where R is the region illustrated inFig. 1. -

For every u,v E D, let

The null subspace, N = {u E D I Au = O} of A, plays a special role in the theory, because it de-

fines the set of boundary values which are relevant for the problems considered. For example,
when A is given by (2.2), N = {u E Diu = au/an = 0, on a3R},and the equivalence relation,

defined by the condition u-v E N, is tantamount to u = v and au/an = avIan, on a3R.

A Zinear subspace I C D is said to be a connectivity condition when

(1) N c: I .

(Au,v) = 0 ¥u,v E I(2)

The connectivity I is said to be complete ~hen

for every u E D, one has(3)

(2.5)(Au,v) = 0 ¥v E I-+- u E I .

The use of the notion of completeness to describe property (3) is natural because this pro-
perty implies that I is largest as a commutative class; indeed, any element u ED that commutes
with every element v E I, necessarily belongs already to I.

As an example, it is recalled that 1= {u ED I u = 0, on a3R} is a complete connectivity con-

dition when A is given by (2.2). A more general example of connectivity condition is the set
E = N + Np,where Np is the null subspace of P and P: D + D* is any linear operator.

When P: D + D* is given by (2.1), the linear subspace E E D just defined, is characterized by
the fact that the boundary values u, au/an on a R of any function u E E, can be extended into

3
a function u' E D, such that

(2.6a)

(2.6b)

V2u' = 0, in R.

(2.6c)

u' = 0, on aIR,

au'/an = 0, on azR.
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More precisely, u E E if and only if 3 u' E D3 satisfies Eqs. (2.6), u = u', and au/an =

au'/an, on a3R.

The definition of the general diffraction problem to be considered is given next. Given U E D
and V E D, an element u E D is solution of the diffraction problem ~hen

Pu=PU and u-VE I (2.7)

Here, 

I is assumed to be a connectivity condition for P

It will be said that the problem of diffraction satisfies existence, when such problem possess-
es at least one solution for every U E D and every V E D. Using this nomenclature, it is pos-
sible to state two interesting properties associated with the general diffraction problem; they
are given under the assumption that I c: D is a connectivity condition (not necessarily com-
plete) for P.

Theorem 1: If the problem of diffraction satisfies existence, then I and E are complete.
addition every u E D can be written in an almost unique manner as

In

u = ul + uZ' ul E I, Uz E E. (Z.8)Here, 

almost uniqueness is used in the sense that ul and u are unique except for elements be-
longing to the null subspace N. Z

As an example let P be given by (2.1), with d1R = d2R void, so that R is given as in Fig. 2.

In this case f C D is the set of functions whose boundary values u, du/dn on dR, can be ex-
tended into a harmonic function on R. Let 1= {u E Diu = 0, on dR} be the given connec-

tivity condition. Given any U ~ D and V E D, the corresponding diffraction problem is

2 2,~ V u = V U; in R, (2.9a)

u = V; on oR. (2.9b)

rC

This is a boundary value problem. Theorem 1 implies that E is
complete, and therefore that the condition

Fig. 

2. Curve C enclosing
region R.

A subset B c I of a connectivity condition I is said to be complete when for every u E D.
has

<Au,w> = 0 VwEB+uEI. (2.11)

A com~lete denumerable subset is said to be a connectivity basis when every finite collection
{Aw I wEB, a = 1, ..., N} is linearly independent.

a a

As an example, let G(~,¥) be a fundamental solution of Laplace's equation in the whole space
with singularity in ¥, and define for every y i R a function w (x) on R, by w (~) = G(x,y).

~ y~ ¥ ~~

Take the set Bo = {w I y ~ R}. Then, in view of (2.10) and well-known results of potential
y ~

theory, the set BO is a complete subset of the connectivity condition E. Even more, a pro-

cedure presented previously by Herrera and Sabina [11], can be used to show that {w I a =

¥a
1, 2, ...} is 8, denumerable connectivity basis whenever {y I a = 1, 2, ...} is taken as a de-

~a
numerable dense subset of a curve C (or a surface if the dimension of the space is greater
than 2) enclosing the region R (Fig. 2).

A relation between Hilbert space bases and connectivity bases can be given, at least for some
special cases which are, however, widely applicable. Assume there is a mapping A: V + V,
where V = DIN, such that: (i) A2u = -u, and (ii) (u,v) = <Au,Av> is an inner product with the

property that V is a Hilbert space with respect to this inner product. Then, it can be shown
that when B c I is a connectivity basis, then B necessarily is a basis of I/N, as a Hilbert
subspace of V.

is necessary and sufficient, when problem (2.9) satisfies exis-
tence, in order for the boundary values u, au/an on dR, to coin-
cide with the corresponding values of some function which is
harmonic on R.
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Going back to the example illustrated in Fig. 2, it can be observed that the elements of the
quotient space V = D/N are pairs of functions (u, au/on) defined on oR and corresponding to

the values of the function and its normal derivative. If the mapping A: V + V is defined so
that A(u, au/on) = (au/on, -u), where the bar stands for the complex conjugate, then

3.

PROBLEM OF CONNECTING

In this section an abstract problem motivated by the problem of connecting solutions of par-
tial differential equations defined on neighboring regions such as Rand E in Fig. 1, will beformulated.

Let DR and DE be two linearAspa:es and define D = DR~ DE where e9 stands for the outer sum

operation, Thus, elements u E D are pairs (u , uE) such that UR E DR and UE E DE' Consider
A A A R

an operator P: D ~ D* with the additive property

AA A A A

<Pu,v> = <PuR'VR> + <PuE,vE> , (3,1

A A A A A A

Let PR: D ~ D* and FE: D ~ D* be defined by

<PR~'~> = <puR,vR>; <PE~'~> = <puE,vE> , (3,2

Then

P = PR + PE and A = ~ + ~ ' -(3.3)
~ ~ ~ ~ ~ ~

where AL = P -p* and A- = P -p* .
-~ R R -~ E E

As an example, take the spaces DR and DE in a manner similar to the example in Section 2, and

define

~

and PE replacing R by E in (3.4).
~~ ~ 3v

<Au,v> = J {[u --

33R

Then

an'

where a R = a E is the common boundary between Rand E (Fig. 1), and the square brackets stand
3 3

for the difference of the limiting values on E and on Rj e.g., [u] = uE -uR'

In order to be able to formulate the problem of connecting,it is necessary to have a criterion
of smoothness across the connecting boundary. General properties of criteria considered in

the theory are given next.

Smooth elements ~ll be c~acterized by a subset S c D. Elements ~ = (uR'UE) E S ~ll be

said to be smooth. When U = (uR,uE) is smooth~ uR E DR is said to be a smooth extension of

uE E~DE and conversely. It ~ll be assumed that (1) S is a complete connectivity condition

for P; and (ii) every UR E DR possesses at least one smooth extension UE E DE and conversely.

~ ~
In the example considered previously, the set S = {u E D I uR = uE' ~uR I ~n = ~uE/~n, on ~3R}

defines a smoothness condition possessing the above mentioned properties.

When a~smo~thnes~ co~dition S is g~venA it is possible to define the problem of connecting.
Given U E D and V E D, an element U E D is said to be a solution of this problem~ if ~ is

is an inner product and V is a Hilbert space with respect to this inner product. Taking the
denumerable dense subset {y I a = 1, 2, ...} of the curve C as before, the set {w I a =

a Ya1,2,...} 

is a denumerable basis for the functions which are harmonic on R. We would like to
choose the norm in region R so that convergence in the norm associated with the inner product
(2.14), implies convergence on R. Millar [8] has given related results. However, the defini-
tion of the mapping A presents complications that will be discussed in more detail in a com-

plete exposition that is being prepared.
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Thereforesolution of the problem of diffraction~ with S as connectivity condition.
is solution of the problem of connecting when

AA AA A A

Pu = PU and u -V E S . (3.6)

Applying (3.6) to our example. it is seen that the first equation there is tantamount to

(3.7a)

(3.7b)

(3.7c)

[u] = [V]; [aulan] = [aVIan], on a3R . (3.8)

4. VARIATIONAL PRINCIPLES

A few examples of general variational principles that can be obtained for the diffraction prob-
lem and the problem of connecting, are given in this section. Any pretense of exhaustivitywill 

be left aside; among the variational principles that will not be discussed here, extremal
and dual extremal principles deserve to be mentioned. However, those given in this section
can readily be applied to problems with discontinuous fields. Alternative forms were presented

previously [9, 10], and a more systematic discussion is being prepared.

It can be shown that when the problem of diffraction satisfies existence, there exists an opera-
tor B: D + D* such that

(1) Bu = 0 -+-+- U E I ;

(2) A = B -B*
\.'+.L

(3)

(4)

Band B* can be varied independently; more precisely, given any U E D and V E D,
3 u E ~ Bu = BU and B*u = BV ;

u E D is solution of the problem of diffraction, if and only if

(P-B)u = PU -BV ;

(5) P -B is symmetric;

(6) n'(u) = 0 if and only if u is solution of the problem of diffraction, where

1Q(u) = 2 «P-B)u,u> -<PU-BV,u> .(4.4)

This last result follows from (4) and (5). Indeed (4) and (5) together show that the problem of
diffraction can be formulated in terms of a symmetric operator. Equation (4.4) follows from a
general result given by Herrera [14] which is essentially Ritz formula for this kind ofoperator.

For the problem of connecting the above results imply that when this problem satisfies exis-
tence,there exists J: D + D* such that

~~ ~

(1) Ju = 0 ++ u E S ; (4.5)

~ ~ ~

(2) A = J -J* ;

~ ~

(3) J and J* can be varied independently;

~ ~

(4) uE D is a solution of the problem of connecting, if and only if

~ ~ ~ ~~ ~~

(p -J)u = PU -JV ;

~ ~

(5) P -J is symmetric;

(4.6)

(4.7)

(6) n'(u) = 0 if and only if u is a solution of the problem of connecting; here

A 1 A A A A AA AA A

n(U) = 2" < (P-J)U,U> -<PU-JV,U> .

UR = UR' on 31R; UE = UE' on 3lE ,

3uR/3n = 3UR/3n, on 32R; 3uE/3n = 3UE/3n, on 32E,

while the second condition holds if and only if
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A A A

Property (1) shows that it is appropriate to call J: D + D* the jump operator. Indeed, it is
natural to say that two elements ~ E D and v E D have the same jump when ~ -v E S. Thus, pro-
perty(l) shows that two elements ~,v have the same jump if and only if J~ = Jv.

As an example, let us obtain variational principles for linear static elasticity with discon-
tinuous fields in the region RUE of Fig. 1. Assuming that the only admissible jumps are on
d3R = d3E, take

f v~RU E i ax (u)dx +
j ~ ~

hh h

<PU,V> = UiTi(~)d~ -J viTi(~)d~
~ 2 (R U E)

f
°1 (RU E)

h h h

Then J: D ~ D*, given by

<J~,~> = J {[ui] ~ -vi[Ti(~)]}dx , (4.10)

d3R

has the properties (1) to (6). The functional in the variational principle is given by Bq.
(4.8). Here

Ti O(U) = C
J ~ (4.11)

where Cijpq is the elastic tensor, n is the unit normal to °3R = °3E points outwards from R,

the brackets [ ] stand for the jumps (taken as before), and the bar is used for the average
across the boundary.

REFERENCES

3.4.5.6.

8

9.

10.11.13.

14.

15.

Boundary IntegPal Equation Method: Cornputational Applications in Applied Mechanic8, Vol.

AMD-ll, T. A. Cruse and F. J. Rizzo (eds.), Am. Soc. of Mech. Engrs., ASME, Applied

Mechanics Division, New York (1975).
Recent Advanae8 in Boundary Element Methods, C. A. Brebbia (ed.), Pentech Press,

London (1978).
Heise, U., "Numerical Properties of Integral Equations in Which the Given Boundary Values
and the Sought Solutions Are Defined on Different Curves," Computer8 and Struature8 8

(1978) 199-205.
de Mei, G., "Integral Equation for Potential Problems with the Source Function Not Located
on the Boundary," Computer8 and Structure8 8 (1978) 113-115.
Sanchez-Sesma, F. J. and Rosenblueth, E., "Ground Motion at Canyons of Arbitrary Shape
Under Incident SH Waves," Earthquake Engng. Struct. Dyn. 7 (1979) 44l~450.
Kantorovich, L. V. and Krylov, V. I., Approximate Methods of Higher AnalY8i8, Interscience,
New York (1964).
Bates, R. H. T., "Analytic Constraints on Electromagnetic Field Computations," IEEE Tran8.
Microwave Th. and Teah. 23 (1975) 605-623.
Millar, R. F., "The Rayleigh Hypothesis and a Related Least-Squares Solution to Scattering
Problems for Peri9dic Surfaces and Other Scatterers," Radio Sa. 8 (1973) 785-796.
Herrera, I., "General Variational Principles Applicable to the Hybrid Element Method,"
Proa. Nat. Aaad. Sci. U.S.A. 74 (1977) 2595-2597.
Herrera, I., "Theory of Connectivity for Formally Symmetric Operators," Proc. Nat. Aaad.'
Sci. U.S.A. 74 (1977) 4722-4725.
Herrera, I. and Sabina, F. J., "Connectivity as an Alternative to Boundary Integral Equa-
tions. Construction of Bases," Proa. Nat. Aaad. Sci. U.S.A. 75 (1978) 2059-2063.

Herrera, I., "On the Variational Principles of Mechanics," Proaeeding8 of the 2nd Symp08ium
on Trends in Appliaations of Pure Mathematic8 to Mechania8 held at Warsaw, J. Zorsky (ed.),

Prentice Hall (1978) 115-128.
Nemat-Nasser, S., "General Variational Principles in Nonlinear and Linear Elasticity with
Applications," Meahania8 Today, Vol. 1, S. Nemat-Nasser (ed.), Pergamon (1972) 214-261.
Herrera, I., "A General Formulation of Variational Principles," E-10, Instituto de

Ingenieria, UNAM, Mexico, D. F., June (1974).
Herrera, I. and Bielak, J., "Dual Variational Principles for Diffusion Equations," Q.

Appl. Math. 34 (1976) 85-102.
Herrera, I. and Sewell, M. J., "Dual Extremal Principles for Non-negative Unsymmetric
Operators," J. In8t. Maths. Applia8. 21 (1977) 95-115.

16.


